
Approximate Discovery of Functional Dependencies
for Large Datasets

Tobias Bleifuß1 Susanne Bülow1 Johannes Frohnhofen1

Julian Risch1 Georg Wiese1 Sebastian Kruse2

Thorsten Papenbrock2 Felix Naumann2

1 firstname.lastname@student.hpi.de
2 firstname.lastname@hpi.de

Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2–3, 14482 Potsdam, Germany

ABSTRACT
Functional dependencies (FDs) are an important prerequi-
site for various data management tasks, such as schema nor-
malization, query optimization, and data cleansing. How-
ever, automatic FD discovery entails an exponentially grow-
ing search and solution space, so that even today’s fastest
FD discovery algorithms are limited to small datasets only,
due to long runtimes and high memory consumptions.

To overcome this situation, we propose an approximate
discovery strategy that sacrifices possibly little result cor-
rectness in return for large performance improvements. In
particular, we introduce Aid-Fd, an algorithm that approx-
imately discovers FDs within runtimes up to orders of mag-
nitude faster than state-of-the-art FD discovery algorithms.
We evaluate and compare our performance results with a
focus on scalability in runtime and memory, and with mea-
sures for completeness, correctness, and minimality.

1. FD DISCOVERY
Functional dependencies (FDs) are among the most im-

portant integrity constraints in relational databases. They
are a prerequisite for various core data management tasks,
such as schema normalization and query optimization [5,15].

Given a relational instance r of schema R, the FD X → A
states that the values of an attribute set X ⊆ R determine
the value of a single attribute A ∈ R in r. Formally, the FD
X → A holds on r iff any two tuples agreeing in their values
in X also agree in their values in A: ∀t1, t2 ∈ r : t1[X] =
t2[X] =⇒ t1[A] = t2[A]. X is called the FD’s left-hand side
(LHS) and A is called right-hand side (RHS), respectively.
A minimal FD is an FD X → A whose left-hand side X is
minimal, which means that no FD X ′ → A with X ′ ⊂ X
holds. An FD is non-trivial, if its attributes on the LHS
and RHS are disjoint. For instance, in Table 1, the values of
C determine the values of A, i.e., C → A holds. Similarly,
the values of A and B combined determine the values of C,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM ’16 October 24–28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983781

Table 1: Example dataset with C → A and AB → C.
A B C

t1 1 1 1
t2 1 2 2
t3 1 3 1
t4 2 2 3

yielding the FD AB → C. Note that these FDs are the only
minimal, non-trivial FDs that hold in this instance.

FD discovery is the problem of finding all minimal, non-
trivial functional dependencies that hold in a given rela-
tional instance. The major obstacle to this problem is its
exponential complexity: The number of FD candidates is∑|R|

k=1

(|R|
k

)
· (|R| − k), which makes enumerating the entire

search space infeasible for large datasets [10]. Existing al-
gorithms for FD discovery, therefore, apply various loss-free
pruning rules to reduce the size of the search space. Still,
these algorithms cannot process datasets of real-world size
as shown by Papenbrock et al. [13]: Their evaluation of
state-of-the-art FD discovery algorithms has demonstrated
that all current, exact techniques fail to provide a result for
datasets with more than 30 attributes and 250,000 tuples
within reasonable time and memory limits.

To enable FD discovery on larger datasets, we suggest ap-
proximating the discovery. While the approximation might
sacrifice completeness and correctness of the computed FD
result sets, it can considerably reduce the usage of computa-
tion resources, in particular time and memory. Approximate
FD result sets are still useful for most use-cases that utilize
FDs. Especially interactive applications, such as data explo-
ration, prefer a fast analysis over a perfectly correct result.
Moreover, an approximated result is more valuable than not
being able to calculate any result.

AID-FD. We propose the approximate FD discovery al-
gorithm Aid-Fd (Approximate Iterative Discovery of FDs).
Exact state-of-the-art FD discovery algorithms can process
datasets with up to 250,000 rows and 30 columns; Aid-Fd, in
contrast, processes the same datasets using only 2 % to 40 %
of the time of the exact algorithms, while still discovering
more than 99 % of all FDs. The approximation allows Aid-
Fd to very efficiently handle much larger datasets, which no
known algorithm is able to process within several hours.

Aid-Fd comprises three phases. At first, it loads the input
relation into data structures to efficiently retrieve sets of
tuples that share a value in a particular attribute.

Secondly, Aid-Fd approximates the negative cover, which
is a representation of the set of all non-FDs. For this pur-
pose, our algorithm uses an incremental, focused sampling
of tuple pairs to deduce non-FDs from them. The sampling
stops, once a user-configured termination criterion is met,
which can either be a fix time limit or a desired correctness.

In the third phase, Aid-Fd inverts the negative cover into
the positive cover, which holds the alleged minimal, non-
trivial FDs. We show that our inversion algorithm is up to
40 times faster compared to the best previous algorithms.
Because our inversion is exact, it can also be used in some
of the exact FD discovery algorithms, e.g., FDEP [6] and
Dep-Miner [11], and improve their performance.

We exhaustively evaluate and compare the performance
of Aid-Fd with regard to exact FD discovery algorithms, in
terms of both efficiency and result quality. To make precise
statements about the latter, we introduce three complemen-
tary quality measures, completeness, correctness, and mini-
mality, each addressing a specific approximation dimension.

Structure. In Section 2 we discuss related work and com-
pare our algorithm to other approaches for the exact and the
approximate discovery of FDs. Section 3 defines the differ-
ent dimensions of approximation and introduces measures
for correctness, completeness, and minimality. We then de-
scribe our Aid-Fd algorithm in detail in Section 4, followed
by an evaluation and a scalability discussion in Section 5.

2. RELATED WORK
The discovery of FDs is an extensively studied data profil-

ing task. Abedjan et al. provide an overview of different pro-
filing tasks including a classification of existing algorithms
for FD discovery [1].

