
RDFind: Scalable Conditional Inclusion Dependency
Discovery in RDF Datasets

Sebastian Kruse� Anja Jentzsch� Thorsten Papenbrock�
Zoi KaoudiF Jorge-Arnulfo Quiané-RuizF Felix Naumann�

�Hasso Plattner Institute (HPI) FQatar Computing Research Institute (QCRI)
Potsdam, Germany Doha, Qatar

{fistname.lastname}@hpi.de {zkaoudi, jquianeruiz}@qf.org.qa

ABSTRACT
Inclusion dependencies (inds) form an important integrity
constraint on relational databases, supporting data manage-
ment tasks, such as join path discovery and query optimiza-
tion. Conditional inclusion dependencies (cinds), which de-
fine including and included data in terms of conditions, al-
low to transfer these capabilities to rdf data. However,
cind discovery is computationally much more complex than
ind discovery and the number of cinds even on small rdf
datasets is intractable.

To cope with both problems, we first introduce the notion
of pertinent cinds with an adjustable relevance criterion
to filter and rank cinds based on their extent and impli-
cations among each other. Second, we present RDFind, a
distributed system to efficiently discover all pertinent cinds
in rdf data. RDFind employs a lazy pruning strategy to
drastically reduce the cind search space. Also, its exhaus-
tive parallelization strategy and robust data structures make
it highly scalable. In our experimental evaluation, we show
that RDFind is up to 419 times faster than the state-of-the-
art, while considering a more general class of cinds. Fur-
thermore, it is capable of processing a very large dataset of
billions of triples, which was entirely infeasible before.

1. INCLUSIONS WITHIN RDF DATASETS
The Resource Description Framework (rdf) [18] is a flexi-

ble data model that shapes data as a set of subject-predicate-
object triples. rdf was initially introduced for the Semantic
Web. Due to its flexibility and simplicity, it is currently
used in a much broader spectrum of applications ranging
from databases [9, 12] and data integration systems [11] to
scientific applications [29,32]. As a result, very large volumes
of rdf data are made available, in particular in the context
of the Linked (Open) Data movement [8]. It is expected
that this expansion of rdf data will perpetuate, leading to
enormous amounts of large heterogeneous datasets [21].

A major particularity of rdf is that, in contrast to rela-
tional databases, its schema (ontology) is not always avail-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915206

Table 1: University rdf data instance example.
Subject s Predicate p Object o

t1 patrick rdf:type gradStudent

t2 mike rdf:type gradStudent

t3 john rdf:type professor

t4 patrick memberOf csd

t5 mike memberOf biod

t6 patrick undergradFrom hpi

t7 tim undergradFrom hpi

t8 mike undergradFrom cmu

able, and even if it is, the data may violate the schema
constraints. This impedes the use of rdf datasets, e.g., it
is harder to formulate sound queries and wrong assump-
tions about the data might be made. Data profiling copes
with such problems by identifying dataset properties, such
as structure and integrity constraints [1].

One of the most important integrity constraints are in-
clusion dependencies (inds). Basically, an ind describes the
inclusion of a set of values or elements in another set. In
the context of relational databases, where these sets are the
values from specified columns, inds have proven to be very
useful in various data management scenarios, such as foreign
key and join path discovery [33], query optimization [17],
and schema (re)design [25].

Clearly, these data management operations are relevant to
rdf data, too. However, in contrast to the relational model,
rdf datasets do not reflect the schema of their data in terms
of data structures. In fact, rdf distinguishes only subjects,
predicates, and objects on the data structure level. These
three sets are too coarse-grained to find meaningful inds, as
can be seen in the example dataset in Table 1.

However, conditional inclusion dependencies (cinds) al-
low to refine these sets. A cind filters the including and
included sets of an ind with conditions and requires only
these filtered sets to satisfy the ind. These cind semantics
allow to describe meaningful inclusions within rdf data:

Example 1. Assume a cind stating that the set of sub-
jects occurring in triples with predicate rdf:type and object
gradStudent is a subset of all subjects occurring in triples with
predicate undergradFrom. Table 1 satisfies this cind, because
the graduate students patrick and mike form a subset of people
with an undergraduate degree, namely patrick, tim, and mike.

CIND applications. Cinds of rdf datasets are useful
for many applications, such as ontology reverse engineering,

953

knowledge discovery, and query optimization. In the follow-
ing, we exemplify this with real cinds from DBpedia 20141.
More details are in Appendix B.

Cinds facilitate ontology reverse engineering by finding
the domain and range of rdf predicates (e.g., the objects
of the triples with predicate capitalPosition are included in
the subjects of rdf:type gml:Feature) and revealing class hier-
archies (e.g., subjects of rdf:type Leptodactylidae are a subset
of the subjects of rdf:type Frog); cinds also support know-
ledge discovery to give insights about rules that may apply
to unknown rdf datasets (e.g., the subjects with areaCode

559 are included in the subjects that are partOf California).
Furthermore, cinds can be employed for SPARQL query

optimization. SPARQL queries very often consist of a con-
siderable amount of self-joins [5], which negatively impacts
performance. Knowing cinds allows to remove useless query
triples (i.e., query predicates) and hence to reduce the num-
ber of joins that need to be evaluated (query minimization).
For example, consider the following 2-join SPARQL query on
the data of Table 1 asking for the departments of graduate
students and the institutes that they received their under-
graduates from: SELECT ?d ?u WHERE {?s rdf:type gradStudent .

?s memberOf ?d . ?s undergradFrom ?u .} Note that the data
in Table 1 satisfies a cind that states that all subjects of the
triples having memberOf as predicate are included in the set
of subjects of rdf:type gradStudent. This cind tells us that all
department members are graduate students and allows to
remove the first query triple (?s rdf:type gradStudent) with-
out affecting the final results. As a proof of concept, we
executed LUBM query Q2 [27] in RDF-3X [30] once in its
original form and once cind-optimized. Query Q2 originally
contains six query triples; exploiting cinds, we reduced Q2
to three query triples. This speeds up query execution by a
factor of 3 (see Appendix B for details).

Challenges. Despite the importance and benefits of know-
ing cinds in rdf datasets, the problem of cind discovery for
rdf data has not been tackled so far. A reason might be
the complexity of this problem: Because each cind involves
two conditions, the search space for cinds is quadratic in
the number of possible conditions. Amongst others, equiv-
alence conditions can be formed for each distinct value in
an rdf dataset, so a few millions of values typically found
in rdf datasets yield trillions of cind candidates – only for
this type of condition. This huge search space poses two ma-
jor problems. First, it is difficult to maintain and explore
such a large number of cind candidates. Second, the vali-
dation of a single cind candidate can already be very costly,
let alone trillions of candidates. We acknowledge that sev-
eral algorithms have been proposed for the discovery of inds
and cinds on relational data and we discuss those as related
work. However, none of them is suited or could be easily
adapted to efficiently discover cinds within rdf datasets.