Exact discovery. Column-based FD discovery algorithms
traverse all possible FD candidates through an attribute
lattice. The most efficient column-based algorithm is ei-
ther DFD [2] or TANE [7], depending on the dataset [13].
TANE traverses the candidate lattice bottom-up in a level-
wise manner with an apriori-like candidate generation. DFD
also uses the candidate lattice but traverses it with a depth-
first random walk and additional top-down pruning. Both
algorithms check candidates by partition intersections and
refinement checks. The runtime of these and other column-
based algorithms is dominated by the number of columns.

Row-based FD discovery algorithms compare tuples from
the relation to build so-called difference and agree sets. From
these sets, they derive all valid FDs. The derivation step
differs for each algorithm. FDEP [6], the most efficient row-
based algorithm [13], starts with a set of most general FDs
and incrementally specializes them. The complexity of row-
based algorithms depends on the number of tuple compar-
isons, and thus the number of rows.

Hybrid FD discovery algorithms such as HyFD [14] com-
bine row- and column-based strategies. Similar to our al-
gorithm, they free the user from choosing the most efficient
discovery strategy. Because the number of rows and columns
in a dataset determines the fastest related algorithm, we
compare Aid-Fd with always the most efficient competitor
among TANE, DFD, and FDEP.

Approximate discovery. Because exact discovery algo-
rithms do not scale to the size of many real-world datasets,
approximating FD discovery has been proposed. Kivinen et
al. provide a basic algorithm of inferring FDs with an arbi-

trary precision [9]. Furthermore, they present a theoretical
analysis of the sample size and the consequent correctness
estimation of the found FDs. This approach searches for
valid FDs by the random generation of candidates. In case
a generated candidate does not hold, it is used to refine the
current result set of FDs. As the authors state themselves,
this approach is inefficient in finding FDs with many at-
tributes on the left-hand side due to the random generation
of candidates. Because most discovered FDs, in fact, do
have large left-hand sides, we do not follow their approach.

Another approximate FD discovery algorithm, CORDS, is
intended to find FDs for query optimization [8]. It first gen-
erates candidates based on heuristics, such as the number
of distinct values and data types. Then, the algorithm sam-
ples rows for each candidate until either a counter-example is
found or the probability that the columns are dependent ex-
ceeds a certain threshold. Brown et al. propose another ap-
proach called B-Hunt also aiming at query optimization [4].
B-Hunt’s candidate generation is similar to CORDS, but for
candidate testing B-Hunt uses algebraic constraints, such as
clustering or segmentation on a sample of the input relation.
Both CORDS and B-Hunt are limited to finding FDs with
a single column in the LHS in contrast to our algorithm,
which aims at finding all FDs holding in a relation.

Partial discovery. In contrast to the approximate dis-
covery of FDs, partial FD discovery algorithms are exact
algorithms that allow a certain violation of the FD prop-
erty, i.e., they discover FDs that are only partially fulfilled
by the inspected data and the error is known. Algorithms
for finding partial FDs, which are also called “soft FDs” [8]
or “approximate dependencies” [7,12], are often adaptations
of exact algorithms and have even longer runtimes than ex-
act algorithms, because allowing a certain error introduces
an additional overhead and many pruning rules do not work
with error tolerance. Therefore, the discovery of partial FDs
is orthogonal work. Incorrect FDs reported by approximate
discovery algorithms can, however, be partial FDs.

3. DIMENSIONS OF APPROXIMATION
An exact FD discovery algorithm returns all and only

minimal, non-trivial FDs of a given relational instance. We
call this set of FDs the gold standard, short Gold, and write
Gold+ to denote the set of all FDs that can be inferred from
Gold using the Armstrong Axioms [3].

We call an FD discovery algorithm approximate if it can-
not guarantee to find the gold standard for every possible
input relation; it might miss some actual FDs or incorrectly
report non-FDs as FDs. Notice that approximation is a fea-
ture of FD result sets but not of single FDs: Whether or
not a non-FD has only few violations (we refer to this as
partial FDs) is not relevant. Instead, we are interested in
approximating the set of violation-free FDs.

In this section, we distinguish three independent dimen-
sions that make up an exact FD result set: completeness
(does the result contain all true FDs?), correctness (does
the result contain true FDs only?), and minimality (are the
reported correct FDs also minimal?). An approximate algo-
rithm can relax one or more of these dimensions to speed
up discovery. Depending on the FDs’ use-case, different re-
laxations are tolerable. Table 2 shows example outputs for
all possible combinations of the three relaxation dimensions
and the example relation of Table 1.

Table 2: Three dimensions of approximating FDs.

Completeness Correctness Minimality Example (wrt. Table 1) Example Method

= 1
= 1

= 1 AB → C, C → A exact discovery
< 1 AB → C, C → A, CB → A test everything

< 1
= 1 AB → C, C → A, B → A
< 1 AB → C, C → A, B → A, CB → A

< 1
= 1

= 1 C → A column sampling
< 1 AB → C, BC → A generate & test

< 1
= 1 B → A, C → A, A→ C, B → C row sampling
< 1 BC → A, C → B random guessing

In the following, we discuss these three dimensions in de-
tail. For each dimension, we propose a quality measure that
evaluates the performance of an approximate FD discovery
algorithm regarding this dimension. The measures adapt
the widely used measures precision and recall to accommo-
date the fact that FDs can imply one another. Let Out be
the result set of FDs returned by an approximate FD dis-
covery algorithm. All given measures cover the range [0, 1]
with 1.0 being the best possible value.

Definition 1. Completeness of a result is the share of
discovered minimal, non-trivial FDs of a relation’s gold stan-
dard FDs. A complete result set is equal to or a superset of
the gold standard. Formally, completeness is defined as the
fraction of FDs in Gold that are also contained in Out:

|Out ∩Gold|
|Gold|

Potentially incomplete results can efficiently be obtained by,
for example, executing an exact FD algorithm on a subset
of the relation’s attributes (column sampling): If only the
attributes A and C of the example relation from Table 1 are
considered, the correct FD AB → C cannot be discovered.
Query optimization is one scenario for which incomplete FD
sets are still very useful: A missing FD might cause some
lost optimization potential, but query optimization works
fine with only some available FDs.

Definition 2. Correctness of a result is the share of dis-
covered (not necessarily minimal) FDs of all discovered FDs
for a given relational instance. We define correctness as the
fraction of FDs in Out that hold in the given relation. Be-
cause non-minimal FDs in Out are also considered correct,
we use the gold standard’s transitive closure Gold+:

|Out ∩Gold+|
|Out|

An FD result can become incorrect if we, for instance, exe-
cute an exact algorithm on a subset of tuples (row sampling).
If only the single tuple t2 in Table 1 is excluded from the
discovery, then incorrect FDs, such as B → A, are included
in the result. Potentially incorrect FDs are for instance still
valuable for query optimization where a few incorrect FDs
might lead to incorrect cost estimations for plan alterna-
tives, yet, the many correct FDs help improving the overall
accuracy of the estimations.

Definition 3. Minimality of a result is the degree of cor-
rect FDs in the result set that are also minimal. Formally,
minimality is defined as the number of minimal FDs in Out

normalized by the number of correct FDs in Out. Again,
non-minimal FDs are also considered correct:

|Out ∩Gold|
|Out ∩Gold+|

When, for instance, generating candidate FDs from a set of
rules or heuristics and then testing these candidates against
a relation (generate & test), we cannot guarantee the FDs’
minimality: This approach could generate the FD BC → A,
find that it holds in our example relation, and add it to the
result set although it is non-minimal. Non-minimal FDs
serve scenarios such as schema matching that search for cor-
responding FDs across datasets in order to identify matching
schema elements; the FDs do not need to be minimal if only
their attributes match.

4. AID-FD
In the following, we give a detailed description of our Aid-

Fd algorithm. The algorithm conducts a focussed sampling
of tuple pairs to approximate the negative cover. In other
words, we try to rule out as many FDs as possible without
comparing all tuple pairs as done by exact row-based algo-
rithms. In Table 2, Aid-Fd thus belongs to the category
labeled as “row sampling”. By inverting the approximate
negative cover, the algorithm deduces an approximate set of
minimal FDs for the given relational instance.

Aid-Fd is a 3-phase algorithm as illustrated in Figure 1.
During the Attribute Indexing phase, the algorithm ingests
the dataset and initializes the data structures needed in the
later phases (Section 4.1). The Negative Cover Creation
phase builds the negative cover using approximation tech-
niques (Section 4.2). The Negative Cover Inversion phase
inverts the negative cover in an exact manner, which yields
an approximation to the set of minimal FDs (Section 4.4).

Notation. Throughout this section, R(A,B,C) denotes a
sample relation R with the attributes A, B, and C. Vari-
ables denoted by lower-case letters, such as rhs and add,
store single attributes. Sets of attributes (subsets of R) are
implemented as bitsets and denoted by a single upper-case
letter (other than A, B, C), such as N or X. Sets of at-
tribute sets are either implemented as hash sets or a prefix
tree structure, which is introduced later. These sets of sets
are denoted by calligraphic letters, such as P or N .

4.1 Attribute indexing
The purpose of the attribute indexing is to load the input

relation into memory-efficient data structures that provide
fast access to all information relevant for the later phases.
This allows discarding the actual data values afterwards.

Figure 1: Overview of the AID-FD algorithm workflow.

First, Aid-Fd builds clusters for the given dataset. A clus-
ter is an ordered set of tuples that share a value in a particu-
lar attribute. For instance, in Table 1, attribute A partitions
the tuples into clusters cA1 = {t1, t2, t3} and cA2 = {t4}.
This set of clusters for attribute A is called the partition
of A. The clusters table in Table 3 reflects this partitioning.
It is an |r| × |R| table that points each cell in the relation
to the corresponding cluster, e.g., clusters[t1, A] points to
cA1 for the example dataset. Furthermore, Aid-Fd builds
an |r| × |R| indices table, which is also shown in Table 3
for the example dataset. For each cell, this table stores the
cell’s index within its cluster. In other words, indices[t, a]
stores how many tuples in clusters[t, a] have a smaller in-
dex than t. Note that the clusters are ordered so that tuples
have fixed indices within their clusters.

Table 3: The clusters and indices tables and the
actual cluster values for the example dataset.

clusters
A B C

t1 cA1 cB1 cC1

t2 cA1 cB2 cC2

t3 cA1 cB3 cC1

t4 cA2 cB2 cC3

indices
A B C

t1 0 0 0
t2 1 0 0
t3 2 0 1
t4 0 1 0

actual cluster values
A cA1 = {t1, t2, t3}, cA2 = {t4}
B cB1 = {t1}, cB2 = {t2, t4}, cB3 = {t3}
C cC1 = {t1, t3}, cC2 = {t2}, cC3 = {t4}

For any tuple t, Aid-Fd uses these data structures to effi-
ciently retrieve all clusters that t intersects with, i.e., the set
of tuples that share at least one value with t and are therefore
candidates for tuple comparisons. Furthermore, Aid-Fd can
directly obtain the tuple indices w.r.t. those clusters. This
allows to restrict the symmetric tuple comparison operation
to those tuples ti and tj where i < j.

As an additional preprocessing step, Aid-Fd detects con-
stant columns that contain only a single distinct value. The
set of constant columns S is stored, because any minimal FD
involving constant columns can be inferred in the Negative
Cover Inversion phase without access to the other columns.
For that reason, Aid-Fd can safely ignore constant columns
during the following Negative Cover Creation phase.

4.2 Negative cover creation
This phase of Aid-Fd approximates the negative cover of

a given relational instance r. The negative cover is the set of
all non-FDs in r and can be found by comparing tuples pair-

wise [6]. So if R is the schema of r, the agree set ag(t1, t2)
of two tuples t1 and t2 from r is defined as the largest sub-
set X ⊆ R, such that t1[X] = t2[X] [11]. From the agree
set, we can infer that ag(t1, t2) 9 A is a non-FD for each
A ∈ R\ag(t1, t2). In Table 1, for instance, ag(t1, t2) = {A},
from which follows that A 9 B and A 9 C. Hence, we
represent the negative cover as a set of agree sets.