Contributions and structure. We study the problem of
cind discovery in rdf data and present RDFind, the first
system to efficiently solve this problem for large datasets.
Specifically, we make three main contributions:

(1) We formally define the cind discovery problem, study
its complexity and explain why the discovery of all cinds
is not desirable (Section 2). In response, we introduce the
new class of pertinent cinds, with an adjustable relevance

1http://wiki.dbpedia.org/Downloads2014

criterion to filter and rank cinds based on their extent and
implications among each other (Section 3).

(2) We introduce RDFind, which efficiently discovers all
pertinent cinds in a distributed fashion (overview in Sec-
tion 4). In particular, we propose a lazy pruning approach
that reduces the cind search space in two steps; we intro-
duce a compact representation for rdf triples that facilitates
enumerating and verifying cind candidates; and we devise
algorithms for efficiently extracting cinds (Sections 5–7).

(3) We implemented RDFind on top of Flink2, a dis-
tributed data processing system. We compare it against the
state-of-the-art algorithm for cind discovery using different
real-world and synthetic datasets. We show that RDFind
outperforms it by a factor of 419 and scales to large datasets
that other solutions cannot compute (Section 8).

We conclude the paper with related work in Section 9 and
future directions in Section 10.

2. THE CIND SEARCH SPACE
Before stating the problem of finding all cinds, we first

briefly review the rdf data model [18] and present a new
cind definition for rdf.

RDF data model. An rdf triple is a statement of the
form (s, p, o), where s is the subject, p is the predicate, and o
is the object. The subject and predicate is an rdf resource
(URI), while the object can also be an rdf literal, i.e., a
typed value. We treat blank nodes as URIs. A set of triples
is an rdf dataset. For a triple t, we denote with t.s, t.p, and
t.o the projection of the triple on the subject, predicate, and
object, respectively. In the remainder of this paper, we can
interchangeably use the elements of triples, s, p, and o, in
most definitions and algorithms. For clarity, we thus use the
symbols α, β, and γ to denote any of these three elements.

CINDs in RDF. In the relational data model, cinds have
been defined by means of an ind, which is embedded in the
cind (embedded ind) and is often partially violated, and a
pattern tableau that removes the violating tuples [28]. How-
ever, the notion of embedded inds is not appropriate for
rdf data, as inds without conditions are not meaningful.
Instead, we introduce a novel and compact cind formal-
ism that abandons embedded inds and instead lifts condi-
tions as first-class selectors for the including and included
sets of cinds. As the main advantage, our definition treats
cinds similarly to inds, which allows us to exploit algorith-
mic foundations of ind discovery for the cind case. We
define a cind based on a simple concept called capture. In-
tuitively, a capture defines a projection of a triple element α
over a set of triples that satisfy a unary or binary condition
on some of the other two elements β and/or γ.

Definition 2.1 (Condition). A unary condition is a
predicate φ(t) := t.β=v1 and a binary condition is a predi-
cate φ(t) := t.β=v1∧ t.γ=v2 where t is an rdf triple and v1
and v2 are constants, i.e., either an rdf resource, or literal.
For simplicity, we may omit t and simply write φ := β=v1
whenever it is clear.

Definition 2.2 (Capture). A capture c := (α, φ)
combines the unary or binary condition φ with a projection
attribute α, which must not be used in φ. The interpretation
of c on an rdf dataset T is I(T, c) := {t.α : t ∈ T ∧ φ(t)}.
2https://flink.apache.org/

954

Example 2. The binary condition φ := p=rdf:type ∧
o=gradStudent holds for the triples t1 and t2 from the ex-
ample dataset in Table 1. From it, we can define the capture
(s, φ) with the interpretation {patrick,mike}.

Having defined a capture, we can now define a cind in a
similar fashion to a relational ind. The only difference is
that an ind describes the inclusion of relational attributes
while a cind describes the inclusion of captures.

Definition 2.3 (cind). A cind ψ is a statement c ⊆
c′, where c and c′ are captures. Analogous to inds, we call c
the dependent capture and c′ the referenced capture. We say
then that an rdf dataset T satisfies the cind if and only if
I(T, c) ⊆ I(T, c′).

Example 3. A valid cind for the dataset in Table 1
is (s, p=rdf:type ∧ o=gradStudent) ⊆ (s, p=undergradFrom),
because the interpretation of the dependent capture
{patrick,mike} is a subset of the referenced capture’s inter-
pretation {patrick,mike, tim}.

Näıve CIND discovery problem. A näıve formulation
of the cind discovery problem would be to discover all cinds
in the sense of Definition 2.3 that are satisfied by a given
rdf dataset. However, finding all cinds entails both a huge
search space and a large solution set, which (i) renders the
problem computationally extremely complex and (ii) bloats
results with a sheer amount of highly specific cinds, ineligi-
ble for the applications presented in Section 1. For instance,
even one of our smallest datasets, Diseasome3, with only
72,446 triples comprises over 50 billion cind candidates and
over 1.3 billion (!) actual cinds. Relational cind discov-
ery approaches mitigate these issues by considering only a
single combination of dependent and referenced projection
attributes, by neglecting self-joins, and by conditioning only
dependent attributes [7,16]. As a matter of fact, this reduces
the cind discovery problem to a condition discovery prob-
lem. Neither of these simplifications is appropriate for rdf
data and consequently RDFind faces new challenges. Before
going into algorithmic details, we define pertinent cinds in
the next section to reduce the cind search space while still
covering all of its projection and condition attribute combi-
nations. Then we revise our problem statement.

3. TAMING THE CIND SEARCH SPACE
The discovery of all cinds in an rdf dataset must tackle

two problems: First, and as explained in the previous sec-
tion, the search space is enormous, so that pruning strategies
are needed. Furthermore, the result space often is also enor-
mous, making the interpretation and usage of cinds difficult.
Again, pruning strategies could help. Therefore, we narrow
the search space to pertinent cinds only (Section 3.1), which
helps reducing both the search space and the set of result
cinds. Furthermore, we show that association rules are a
special class of cinds and help to further prune the cind
search space (Section 3.2). We then re-define the cind dis-
covery problem using these two concepts (Section 3.3).

3.1 Pertinent CINDs
Focusing on pertinent cinds is crucial to significantly re-

duce the search space and, hence, make the cind discov-
ery efficient. We consider a cind as pertinent if it is both
3http://datahub.io/dataset/fu-berlin-diseasome

(s, p=memberOf ∧ o=csd)
⊆ (s, p=rdf:type ∧ o=gradStudent)

(s, p=memberOf ∧ o=csd)
⊆ (s, p=rdf:type)

(s, p=memberOf)
⊆ (s, p=rdf:type ∧ o=gradStudent)

(s, p=memberOf)
⊆ (s, p=rdf:type)

ψ1:

ψ2: ψ3:

ψ4:

dependent
 implication

 referenced
 implication

 referenced
 implication

dependent
 implication

Figure 1: Extract from the cind search space for
Table 1. The nodes are cind candidates and the
arrows implications.

minimal and broad. Intuitively, minimal cinds form a non-
redundant cover of all valid cinds and broad cinds comprise
a sufficiently large number of included elements. In the fol-
lowing, we describe both types of cinds in more detail.