The tuple comparison operation involves finding the agree
set of two tuples t1 and t2 and adding the resulting non-FDs
to the negative cover. It has the following properties:

(1) Reflexivity: Because ag(t, t) = R for all tuples t, no
non-FDs can be derived by comparing tuples to themselves.

(2) Symmetry: Because ag(t1, t2) = ag(t2, t1) for all tuples
t1 and t2, one comparison per tuple pair is sufficient.

(3) Significance: The empty agree set can yield only non-
FDs ∅ 9 A with A ∈ R. This is equivalent to stating that
no column is constant, which is true during negative cover
creation anyway (see Section 4.1). Hence, we only compare
tuples that share at least one value.

As a result, at most |r|(|r|−1)
2

tuple comparisons have to
be made to obtain an exact negative cover. Still, the num-
ber of tuple comparisons of an exact algorithm is in O(|r|2).
Aid-Fd circumvents this quadratic complexity by iteratively
picking and comparing only promising tuple pairs, thereby
incrementally creating the negative cover N . As shown in
Algorithm 1, this process is perpetuated until some termina-
tion criterion is met (Line 3). Possible criteria are discussed
in Section 4.3. In each iteration, the algorithm runs over all
tuples, and for each current tuple t it chooses some other
tuples to compare t with (Lines 4–6).

The function make ith checks(t,i) of Algorithm 1 de-
scribes how the other tuples for tuple t and iteration i are
chosen. It iterates over all clusters that intersect with tuple
t, which is one per attribute (Line 10). Then, a pseudo-
random permutation prp() is calculated to pick t′ from the
previous tuples in the current cluster, which is afterwards
compared to t (Lines 11–15). This proceeding ensures that
Aid-Fd compares only tuples that have at least one value
in common and do not yield empty agree sets. Moreover,
duplicate comparisons are avoided because t′ has a smaller
cluster index than t. Concretely, prp(index, i) returns the
ith number of a pseudo-random permutation of all numbers
n with 0 ≤ n < index by using a large prime number prime:

prp(index, i) = (i · prime) mod index

While picking tuples in their plain order would favor tuples
with small indices, the pseudo-random permutation ensures
that no tuple pair is more likely chosen for comparison. Us-
ing a random permutation rather than a random number
generator ensures that no other tuple is picked twice from

Algorithm 1: Build negative cover.

Data: A relation schema R and a relation instance r
Result: A negative cover N

1 N = ∅
2 i← 1
3 while Termination criterion not met do
4 for t ∈ r do
5 make_ith_checks(t, i)

6 i← i + 1

7 return N
8

9 Function make_ith_checks(t, i)
10 for a ∈ R do
11 cluster ← clusters[t, a]
12 index← indices[t, a]
13 if i ≤ index then
14 other cluster index← prp(index, i)
15 t′ ← cluster[other cluster index]
16 N ← N∪ ag(t, t′)

the same cluster. This also ensures that all previous tuples
have already been compared to the current tuple on previ-
ous iterations exactly if i > index. If this is the case, the
tuple check for this cluster can be skipped (Line 13).

Finally, Aid-Fd compares the two chosen tuples and adds
the result to the negative cover (Line 16), which is repre-
sented by the set of agree sets. Agree sets are represented
as bitsets, i.e., bit vectors with one bit per attribute, where
the i-th bit is set if and only if the corresponding agree set
contains the i-th attribute. This negative cover representa-
tion is more space-efficient than storing non-FDs in a prefix
tree as proposed in [6].

Note that if no termination criterion is defined, the result
of the described algorithm is guaranteed to converge to the
exact negative cover, because eventually all relevant tuple
comparisons are executed.

Example 1. The following table illustrates the
make ith checks() function of Algorithm 1 for t = t3
and i = 1. On attribute A, t3 is in cluster cA1 = {t1, t2, t3}
at index = 2, so either t1 or t2 is chosen as t′. In this
example, let prp(index, i) = prp(2, 1) = 1, so t2 is picked
as t′. On attribute B, index = 0 < i, so no comparisons
are executed. On attribute C, t3 is in cluster cC1 = {t1, t3}
at index = 1, so t1 is the only tuple that can be picked for
comparison. In consequence, t3 is compared to t1 and t2
during iteration 1.

A B C
t1 1 1 1
t2 1 2 2
t3 1 3 1
t4 2 2 3

4.3 Termination criteria
As stated above, the creation of the negative cover is an

iterative process and each iteration performs a number of
tuple comparisons. After a certain number of iterations,
Aid-Fd would retrieve the exact set of FDs that hold for
the input relation. However, assuming that the later itera-
tions contribute only little or even no new non-FDs to the

negative cover, our algorithm skip those, thereby not neces-
sarily yielding the exact result, but an approximate result in
noticeably shorter time. In this section, we discuss two ter-
mination criteria, an effort-driven and a quality-driven one,
for the negative cover creation.

Fixed time. This termination criterion stops the cre-
ation of the negative cover, when a user-defined amount of
time has elapsed. The actual number of iterations executed
within this time interval of course varies with the dataset,
because the time needed for each iteration depends on the
number of rows and columns of the input relation. Note that
the fixed time applies only to the time needed for the cre-
ation of the negative cover; the total execution time of the
algorithm still exceeds this time due to the subsequent neg-
ative cover inversion (see Section 4.4). The inversion time
is hard to predict, because it does not depend on the input
relation’s dimensions, but on the number and nature of the
FDs in the output. Thus, Aid-Fd as a whole is not designed
to terminate its execution within this given time limit.

Fixed negative cover growth. Observing the negative
cover size after each iteration shows that, at first, the nega-
tive cover grows rapidly, then, its growth decreases contin-
uously and, finally, the size of the negative cover converges
against its real size. This seems to support our assumption
that the later iterations in the negative cover creation do not
provide much new information. However, because the final
size of the negative cover is unknown during its creation, the
algorithm cannot know at runtime if the negative cover size
has converged. Yet, it is possible to regard the growth of
the negative cover size after k iterations as

growthk =
|Nk|
|Nk−1|

− 1 (1)

where |Nk| is the size of the negative cover after the kth iter-
ation. Figure 2 shows the development of the negative cover
growth together with the result’s completeness and correct-
ness for the ncvoter dataset, which we introduce later. The
plot indicates that the growth decreases with each iteration
while completeness and correctness grow correspondingly.

Figure 2: Negative cover growth, correctness, and
completeness by iteration for ncvoter (Sec. 5.1).

We observe that the closer the algorithm comes to the
final size of the negative cover, the smaller the growth of the
negative cover size becomes. For this reason, the growth rate
of the negative cover serves as a good termination criterion
(see Section 5.6). So we define a threshold for the growth
and the algorithm stops iterating when the growth of the

negative cover falls below this threshold. The smaller the
growth threshold is set, the higher the quality of the result
becomes and the longer Aid-Fd runs.

Considering only the growth of the negative cover from
one iteration to the next, as Equation 1 does, is sensitive to
single iterations that increase the negative cover only little;
even though the growth may be zero in one iteration, it is
still possible and not unlikely to find a new non-FD a few
iterations later. Therefore, the Aid-Fd algorithm observes
the growth within a sliding window of size w that stores the
growth for the last w iterations. With this technique, we
can capture general trends of negative cover growth much
better. The size of this window defines sensitivity of the
algorithm: It reacts quickly to changes using a window of
size 1 and it reacts much slower using a window of size 10.
Note that the negative cover might still grow, even though
all correct FDs in the dataset can already be derived from it,
because new non-FDs might be implied by previously found
non-FDs; a growth of the negative cover, hence, does not
necessarily entail a change in the final result. So using a
very large window can result in unnecessary long runtimes.

4.4 Negative cover inversion
To obtain the valid FDs, Aid-Fd inverts the negative

cover similarly to [6]: Each non-FD is used to identify invalid
FD candidates and to turn them into valid specializations,
i.e., their left-hand sides are augmented. We formalize this
problem as follows. The result of the negative cover creation
is a set N of agree sets, each of which is represented by a bit-
set and corresponds to a set of non-FDs. Algorithm 2 uses
N to calculate the corresponding positive cover: It iterates
over all right-hand sides rhs ∈ R and constructs a set of
left-hand sides P, such that for every left-hand side L ∈ P
the FD L → rhs is minimal, non-trivial and not ruled out
by the negative cover. The latter means that there exists no
agree set N ∈ N such that L ⊆ N and rhs /∈ N . Otherwise
N 9 rhs (and therefore L 9 rhs) would hold.

Algorithm 2 first handles constant columns: For every
constant column const ∈ S an FD ∅ → const is added to the
output set Ω (Line 1). This covers all minimal FDs that con-
tain a constant column, because constant columns cannot
be part of the LHS of a minimal FD. Therefore, these at-
tributes can be ignored subsequently and are removed from
the set of attributes R in Line 2. The purpose of sorting the
negative cover N in Line 3 is discussed later.

Line 4 iterates over all remaining, non-constant columns
rhs ∈ R. For each rhs, Aid-Fd calculates the set of mini-
mal, non-trivial FDs that do not contradictN and determine
the column rhs:

(1) The most general FDs are assumed to be valid: The cur-
rent rhs is thought to be determined by each non-constant
column attr 6= rhs. For every such column, a singleton
{attr} is added to the set of left-hand sides P in Line 5.

(2) The algorithm iterates over all agree sets N in the
negative cover N (Line 6). If N does not contain rhs, N
is used to specialize the current set of left-hand sides P by
calling the function handleNonFD (Lines 7 & 8).

(3) After handling the complete negative cover for this rhs,
Line 9 adds one FD L→ rhs for every remaining left-hand
side L in P to Ω.

The function handleNonFD accepts three arguments: The
bitset N , representing a non-FD N 9 rhs, the set of left-

Algorithm 2: Phase 2: Negative cover inversion.

Data: negative FD cover N , set of attributes R, set of
constant columns S

Result: the set of minimal, non-trivial FDs Ω
1 Ω← {∅ → const | const ∈ S}
2 R← R \ S
3 N ← sort(N)
4 for rhs ∈ R do
5 P ← {{attr} | attr ∈ R, attr 6= rhs}
6 for N ∈ N do
7 if rhs /∈ N then
8 handleNonFD (N,P, R \ {rhs})

9 Ω← Ω ∪ {L→ rhs | L ∈ P}
10 return Ω
11

12 Function handleNonFD(N,P, X)

13 S ← {P ∈ P | P ⊆ N}
14 P ← P \ S
15 for L ∈ S do
16 for add ∈ (X \N) do
17 if ∀P ∈ P : P 6⊆ (L ∪ {add}) then
18 P ← P ∪ {L ∪ {add}}

hand sides P, and a set of attributes X, which contains
all non-constant attributes except for rhs. These are all
attributes that can be added to left-hand sides L for this rhs,
as L would not be minimal if it contained constant columns,
and trivial if it contained rhs. In Line 13, all subsets of N
are retrieved from P. These are the left-hand sides, which
are invalidated by the non-FD N 9 rhs and are therefore
removed from the set of left-hand sides P (Line 14).

Next, Aid-Fd adds new left-hand sides, which are not
invalidated by N , but that were not minimal until now, be-
cause they are supersets of one of the removed sets L ∈ S.
The algorithm creates supersets L∪{add} for every removed
left-hand side L in the set of removed left-hand sides S and
every column add ∈ (X \N). It is necessary to add at least
one attribute add /∈ N to ensure L∪{add} is no subset of N ,
which would invalidate L∪{add} → rhs. Furthermore, it is
necessary to add at most one attribute to keep minimality.
These supersets are added to the set of left-hand sides P
only if there is no subset of these supersets in P (Line 17),
as they would not be minimal otherwise.

When every non-FD has been handled for one rhs, the
FDs represented by P are non-trivial, because the algo-
rithm ensures that the current rhs is never added on the
left-hand side: The initial set of left-hand sides P excludes
rhs (Line 5) and rhs is also excluded from the set X, which
is passed to handleNonFD. Therefore, rhs cannot be added
to any left-hand side. All generated FDs are also correct,
meaning that they do not contradict any non-FD: Each it-
eration ensures that no L in P is invalidated by the current
non-FD by removing all subsets of it. The systematic exten-
sion process of sets in P guarantees that any newly added
set is not a subset of any non-FD that we have seen so far.
It follows that when the algorithm handled all non-FDs, no
set in P can contradict a non-FD in N .