Minimal CINDs. As for many other integrity constraints,
we can infer certain cinds from other ones. Given a set
of valid cinds, we call those cinds minimal that cannot
be inferred from any other cind. For example, the cind
(s, p=memberOf) ⊆ (s, p=rdf:type ∧ o=gradStudent) from Ta-
ble 1 is minimal and implies various non-minimal cinds.

Specifically, we consider two inference rules: the depen-
dent and referenced implications [28]. Intuitively, tightening
the dependent condition of a valid cind (by making a unary
condition binary) or relaxing the referenced condition (by
making a binary condition unary) yields a new valid cind.
For instance, (s, p=memberOf ∧ o=csd) ⊆ (s, p=rdf:type ∧
o=gradStudent) and (s, p=memberOf) ⊆ (s, p=rdf:type) are
also valid, but not minimal, because they can be inferred
from the above cind. Formally, we denote with φ ⇒ φ′

the fact that a binary condition φ implies a unary condi-
tion φ′, i.e., the predicate of φ′ is one of the two predi-
cates of φ. For instance, φ := p=memberOf ∧ o=csd implies
φ′ := p=memberOf. Consequently, (α, φ) ⊆ (α, φ′) is a valid
cind if φ ⇒ φ′. Therefore, if a cind (α, φ1) ⊆ (β, φ2)
holds in a dataset T , then: (i) a dependent implication
states that any cind (α, φ′1) ⊆ (β, φ2) with φ′1 ⇒ φ1 also
holds in T , because (α, φ′1) ⊆ (α, φ1) ⊆ (β, φ2); and sim-
ilarly (ii) a referenced implication states that any cind
(α, φ1) ⊆ (β, φ′2) with φ2 ⇒ φ′2 also holds in T , because
(α, φ1) ⊆ (β, φ2) ⊆ (β, φ′2). Therefore, we formally define a
minimal cind (α, φ1) ⊆ (β, φ2) as that one where neither φ1

(i.e., its dependent condition) can be relaxed to a condition
φ′1 nor φ2 (i.e., its referenced condition) can be tightened to
a condition φ′2 without violating the cind.

Example 4. Figure 1 depicts four cinds for the dataset
from Table 1. The cind ψ1 implies ψ2 and ψ3, which in
turn imply ψ4, respectively. Hence, only ψ1 is minimal.

Broad CINDs. A broad cind describes the inclu-
sion of a sufficient number of distinct values. For in-
stance, if we require the inclusion of at least two values,
then (s, p=rdf:type ∧ o=gradStudent) ⊆ (s, p=undergradFrom)
is broad. Focusing on broad cinds avoids cinds that (i) em-
bed void conditions, which do not match a single triple in
a given rdf dataset and which are infinite in number, (e.g.,
(s, p=memberOf∧o=geod) ⊆ (s, p=rdf:type∧o=professor)) and
that (ii) pertain to very few distinct values, which are nei-
ther useful to summarize nor to state the general properties
of a given rdf dataset (e.g., (o, s=patrick ∧ p=rdf:type) ⊆
(o, s=mike ∧ p=rdf:type)). We define this number of distinct
values as support, inspired from the widely adopted measure
for association rules [4]:

955

Definition 3.1 (Support). Given an rdf dataset T ,
the support of a cind ψ := c⊆ c′ is defined as supp(ψ) :=
|I(T, c)|.

Example 5. The cind (s, p=memberOf ∧ o=csd) ⊆
(s, p=undergradFrom ∧ o=hpi) has a support of 1 in Ta-
ble 1. This is because its dependent capture (s, p=memberOf∧
o=csd) selects a single value. This implies that this cind de-
scribes a rather specific insight that pertains only to patrick.

Formally, a broad cind has a support equal to or above a
given threshold h. The choice of this threshold depends on
the use case and its dataset. In our experience, h=1,000 is
a reasonable choice for the query minimization use case and
h=25 for the knowledge discovery use case. In Appendix B,
we present some more cinds and their support. Without any
loss of generality, we assume this threshold to be given in this
paper. Usually, even small support thresholds bear great
pruning power. In the aforementioned Diseasome dataset,
over 84 % of its 219 million minimal cinds have a support
of 1 and from the other 34.9 million cinds, another 97.4 %
have a support below 10.

3.2 CINDs as Association Rules
Cinds are natural extensions of regular inds, but they

also share some properties with exact association rules4

(ars), i.e., those with confidence 1. By interpreting rdf
triples (e.g., (patrick, rdf:type, gradStudent)) as transactions
({s=patrick, p=rdf:type, o=gradStudent}), we can find ars in
rdf datasets, such as o=gradStudent → p=rdf:type in Ta-
ble 1. Every ar α=v1 → β=v2 implies the cind (γ, α=v1) ⊆
(γ, α=v1 ∧ β=v2), e.g., the example ar implies the cind
(s, o=gradStudent) ⊆ (s, p=rdf:type ∧ o=gradStudent). In con-
trast, the inverse implication is not necessarily correct,
e.g., adding a triple (patrick, status, gradStudent) would invali-
date the ar but not the cind. Also note that ars can imply
cinds of only the above mentioned kind. In particular, all
example cinds in Section 1 are not implied by ars. Given
this, ars can replace some cinds, thereby enhancing the re-
sult’s understandability and enabling further applications,
such as selectivity estimation [19]. Moreover, ar discovery
is less complex than cind discovery, so we exploit ars to fur-
ther prune the cind search space and improve the efficiency
of our cind discovery algorithm.

3.3 Pertinent CIND Discovery Problem
We now revise the näıve problem statement from Section 2

with the above introduced concepts. For a given dataset T
and a user-defined cind support threshold h, we want to
efficiently discover all pertinent cinds that hold on T , that
is, all cinds that are both minimal and broad. Moreover, if
a cind ψ is implied by an ar r, we want to provide r instead
of ψ due to its stronger semantics.

4. SYSTEM OVERVIEW
The typical scenario for RDFind is as follows: RDFind,

which constitutes a distributable data flow, is implemented
and deployed on a distributed data processing system. The
input rdf datasets reside in a distributed storage engine,
such as HDFS or a triple store. We do not make any further
assumptions, e.g., on data partitioning.

4The association rules considered in this paper are different
from the ones used in [3]. See Section 9 for details.

all CIND candidates (>50 billion)

all CINDs  
(>1.3 billion)

Minimal CINDs  
(>219 million)

CIND candidates w/ frequent

conditions (> 77 million)

Pertinent CINDs (879,637)

Broad CINDs (915,647)

(Broad) association rules (690)

Broad CIND candidates  
(>21 million)

Figure 2: Cind search space for the Diseasome
dataset (72,445 triples) and support threshold 10.

Let us now give the overall idea of how RDFind efficiently
discovers all pertinent cinds in large rdf datasets. Intu-
itively, we need to find the sets of broad cinds, which satisfy
the user-defined support threshold, and the minimal cinds.
Then, their intersection yields the pertinent cinds. How-
ever, in practice, the set of minimal cinds is often consid-
erably larger than the set of broad cinds. For example, the
Diseasome dataset has approximately 219 million minimal
cinds but fewer than 1 million broad cinds for a support
threshold of 10 (see Figure 2).