Throughout each iteration of the loop in Line 4 the fol-
lowing property holds:

Property 1. If X → rhs is a valid, non-trivial FD, P
always contains a subset L of X.

Property 1 obviously holds at the initialization of P in
Line 5. If at some point the last subset of X is removed in
Line 14, then a new subset of X would be added in Line 18,
as at least one superset must not be contradictory to N ,
otherwise X → rhs would not be valid. This property im-
mediately leads to completeness in the sense that all valid
FDs can be derived from the output. The FDs are also min-
imal, because we start with the most general FDs and add
new left-hand sides only if there are no subsets of them in
P. If that is the case, none of the subsets is a valid left-
hand side for this rhs and the newly added left-hand side is
therefore still minimal.

Managing attribute sets. The most expensive operation
in the process of inverting the negative cover is to look for
subsets in the set of left-hand sides P. We propose a binary
tree to support this operation. Its leaves store the actual
attribute sets and its internal nodes divide these sets into
those containing a certain attribute and those that do not.
Figure 3 exemplifies such a tree. Its root node divides on
attribute a, so all leaves on the left subtree do not contain a
while all leaves on the right side do. Thus, in a subset query
for a set that does not contain a, only the children on the
left need to be searched further. Additionally, every internal
node stores the intersection set of all its successors. If an
internal node with an intersection set, which is no subset
of the query set, is encountered, then there is no need to
look at any of its children. If the example tree of Figure 3
is queried for a subset of {a, c, e} all children of the internal
node c could be skipped, because the intersection {a, b} is
no subset of {a, c, e}.

a

c

{a,b,e} {a,b,c}

{d}
∉ ∈

∉

intersect: ∅

intersect: {a,b}

∈

Figure 3: Binary tree for faster subset lookup. This
instance stores the sets {a, b, c}, {a, b, e} and {d}.

Further, it is interesting whether the order of attributes
in the tree matters. Indeed, we observed that splitting the
attributes in the order of ascending frequency in the neg-
ative cover yields faster runtimes than a random order, as
shown in the evaluation (Section 5.7). This improvement
is achieved, because splitting first on rare attributes allows
skipping large subtrees (the right side) when searching for
sets not containing these attributes. As these attributes are
rare in the negative cover, most of the subset queries in
Line 13 do not contain them.

As mentioned earlier, Algorithm 2 sorts the negative cover
N in Line 3. Specifically, we sort the agree sets by their size
in descending order. The sorting aims to keep the tree small
for as long as possible and to reduce the number of modifi-
cations, which strongly impact the algorithm’s performance.
Section 5.7 evaluates the effect of the sorting.

Due to the fact that the positive cover is created suc-
cessively for every rhs, the algorithm can skip any non-FD
N ∈ N with rhs /∈ N and for which N also contains a su-

perset N ′ ⊃ N with rhs /∈ N ′. Every left-hand side that
would have been marked invalid by N is also marked invalid
by the superset N ′. As the non-FDs are sorted in a way
that a subset of a non-FD never appears after its supersets,
a check of whether a superset has been seen yet is sufficient.
For this check we use the same data structure as for stor-
ing the positive cover. This modification also has a positive
impact on performance as it reduces the number of subset
lookups on the positive cover.

In contrast to [6], our cover inversion procedure stores the
left-hand sides of only one right-hand side at a time. Thus,
and with the bitset representation of the negative cover, our
approach consumes less main memory. Our experiments also
show that the proposed inversion process scales better with
the increasing number of columns.

5. EVALUATION
In the following section, we evaluate both Aid-Fd’s per-

formance and the quality of its FD result sets. At first, we
compare the runtimes of our algorithm on different levels of
completeness and correctness to the best known exact al-
gorithms, TANE, DFD, and FDEP. Then, we investigate
Aid-Fd’s scaling behavior to understand how far it can be
adopted to large datasets. Finally, we evaluate individual
algorithm components in more detail. Overall, we find that
Aid-Fd is a viable replacement for exact algorithms for the
FD discovery in medium-sized and large datasets whenever
approximate results are sufficient.

5.1 Setup and datasets
All our experiments have been conducted on a machine

with a 3.50 GHz Quad Core i5-4690 processor, 8 GB of main
memory, 440 GB SATA SSD, Ubuntu 14.04.3 64-bit, and
Java 8.0 (64-bit). We used a variety of datasets from dif-
ferent domains, with different sizes w.r.t. both columns and
rows, and with widely varying numbers of FDs, as summa-
rized in Table 4. Even though our largest dataset, ncvoter,
has “only” about 1 million rows, we note that none of the
existing FD discovery approaches has been able to scale to
that volume, as we show in the next section. To make our
experimental results reproducible, Aid-Fd and all compared
algorithms and datasets are available online1. Note that all
our measurements cover the entire runtime including I/O
time and time needed for creating intermediate data struc-
tures such as indexes.

Table 4: Datasets and their characteristics.
dataset rows columns |Gold|

ncvoter 64k 64,000 19 646
uniprot 256,000 30 4,561
letter 20,000 17 61

plista 1k 1,000 63 178,152
fd-reduced-30 250,000 30 89,571

flight 500k 500,000 20 290
ncvoter 1,024,001 19 568

5.2 Comparison to exact algorithms
Figure 4 compares the runtimes of the fastest known ex-

act algorithms to runtimes of Aid-Fd for different degrees

1https://hpi.de/naumann/projects/repeatability/
data-profiling/fd.html

Figure 4: Aid-Fd’s runtime compared to fastest exact algorithms, and observed correctness and completeness.

of correctness and completeness. For each data set, we com-
pared the runtime against the fastest out of DFD, TANE,
and FDEP. The fastest exact algorithms for the different
datasets are FDEP for ncvoter 64k (1177.0s) and plista 1k
(15.1s), DFD for letter (3.9s), and TANE for fd-reduced-30
(26.7s). For uniprot, flight 500k, and ncvoter, no exact algo-
rithm could calculate a result within two hours, so we took
two hours as a reference runtime for them.