Therefore, we devise a lazy pruning strategy that reduces
the search space in two phases. Figure 3 illustrates the over-
all architecture of RDFind, which comprises three main
components: the Frequent Condition Detector (FCDetec-
tor), the Capture Groups Creator (CGCreator), and the
Cind Extractor (CINDExtractor). The first and third com-
ponent are responsible for specific steps in the lazy pruning
employed by RDFind. The second component reorganizes
the input data in a manner that allows for efficient cind
extraction. We briefly discuss these components next and
give the algorithmic details in the remaining sections. For
the implementation details, see Appendix C.

CINDs 
ARs

CINDs 
ARs

CGCreator

pruned  
search space

capture  
groups

pertinent 
CINDs

ARs

FCDetector

CINDExtractor

RDF  
Data Sets

RDF  
Data Sets

RD
F

tri
pl

es

Figure 3: Overview of the RDFind system.

FCDetector. Before initiating the actual search for cinds,
RDFind first narrows the search space to a set of cind can-
didates having frequent conditions only, i.e., conditions on
the input dataset that are satisfied by a certain minimum
number of triples. This represents the first phase of the lazy
pruning. This pruning works, because all broad cinds em-
bed only frequent conditions (see Section 5). RDFind also
exploits frequent conditions to easily derive association rules
and, consequently, to further prune the search space.

CGCreator. Next, RDFind transforms all rdf triples in
the previously pruned search space into compact represen-
tations, called capture groups, from which it can efficiently
extract cinds (see Section 6). A capture group is a set
of captures whose interpretations have a certain value in
common. For example, in Table 1 the value patrick spawns

956

a capture group containing, amongst others, the capture
(s, p=rdf:type∧o=gradStudent).

CINDExtractor. Given the capture groups, RDFind re-
duces the search space of cind candidates with frequent con-
ditions to the set of broad cind candidates. This is the sec-
ond phase of our lazy pruning strategy. Subsequently, our
system extracts the broad cinds and their support from the
capture groups. As cind extraction is usually the most ex-
pensive step, RDFind is equipped with several techniques,
such as load balancing, to perform this step efficiently. Fi-
nally, it mines for pertinent cinds, i.e., it searches for mini-
mal cinds among all discovered broad cinds (see Section 7).

5. FREQUENT CONDITION DISCOVERY
As a start, RDFind executes the first phase of our lazy

pruning strategy and reduces the search space to the set of
cind candidates whose conditions (Definition 2.1) are fre-
quent. Knowing frequent conditions is crucial for two main
reasons: First, they allow RDFind to significantly reduce
the search space and, thus, to achieve low execution times
and memory footprints. Second, they yield ars (Section 3.2)
at little cost, which improve the output usefulness. In the
following, we further explain why frequent conditions (as
well as ars) help us to reduce the search space towards find-
ing broad cinds. Then, we detail how we discover frequent
conditions and ars.

5.1 Why Frequent Conditions?
A frequent condition is that condition whose number of

satisfying triples (condition frequency) is not below the user-
defined support threshold (Definition 3.1). The support of
a cind is tightly connected with the condition frequency of
its dependent and referenced captures, as we assert in the
following lemma (proof in Appendix A).

Lemma 1. Given a cind ψ := (α, φ) ⊆ (β, φ′) with sup-
port supp(ψ), the condition frequencies of φ and φ′ are equal
to or greater than supp(ψ).

Frequent condition pruning. With Lemma 1 we do
not need to validate cind candidates having conditions with
a frequency below a user-specified support. Indeed, find-
ing frequent conditions drastically reduces the cind search
space. Figure 4 shows that, for real world-datasets, the vast
majority of the conditions are satisfied by only very few
triples. For instance, in the DBpedia dataset, 86% of the
conditions have a frequency of 1, i.e., they hold only for a
single triple, and 99% of the conditions have a frequency
of less than 16. In practice, however, most cind use cases
require the conditions to have a high frequency.

1

100

10,000

1,000,000

100,000,000

Co
nd

iti
on

s [
#]

Condition Frequency

DB14-MPCE LinkedMDB DrugBank Diseasome

Figure 4: Number of conditions by frequency in
real-world datasets of varying size from ∼72k (Dis-
easome) to ∼33M (DBP14-MPCE) triples.

Association rule pruning. In addition, frequent condi-
tions allow RDFind to easily derive ars. As discussed in
Section 3.2, the system can use ars to further prune the
cind search space. The ar θ := β=v1→γ=v2 implies the
cind ψ := (α, β=v1)⊆(α, β=v1∧γ=v2). For instance, Ta-
ble 1 contains o=gradStudent → p=rdf:type, which implies
(s, p=rdf:type) ⊆ (s, p=rdf:type∧o=gradStudent). Therefore,
RDFind can simply keep ars and exclude all its implied
cinds from the cind search.

Equivalence pruning. The reverse cind of ψ, i.e.,
(α, β=v1∧γ=v2) ⊆ (α, β=v1), trivially holds, because its
dependent condition logically implies its referenced condi-
tion. In consequence, the ar θ implies that (the interpreta-
tions of) (α, β=v1) and (α, β=v1∧γ=v2) are equal. Accord-
ingly, our above example captures (s, o=gradStudent) and
(s, p=rdf:type∧o=gradStudent) contain the exact same values,
namely patrick and mike. Therefore, an ar β=v1 → γ=v2
allows RDFind to prune all cind candidates involving the
capture (α, β=v1∧γ=v2); they are equivalent to the candi-
dates involving the capture (α, β=v1).

5.2 Finding Frequent Conditions
We formulate the problem of finding frequent unary and

binary conditions as a frequent itemset discovery problem.
As such, we interpret each triple (s1, p1, o1) as a transac-
tion {〈s=s1〉, 〈p=p1〉, 〈o=o1〉}5. Using the state-of-the-art
Apriori algorithm [4] to find all frequent unary and binary
conditions, however, is inefficient as it was designed for
single-node settings. Furthermore, it does not scale to large
amounts of frequent itemset candidates, because it needs to
keep all candidates in memory. Therefore, we devise a fully
distributed algorithm that scales to arbitrary amounts of
candidates by checking candidates on-demand using space-
efficient indices. Figure 5 depicts the data flow of our algo-
rithm to discover frequent conditions. Generally speaking,
it consists of two passes over the data and an ar detection
phase that takes place on the fly. In more detail, it operates
in the following four main steps:

Frequent unary conditions. We assume that all triples
are distributed among the RDFind workers of a cluster,
e.g., by means of a distributed triple store. Each worker
can then process an independent horizontal partition of an
input dataset. A worker reads each input rdf triple in its
data partition and creates three unary conditions with a
condition counter set to 1 (Step (1) in Figure 5). For in-
stance, a worker creates the three unary condition counters
(〈s=patrick〉, 1), (〈p=rdf:type〉, 1), and (〈o=gradStudent〉, 1) for
the triple (patrick, rdf:type, gradStudent) in Table 1. All work-
ers then run a global GroupBy6 on the conditions of the unary
condition counters and add up the counters for each resulting
group (Step (2)). As this global GroupBy requires shuffling
data through the network, RDFind runs early-aggregations
on the counters before shuffling the data, which significantly
reduces the network load. After globally aggregating coun-
ters, the workers discard all non-frequent conditions with a
frequency less than the user-specified support threshold.

Compacting unary frequent conditions. Once all the
frequent unary conditions are found, RDFind needs to in-
dex them for efficient containment tests both in the frequent

5The 〈...〉 notation introduces its enclosed formulas as syn-
tactical elements rather than their results.
6This is referred to as reduce on Map/Reduce-like systems.

957

FCDetector

Create unary

condition

counters

Create unary

condition

counters

Frequent Unary Condition Detection

Create unary

condition

counters

Create binary

condition

counters

Frequent Binary Condition Detection

Union partial

Bloom filters

Create unary

condition

counters

Create

partial Bloom

filters

Bloom Filters Creation

A
s
s
o
c
ia

t
io

n

R
u
le

D
e
t
e
c
t
io

n

Create unary

condition

counters

Sum and

filter

Create unary

condition

counters

Sum and

filter

Create unary

condition

counters

Extract

association

rules

R
D

F
 t

r
ip

le
s

R
D

F
 t

r
ip

le
s

(1) (2) (3)
(4)

(5)

(6) (7) (8)

(9)

(10)

group by

collect
broadcast

local
input/output

F
r
e
q
u
e
n
t
 u

n
a
r
y
 a

n
d

b
in

a
r
y
 c

o
n
d
it

io
n
s

A
s
s
o
c
. r

u
le

s

(11)

(11)

(12)

Figure 5: Data flow of the FCDetector.

binary conditions discovery and the cinds pruning phase.
RDFind tolerates false positives in this index, so we use
a Bloom filter to attain constant look-up time and a small
memory footprint (tens of MB for the largest datasets). Ad-
ditionally, RDFind can create this Bloom filter in a fully
distributed manner: Each worker encodes all of its locally
residing frequent conditions in a Bloom filter (Step (3)). The
workers then send their local Bloom filter to a single worker
that unions them by calculating a bit-wise OR (Step (4)).

Frequent binary conditions. A binary condition can
be frequent only if its two embedded unary conditions are
frequent [4]. At this point, the original Apriori algorithm
would generate all possible frequent binary condition candi-
dates and organize them in a tree structure for subsequent
counting. In rdf scenarios, however, this tree structure eas-
ily becomes too large to fit into main memory. To overcome
this challenge, RDFind never materializes the candidates
and, instead, introduces on-demand candidate checking. For
this, it broadcasts the previously created Bloom filter to all
workers (Step (5)). Each worker runs Algorithm 1 to find
the frequent binary condition candidates. In detail, each
worker reads the triples from its data partition (Line 1 &
Step (6)) and performs the candidate check on demand:
First, it probes each unary condition embedded in the in-
put triple against the Bloom filter (Line 2). Then, it gener-
ates all possible frequent binary condition candidates using
the frequent unary conditions of the triple (Lines 3-5). For
example, consider the triple (patrick,memberOf, csd) from Ta-
ble 1. Knowing by means of the Bloom filter that only the
two embedded unary conditions s=patrick and p=memberOf

are frequent, the only candidate for a frequent binary condi-
tion is s=patrick∧p=memberOf. It then creates a binary con-
dition counter for each frequent binary condition candidate
(Line 6). As for frequent unary condition discovery, RDFind
globally aggregates the binary condition counters (Step (7))
and keeps only the frequent binary conditions.

Compacting binary frequent conditions. As for the
frequent unary conditions, RDFind encodes all frequent bi-
nary conditions in a Bloom filter in order to speed up the
cind pruning phase (Steps (8) and (9)). As a result of this
process, RDFind outputs the set of frequent unary and bi-
nary conditions, which implicitly represent the pruned cind
search space (Step (10)).

5.3 Extracting Association Rules
As in [4], our frequent conditions discovery algorithm also

allows RDFind to extract association rules at little extra

Algorithm 1: Create counters for binary conditions

Data: RDF triples T , unary condition Bloom filter Bu

1 foreach t ∈ T do
2 probe 〈s=t.s〉, 〈p=t.p〉, and 〈o=t.o〉 in Bu;
3 foreach (α, β) ∈ {(s, p), (s, o), (p, o)} do
4 vα ← t.α; vβ ← t.β;
5 if 〈α=vα〉 and 〈β=vβ〉 are frequent then
6 forward (〈α=vα ∧ β=vβ〉, 1);

cost. It simply performs a distributed join of the frequent
unary condition counters with the frequent binary condition
counters on their embedded unary conditions (Step (11)).
For instance, (〈p=rdf:type〉, 3) and (〈o=gradStudent〉, 2) both
join with (〈p=rdf:type∧o=gradStudent〉, 2). Then each worker
checks for each pair in its partition of the join result, if the
unary and binary condition counters have the same counter
value. In our example, this is true for (〈o=gradStudent〉, 2)
and (〈p=rdf:type ∧ o=gradStudent〉, 2), hence, the responsi-
ble worker derives the association rule o=gradStudent →
p=rdf:type with a support of 2. RDFind uses the associa-
tion rules to further prune the cind search (see Section 5.1)
and additionally includes them in the final result for users
(Step (12)), because they are a special class of cinds (see
Section 3). In particular, the association rule support is
equal to the support of its implied cinds according to the
following lemma (proof in Appendix A).

Lemma 2. The support s of the association rule α=v →
β=v′ is equal to the support of its implied cind (γ, α=v) ⊆
(γ, α=v ∧ β=v′).

6. COMPACT RDF REPRESENTATION
After discovering the frequent unary and binary condi-

tions, RDFind transforms the rdf triples into a compact
representation that allows it to efficiently create cind can-
didates. We call this compact data structure capture groups.
A capture group is a set of captures (Definition 2.2) whose
interpretations have a value in common. Captures having
n values in common co-occur in n capture groups. We first
explain how the system creates captures groups and then
demonstrate that we can obtain all broad cind candidates
from capture groups only.

6.1 Capture Groups
Our system creates capture groups in two steps. It first

outputs the evidence that a certain value belongs to a cap-
ture (capture evidence). For this, it takes into consideration
the previously found frequent conditions and ars. Then,
it groups and aggregates capture evidences with the same
value creating the capture groups.