The execution of the negative cover creation of Aid-Fd
was interrupted after different time periods between 100ms
and 30min to compare the result quality after different run-
times. Figure 4 shows that even after a short amount of
time, the algorithm reaches completeness and correctness
values close to 1.0. That is, Aid-Fd can produce correct
results in only a fraction of the time needed by exact algo-
rithms. Furthermore, Aid-Fd sustains its performance on
datasets that exact algorithms cannot handle due to mem-
ory or runtime limits: None of FDEP, DFD, and TANE are
able to handle the uniprot, flight 500k, and ncvoter datasets
on the test machine within a time limit of 2 hours. To be
able to state relative runtimes of Aid-Fd, we use the 2 hour
time limit as reference runtime on both datasets. Only for
the letter dataset Aid-Fd’s performance looks less promising
compared to DFD’s performance, because DFD can process
datasets with up to 20 columns very fast with its random-
walk approach [13]. For these datasets, DFD can outperform
row-based approaches, even if they are approximate such as
Aid-Fd; although the absolute time differences are not dev-
astating. Thus, Aid-Fd is better suited for medium and
large sized datasets to replace TANE and FDEP.

5.3 Scaling the number of rows
We evaluate the row scalability of Aid-Fd by measuring

runtimes with gradually increasing number of rows of the
datasets ncvoter and uniprot. Both datasets have a fixed
number of columns: 19 columns for ncvoter and 30 columns
for uniprot. We use a negative cover growth threshold of 0
without a window (window size = 1) to allow a quick re-
action of the algorithm to changes in the negative cover
growth. Figure 5 visualizes that the algorithm scales well
with the increasing number of rows. This is due to the lin-
ear complexity of the negative cover creation phase, which
dominates the overall runtime of Aid-Fd.

Algorithm 1 performs at most #iterations×|r|×|R| com-
parisons. Even though the number of iterations can differ
for each data point due to the chosen termination criteria,
the experiment shows that it stays stable with increasing

Figure 5: Row scalability on the datasets ncvoter
with 19 columns and uniprot with 30 columns.

number of rows. The second phase, which is the inversion
of the negative cover, depends on the size of the negative
cover but not on the number of rows. Because the num-
bers of FDs of the datasets remain in the same magnitudes
while increasing the number of rows (between 597 and 936
for ncvoter and between 3684 and 8069 for uniprot), the sec-
ond phase has only little influence on row scalability. The
quality of the results is hence very good with an average of
99.4% correctness and 99.2% completeness.

5.4 Scaling the number of columns
We now evaluate the column scalability of Aid-Fd by

measuring the algorithm’s runtime with gradually increas-
ing number of columns of the datasets plista 1k and uniprot.
The datasets now have a fixed number of 1001 rows each.
Again, we use a negative cover growth threshold of 0 with-

Figure 6: Column scalability on plista 1k and uniprot
each with 1001 rows.

out a window (window size = 1) as a termination criterion.
Note that uniprot with 60 columns could not be processed
due to the limited main memory and high number of FDs
in the result. Figure 6 shows that the runtimes grow more
than linearly with an increasing number of columns. This
is because the output size, i.e., the number of FDs grows
similarly fast and the algorithm’s runtime is output bound.
The quality of the results has an average of 93.4% correct-
ness and 99.7% completeness, including a single outlier for
plista 1k with 10 columns (correctness = 0.3).

5.5 Memory consumption
Especially column-based algorithms, such as TANE, run

into memory problems on relatively small datasets. Pa-
penbrock et al. [13] have shown that TANE even exceeds
a memory limit of 100 GB on the uniprot 223c, flight 1k,
and plista 1k datasets. In contrast to these lattice-based
algorithms, Aid-Fd uses much less memory, similar to the
FDEP algorithm. More concretely, Aid-Fd never consumes
more than 1.3 GB of main memory on any dataset in our
test scenarios, rendering it an eligible choice in low-memory
environments, such as personal computers.

Our algorithm’s memory consumption is dominated by the
number of FDs in the result set: Its memory consumption is
highest on the uniprot dataset (with more than one million
FDs), whereas lowest on the letter dataset (61 FDs). Other
data structures, such as the indices and clusters tables, have
little impact on the memory consumption. This observa-
tion explains why Aid-Fd’s memory usage scales well with
the increasing number of tuples, which has only limited in-
fluence on the size of the solution space. On the contrary,
an increasing number of columns can increase the solution
space exponentially and thus explains why the FD set of
uniprot 223c does not fit into 100 GB of main memory, ren-
dering it infeasible even for Aid-Fd. This is the reason for
using the smaller uniprot dataset with 30 instead of 223
columns in the evaluation.

5.6 Evaluation of termination criteria
To evaluate the trade-off between result quality and time

savings, we conducted experiments using the two different
termination criteria presented in Section 4.3. The termina-
tion criterion using a fixed amount of time is already being
employed in in the comparison of Aid-Fd with exact al-
gorithms (Section 5.2). Figure 4 shows that completeness
and correctness converge towards 1.0 with increasing time-
out but the different datasets require vastly different time-
outs to yield acceptable results. Therefore, this termination
criterion should be chosen only if Aid-Fd is used in an inter-
active scenario where a user is steering the profiling process.

Figure 7 shows the results for the criterion of a fixed neg-
ative cover growth without a window (window of size 1) for
the datasets plista 1k, ncvoter 64k, and uniprot. For the
negative cover growth threshold, we use the values 0.1, 0.01,
0.001, and 0.0. Using the threshold 0.1, the average com-
pleteness and correctness are 0.68 while using about 4% of
the execution time of the fastest exact algorithm on average.
Decreasing the threshold significantly increases the correct-
ness and completeness of the result. A threshold of 0.0 yields
an average correctness and completeness of 0.996 and 0.995
while using 10% of the runtime of the fastest exact algorithm
on average. The relative execution time (compared to the
fastest exact approach) for the threshold 0.0 varies from 0.02

Figure 7: Correctness, completeness and runtime
for different datasets using different negative cover
growth thresholds (window size = 1). Runtime is
given relative to exact runtimes (see Section 5.2).