Creating Capture Evidences. A capture evidence is
a statement that a certain value exists in a capture (in-
terpretation). There are nine possible capture evidences
per triple. For each of the three values of a triple, we
could create three capture evidences, of which one has
a binary condition and the other two have unary con-
ditions (cf. Definitions 2.1 and 2.2). For example, the
triple (patrick,memberOf, csd) entails, amongst others, the
capture evidences patrick ∈ (s, p=memberOf) and patrick ∈
(s, p=memberOf∧o=csd). One might think that this is an

958

Algorithm 2: Creating capture evidences

Data: triples T , unary condition Bloom filter Bu,
binary condition Bloom filter Bb, ars AR

Result: Evidences of relevant captures C

1 foreach t ∈ T do
2 C ← ∅;
3 foreach α ∈ {s, p, o} do
4 {β, γ} ← {s, p, o} \ {α};
5 vα ← t.α; vβ ← t.β; vγ ← t.γ;
6 if 〈β = vβ〉 ∈ Bu then
7 if 〈γ = vγ〉 ∈ Bu then
8 if 〈β = vβ ∧ γ = vγ〉 ∈ Bb
9 ∧ 〈β=vβ → γ=vγ〉 6∈ AR

10 ∧ 〈γ=vγ → β=vβ〉 6∈ AR then
11 C ← C ∪ {〈vα ∈ (α, β=vβ∧γ=vγ]〉};
12 else C ← C ∪ {〈vα ∈ (α, β=vβ)〉, 〈vα ∈

(α, γ=vγ)〉};
13 else C ← C ∪ {〈vα ∈ (α, β=vβ)〉};
14 else if 〈γ=vγ〉 ∈ Bu then

C ← C ∪ {〈vα ∈ (α, γ=vγ)〉} ;

expensive task as it would increase the input data volume
by a factor of nine. However, remember that at this point
RDFind works on a highly pruned search space containing
only frequent conditions (see Section 5). In addition, our
system further reduces the number of capture evidences via
implications between binary and unary conditions. For in-
stance, consider again the triple (patrick,memberOf, csd) and
its capture (s, p=memberOf∧o=csd). The resulting capture
evidence patrick ∈ (s, p=memberOf∧o=csd) subsumes both
patrick ∈ (s, p=memberOf) and patrick ∈ (s, o=csd). Hence,
it suffices to keep the first binary capture evidence.

Algorithm 2 shows in detail the capture evidence cre-
ation process. Prior to its execution, the frequent condi-
tion Bloom filters and the ars discovered by the FCDetec-
tor are broadcast, so that they are available to every worker
(cf. Figure 5). As for the frequent condition discovery, each
worker then processes its partition of the input triples. For
each triple, it first picks a projection attribute (Line 3),
e.g., α=s, and two condition attributes (Line 4), e.g., β=p
and γ=o. Then, for the two emerging unary conditions
(p=memberOf and o=csd), it checks whether they might
be frequent using the unary Bloom filter (Lines 5–7). If
so, it also checks whether the emerging binary condition
(p=memberOf∧o=csd) is also frequent7 (Line 8) and does not
embed a known ar (Lines 9–10). In this case, it creates a
capture evidence with the binary condition only (Line 11;
(patrick ∈ (s, p=memberOf∧o=csd)). Otherwise, it creates the
capture evidences for those of the two unary conditions that
are frequent (Lines 12–14). Finally, these steps are repeated
for the remaining projection attributes (p and o).

Creating capture groups. RDFind aggregates all cap-
ture evidences with the same value using a global GroupBy
and calculates the union of their captures in order to cre-
ate capture groups. Again, early aggregates are calculated
whenever possible to reduce network and memory pres-
sure. Although each capture group corresponds to a cer-
tain value from the input rdf dataset, the system dis-

7Notice that testing the unary conditions before the binary
ones avoids some false positives from the binary Bloom filter.

cards the values as they are no longer needed. For in-
stance, for the dataset in Table 1, a support threshold
of 3, and the value patrick, we have the capture evidences
patrick ∈ (s, p=rdf:type) and patrick ∈ (s, p=undergradFrom).
The aggregation combines them into the capture group
{(s, o=rdf:type), (s, p=undergradFrom)}. Note that the cap-
ture groups are distributed among the workers after this
step and can be processed distributedly in the following.

6.2 From Capture Groups to Broad CINDs
Let us now show that it is possible to extract all broad

cinds from a given rdf dataset using capture groups. To
this end, we exploit commonalities of the capture-based cind
definition (i.e., Definition 2.3) with the standard ind defini-
tion by extending the ind criterion described in [13]. Intu-
itively, if a capture group contains the referenced capture,
then it also contains the dependent capture. Formally:

Lemma 3. Let T be an rdf dataset and G its capture
groups. Then, a cind ψ := c ⊆ c′ is valid on T iff ∀G ∈
G : c ∈ G⇒ c′ ∈ G, with supp(ψ) = |{G ∈ G : c ∈ G}|.

We prove this lemma in Appendix A. Because at this step
RDFind operates in the search space of cind candidates
having frequent conditions, we infer from the above lemma
that all broad cinds can be extracted from capture groups.

Theorem 1. Given an rdf dataset T with its capture
groups G and a support threshold h, any valid cind ψ with
support supp(ψ) ≥ h can be extracted from G.

Proof. This trivially holds from Lemmata 1 and 3.

7. FAST CIND EXTRACTION
As final step, in the CINDExtractor component (see Fig-

ure 6), RDFind extracts pertinent cinds from the previously
created capture groups. Overall, it proceeds in two main
steps: It first extracts broad cinds from capture groups and
then finds the minimal cinds among the broad ones. In
the following, we first show that a simple approach based
on an existing ind discovery mechanism to extract broad
cinds is inadequate for rdf (Section 7.1). We then show
how RDFind extracts broad cinds from capture groups ef-
ficiently (Section 7.2). We finally show how our system ex-
tracts the pertinent cinds from broad cinds (Section 7.3).

7.1 Trouble of a Direct Extraction
A simple broad cind extraction mechanism could be based

on an existing ind discovery mechanism (such as [24]). It
would work as follows: Because a valid cind’s dependent
capture is in the same capture groups as its referenced cap-
ture (Lemma 3), all workers enumerate all cind candidates
within their capture groups. They also initialize a support
count for each cind candidate as shown in Example 6.

Example 6. Consider a scenario with three capture
groups: G1 = {ca, cb, cc, cd, ce}, G2 = {ca, cb}, and G3 =
{cc, cd}. In this case, the näıve approach generates five cind
candidate sets for G1, e.g., (ca v {cb, cc, cd, ce}, 1), and two
for G2 and G3.

The system then performs a global GroupBy on the depen-
dent capture of the cind candidate sets and aggregates them
by intersecting all their referenced captures and summing up

959

CINDExtractor group by collect broadcastlocalinput/output

Create unary

condition

counters

Create

capture

counters

Compute

support

Create unary

condition

counters

Prune non-

broad

captures

Capture-support pruning

C
a
p
t
u
r
e
 g

r
o
u
p
s

(2)
(3)

CIND candidate validation

Create unary

condition

counters

Merge

CIND

candidates

Create unary

condition

counters

Validate

verification

set

Create unary

condition

counters

Create

verification

sets

B
r
o
a
d
 C

IN
D

s

(9) (10) (11)(1) Create unary

condition

counters

Estimate

individual

loads

Calculate

average

load

Create unary

condition

counters

Split dom.

capture

groups

Create unary

condition

counters

Approx.

CIND

candidates

CIND candidate generation

(5)
(6) (7) (8)

(4)

Figure 6: Data flow of the CINDExtractor.

all its supports. The aggregated cind candidate sets repre-
sent all valid cinds and the support count is used to retain
only the broad cinds.

The performance of this approach suffers from capture
groups with a large number of captures (dominant capture
groups). Processing a capture group with n captures yields
n cind candidate sets with up to n contained captures each,
i.e., the overall number of captures in cind candidate sets
is quadratic in the size of the corresponding capture group.
Therefore, dominant capture groups entail enormous mem-
ory consumption and CPU load as well as a highly skewed
load distribution among workers, which severely impacts
performance. Formally, inspired by [23], we consider a cap-
ture group G as dominant if its processing load, estimated
by |G|2, is larger than the average processing load among all

w workers,
∑

Gi∈G |Gi|2

w
. For example, assuming two workers

(i.e., w = 2), we consider capture group G1 in Example 6 as

dominant, because |G1|2 > |G1|2+|G2|2+|G3|2
2

. In practice,
rdf datasets lead to several very large capture groups that
emerge from frequently occurring values, such as rdf:type.
This renders the above näıve solution inadequate for rdf.

7.2 Cracking Dominant Capture Groups
To efficiently cope with dominant capture groups, we en-

hance in the following the above simple extraction mecha-
nism by (i) pruning the capture groups as much as possible,
(ii) load balancing, and (iii) a two-phase cind extraction
strategy. Figure 6 depicts the complete process.

Capture-Support Pruning. To deal with dominant cap-
ture groups, RDFind applies a novel capture-support prun-
ing technique, which is also the second phase of our lazy
pruning technique. The capture-support pruning reduces
the size of all capture groups by removing some of their cap-
tures. The first phase of our lazy pruning technique (see Sec-
tion 5) retains cind candidates whose captures embed fre-
quent conditions only. In general, however, these cind can-
didates are a proper superset of the broad cind candidates,
because the support of a capture can be smaller than the
frequency of its embedded condition. The capture-support
pruning identifies and removes these captures from all cap-
ture groups. Basically, our system first computes all capture
supports by distributedly counting their occurrences in the
capture groups (Steps (1) & (2) in Figure 6), then broad-
casts the prunable captures with a support less than the
user-defined support threshold h to each worker, and even-
tually each worker removes these captures from its capture
groups (Step (3)). For example, assuming that h is set to 2,
we can then identify in Example 6 that ce appears only in
G1, so its support is 1. We therefore remove it from G1, re-
sulting in the following capture groups: G′1 = {ca, cb, cc, cd},
G2 = {ca, cb}, and G3 = {cc, cd}.

CIND Candidate Generation. While the capture-
support pruning significantly reduces the size of capture
groups, some dominant capture groups remain and still
severely impact performance. RDFind now clears the
skewed work distribution caused by them. For this pur-
pose, each worker estimates its current load by summing
the squares of its capture groups’ sizes. These loads are
then summed up on a single worker (Step (5)), divided by
the number of workers, and the resulting average load is
broadcast back to all workers (Step (6)). Then, each worker
can identify its dominant capture groups and divides them
into w work units and uniformly redistributes them among
all workers (Step (7)). Concretely, it divides each dominant
capture group G evenly into w subsets and constructs for
each such subset Ĝi the work unit (Ĝi, G), whereby Ĝi as-
signs dependent captures to consider during the upcoming
cind candidate generation. For instance, the work units for
G′1 are ({ca, cb}, {ca, cb, cc, cd}) and ({cc, cd}, {ca, cb, cc, cd}).

However, most of the cind candidates enumerated by
dominant capture groups are rather incidental and do not
yield valid cinds. As stated above, dominant capture groups
emerge from frequent rdf-specific values, such as rdf:type. If
two entities e1 and e2 occur with rdf:type and, thus, (s, p=e1)
and (s, p=e2) are both in the capture group that corresponds
to rdf:type, it is still unlikely that (p, s=e1) ⊆ (p, s=e2) is
a valid cind. Our system exploits this observation in an
approximate-validate cind extraction approach that avoids
creating a large number of these unnecessary cind candi-
dates. Each worker creates all cind candidate sets for each
of its capture groups and work units as discussed earlier (see
Example 6). For the work units, which emerge from domi-
nant capture groups, however, it encodes the referenced cap-
tures in a Bloom filter of constant size k instead (Step (7)).
This encoding reduces the space complexity of the cind can-
didate sets from O(n2) to O(n), where n is the number of
captures in a work unit. We experimentally observed that
k = 64 bytes yields the best performance.

In Example 6, our system creates cind candidate sets as
discussed before for G2 and G3. In contrast, for the work
units derived from G′1, it creates cind candidate sets as fol-
lows: (ca v Bloom(cb, cc, cd), 1)∗, where the mark ∗ indicates
that this candidate comes from a dominant capture group
and is approximate. This mark allows our system to trace
back all Bloom-filter-based cind candidates for further val-
idation as Bloom filters may generate false positives.

CIND Candidate Validation. As in the basic extrac-
tion, our system then aggregates all the cind candidate sets
with the same dependent capture for validation (Step (8)).
Algorithm 3 shows this aggregation process, where Boolean
functions f1, f2, and f3 mark if a candidate is approximate
or not. Conceptually, the workers intersect the referenced
captures, but distinguish three cases: (i) If none of the two
cind candidate sets are approximate, they are intersected

960

Algorithm 3: Cind candidates validation

Data: cind candidate set (c v C1, count1)f1 ,
(c v C2, count2)f2

Result: merged cind candidate set (c v C3, count3)f3

1 if ¬ hasBloomFilter(C1) ∧ ¬hasBloomFilter(C2) then
2 C3 ← C1 ∩ C2;
3 else if hasBloomFilter(C1) ∧ hasBloomFilter(C2) then
4 C3 ← C1 & C2;
5 else
6 C′1 ← Ci where ¬isBloomFilter(Ci);
7 C′2 ← Cj where isBloomFilter(Cj);
8 C3 ← {c ∈ C′1 : c ∈ C′2};
9 count3 ← count1 + count2;

10 f3 ← (f1 ∧ f2) ∨ isEmpty(C3);

as in the basic extraction (Lines 1 & 2 in Algorithm 3). As
a result, the system gets certain cinds (i.e., that do not
require further validation); (ii) If both candidates are ap-
proximate, we calculate the bitwise AND of the Bloom filters
to approximate the intersection of their elements (Lines 3
& 4); (iii) If only one of the candidates is approximate, we
probe the other candidate against the Bloom filter and re-
tain them on probing success (Lines 5–9). For instance,
if we need to merge the above mentioned cind candidate
sets (ca v Bloom(cb, cc, cd), 1)∗ and (ca v {cb}, 1), the re-
sult will be (ca v {cb}, 2)∗.8 Such cind sets that have an
approximate cind candidate set lineage are uncertain and
require further validation (unless the set of referenced cap-
tures is empty (Line 9)). To validate these uncertain cinds,
RDFind broadcasts the uncertain cind sets to each worker
(Step (9)) that organize them in a map m with the depen-
dent capture as key and referenced captures as value. Then,
the workers iterate through only their work units. If a de-
pendent capture c in a work unit is a key in m, the worker
intersects the captures of the work unit with the referenced
captures in m[c] and issues the result as a new cind valida-
tion set. For instance for the work unit ({ca, cb}, G′1), the
respective worker finds that ca is a key in m and creates the
validation set ca v (G′1∩m[ca]), i.e., ca v {cb}. Notice that
the validation sets are in general much smaller in number
and extent than the above explained cind candidate sets.
Finally, these validation sets are intersected as in the basic
extraction (Step (10)) and the resulting cinds complement
the previously found certain cinds, denoting then the com-
plete set of broad cinds (Step (11)).