Figure 8: Average relative runtime, correctness, and
completeness for different window sizes (negative
cover growth threshold = 0).

for the ncvoter 64k dataset to 0.4 for the plista 1k dataset.
We observe the greatest time savings and best quality mea-
sures for datasets with both many rows and columns, e.g.,
ncvoter 64k and uniprot. Smaller datasets, such as plista 1k,
can be already processed very fast by exact algorithms and
thus our approach cannot achieve high runtime savings.

Additionally, we evaluate the same termination criterion
using different window sizes with a negative cover growth
threshold of 0.0. Figure 8 shows the average results for rel-
ative runtime, correctness, and completeness for the three
datasets used above. The result quality (correctness / com-
pleteness) increases from about 0.995 / 0.996 (window size
= 1) to 1.0 / 1.0 (window size = 20) while the relative run-
time rises from 10% to about 25%. The experiments show
that a larger window yields a higher quality and even allows
to achieve the exact result when the window size is large
enough. However, the execution time increases strongly with
a growing window size and must be carefully chosen as a
tradeoff between quality and runtime.

5.7 Cover inversion
Figure 9 shows the effect of different optimizations de-

scribed in Section 4.4. For this evaluation, we use datasets
that have many columns, because the cover inversion takes
much longer than the cover creation on these datasets. On
datasets with only very few columns (less than 20), the cover
inversion usually takes less than one second.

Figure 9: The effect of different optimizations on
the cover inversion process (log-scale).

To allow for a fair comparison to the un-optimized cover
inversion that is known from the FDEP algorithm [6], we
first calculate the complete negative cover for all three
datasets and then compare only the time spent on inverting
the negative cover. Even if we enable only the first opti-
mization (sorting the negative cover), our cover inversion is
on average about 20 times faster than FDEP’s. Maximizing
the non-FDs, then, reduces the time by another 12–41%. Fi-
nally, the sorting of attributes in the tree structure reduces
the runtime by additional 33–46%. This leaves us with a
total improvement of a factor of 5.5 on plista 1k, 14.7 on
uniprot 1001r 60c (adapted uniprot dataset with 1001 rows
and 60 columns), and 39.5 on flight 1k.

6. CONCLUSIONS
We presented Aid-Fd, an approximate algorithm for

the discovery of functional dependencies, which is centered
around an iterative, focused sampling, memory-efficient data
structures, and a highly efficient negative cover inversion.
To compare the quality of Aid-Fd’s results, we introduced
measures for correctness, completeness, and minimality of
FD result sets. In fact, Aid-Fd is only approximate w.r.t.
the former two while guaranteeing minimality. In our exper-
iments, we showed that, in comparison to exact algorithms,
Aid-Fd is much more efficient on almost all datasets and
makes FD discovery feasible on datasets so large that exact
approaches cannot handle them. Still, Aid-Fd is highly ef-
fective in terms of completeness and correctness measures.
For future work, our findings shall be transferred to other
data profiling tasks, such as the discovery of order depen-
dencies or inclusion dependencies.

Acknowledgements. This research was partially funded
by the German Research Society (grant no. FOR 1306).

7. REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling

relational data: a survey. VLDB Journal,
24(4):557–581, 2015.

[2] Z. Abedjan, P. Schulze, and F. Naumann. DFD:
Efficient functional dependency discovery. In
Proceedings of the International Conference on
Information and Knowledge Management (CIKM),
pages 949–958, 2014.

[3] W. W. Armstrong. Dependency structures of data
base relationships. In IFIP Congress, volume 74, pages
580–583. North-Holland Publishing, 1974.

[4] P. G. Brown and P. J. Hass. BHUNT: Automatic
discovery of fuzzy algebraic constraints in relational
data. In Proceedings of the International Conference
on Very Large Databases (VLDB), pages 668–679,
2003.

[5] U. S. Chakravarthy, J. Grant, and J. Minker.
Logic-based approach to semantic query optimization.
ACM Transactions on Database Systems (TODS),
15(2):162–207, 1990.

[6] P. A. Flach and I. Savnik. Database dependency
discovery: a machine learning approach. AI
Communications, 12(3):139–160, 1999.

[7] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
H. Toivonen. TANE: An efficient algorithm for
discovering functional and approximate dependencies.
The Computer Journal, 42(2):100–111, 1999.

[8] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. CORDS: automatic discovery of
correlations and soft functional dependencies. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 647–658,
2004.

[9] J. Kivinen and H. Mannila. Approximate inference of
functional dependencies from relations. Theoretical
Computer Science, 149(1):129–149, 1995.

[10] J. Liu, J. Li, C. Liu, and Y. Chen. Discover
dependencies from data—a review. IEEE Transactions
on Knowledge and Data Engineering (TKDE),
24(2):251–264, 2010.

[11] S. Lopes, J.-M. Petit, and L. Lakhal. Efficient
discovery of functional dependencies and Armstrong
relations. In Proceedings of the International
Conference on Extending Database Technology
(EDBT), pages 350–364, 2000.

[12] S. Lopes, J.-M. Petit, and L. Lakhal. Functional and
approximate dependency mining: database and FCA
points of view. Journal of Experimental & Theoretical
Artificial Intelligence, 14(2-3):93–114, 2002.

[13] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert,
J.-P. Rudolph, M. Schönberg, J. Zwiener, and
F. Naumann. Functional dependency discovery: An
experimental evaluation of seven algorithms.
Proceedings of the VLDB Endowment,
8(10):1082–1093, 2015.

[14] T. Papenbrock and F. Naumann. A hybrid approach
to functional dependency discovery. In Proceedings of
the International Conference on Management of Data
(SIGMOD), pages 821–833, 2016.

[15] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and
J. Kouloumdjian. Towards the reverse engineering of
denormalized relational databases. In Proceedings of
the International Conference on Data Engineering
(ICDE), pages 218–227, 1996.