7.3 From Broad to Pertinent CINDs
Once all broad cinds are extracted, RDFind obtains the

pertinent cinds by retaining only the minimal ones. Re-
call that a minimal cind must not be implied by a further
cind, neither by dependent nor referenced implication (see
Figure 1). It basically detects all implications among broad
cinds in two steps. First, it removes non-minimal cinds
with a binary dependent and a unary referenced condition
(Ψ2:1) by consolidating them with cinds that either have
only unary or only binary conditions (Ψ1:1 and Ψ2:2). Sec-
ond, it then removes non-minimal cinds from the latter two
by consolidating them with cinds that have a unary depen-
dent condition and a binary referenced condition (Ψ1:2).

8Note that in general, the result might be further aggregated
with cind candidate sets, e.g., due to early aggregation.

Table 2: Evaluation rdf datasets.
Name Size [MB] Triples
Countries 0.8 5,563
Diseasome 13 72,445
LUBM-1 17 103,104
DrugBank 102 517,023
LinkedMDB 870 6,148,121
DB14-MPCE 4,334 33,329,233
DB14-PLE 21,770 152,913,360
Freebase 398,100 3,000,673,968

We explain the consolidation process by example for
ψ = (s, p=memberOf)⊆(s, p=rdf:type) ∈ Ψ1:1 from Ta-
ble 1. Because cinds in Ψ1:1 might be subject to de-
pendent implication with cinds in Ψ1:2, RDFind joins
Ψ1:1 and Ψ1:2 on their dependent captures and referenced
project attribute. In our example, this join matches ψ
with ψ′ = (s, p=memberOf)⊆(s, p=rdf:type∧o=gradStudent).
RDFind then finds that ψ′ implies ψ and discards ψ.

8. EXPERIMENTS
We implemented RDFind on top of Flink 0.9.0 using

Scala 2.10 and exhaustively evaluate it using both real-
world and synthetic datasets. We conducted our ex-
periments with five questions in mind: (i) How good
is RDFind compared to the state-of-the-art? (ii) How
well does RDFind scale? (iii) How well does RDFind
deal with different support thresholds? (iv) What effi-
ciency do our pruning techniques have? (v) Can we
start from broad cinds to generate pertinent cind candi-
dates? We provide the implementation, pointers to the
datasets, and the exact measurements for repeatability pur-
poses at https://hpi.de//naumann/projects/repeatability/
data-profiling/cind-discovery-on-rdf-data.html.

8.1 Experimental Setup
Datasets. To gain comprehensive insights into RDFind
and its results, we gathered a broad range of datasets from
different domains and of different sizes: seven real-world
datasets and a synthetic one, summarized in Table 2.

Systems. We compare RDFind to Cinderella [7], the
state-of-the-art cind discovery algorithm for relational data.
Cinderella assumes that partial inds were previously dis-
covered. It basically performs left-outer joins on these par-
tial inds using a database to generate conditions that match
only the included tuples of the partial ind. We used both
MySQL 5.6 and PostgreSQL 9.3 with default settings as un-
derlying database. Additionally, we devised an optimized
version Cinderella* that performs more memory-efficient
joins and avoids self-joins, allowing it to significantly re-
duce its memory footprint. Notice that we do not com-
pare RDFind to the Pli-variant [7], because Cinderella
is shown to be faster, and not to Data Auditor [16], because
it discovers only the broadest cind for a partial ind, which
is not appropriate for the rdf case. However, Pli and Data
Auditor apply the same overall strategy as Cinderella and
differ only in the conditions generation.

Hardware. We have conducted all experiments on a com-
modity hardware cluster consisting of a master node (8×
2 GHz, 8 GB RAM) and 10 worker nodes (2× 2.2 GHz, 8 GB
RAM each). All nodes are interconnected via Gigabit Eth-

961

1

10

100

1,000

10,000

100,000

5 10 50 100 500 1000 5 10 50 100 500 1000

Countries Diseasome

Ru
nt

im
e

[s
]

Dataset, support threshold

RDFind Cin/Pos Cin*/Pos Cin/My Cin*/My

Figure 7: RDFind vs. standard and optimized Cin-
derella on MySQL and PostgreSQL. Hollow bars in-
dicate algorithm failures and therefore present lower
bounds on the execution time.

ernet in a star topology. Furthermore, our prototype reads
rdf datasets from NTriple files distributed in HDFS. In our
experiments, Flink (and hence RDFind) was granted 4 GB
of RAM on each worker node, leaving the remaining RAM
to other components, such as HDFS.

8.2 RDFind vs. Cinderella
We first show that RDFind significantly prevails over the

state-of-the-art when discovering cinds in rdf data. For
this purpose, we compare the runtimes of RDFind with
Cinderella [7] on different datasets. As Cinderella is
not a distributed algorithm, we ran our experiments on only
the master node of our cluster, granting the algorithms 4 GB
of main memory. Furthermore, due to Cinderella’s high
main memory requirements, we use only our two smallest
datasets, Countries and Diseasome.

Figure 7 shows the results of this comparison with Cin-
derella. On the very small Countries dataset, RDFind
consistently outperforms the standard Cinderella by a fac-
tor from 8 to 39. However, the optimized version on Post-
greSQL is up to 20 seconds faster, because RDFind’s run-
time is dominated by a fix overhead, particularly Flink’s
start-up costs. For the larger (but still small) Diseasome
dataset this overhead is already redeemed, though. We ob-
serve that the regular version of Cinderella failed for each
execution and the optimized version for the support thresh-
olds 5 and 10 due to their high memory consumption. Our
system, in contrast, handles all executions flawlessly and
outperforms Cinderella by a factor of up to 419 without
considering the failed runs. This is mainly because, in con-
trast to Cinderella, which performs a join for each desig-
nated combination of projection attributes using a database
(which also explains the differences among PostgreSQL and
MySQL), our system covers the complete cind search space
in a single execution using optimized data structures and
algorithms. Note that in contrast to RDFind, Cinderella
does not consider referenced conditions, which is a strong
simplification of the cind discovery problem. This increased
generality, the higher efficiency, and the robustness w.r.t.
main memory render RDFind superior to Cinderella on
rdf data. Therefore, we henceforth focus on evaluating only
our system for bigger datasets that Cinderella cannot (ef-
ficiently) handle.

8.3 Scalability
We proceed to study the scalability of RDFind in terms

of both the number of input triples and compute machines.

1,000

10,000

100,000

1,000,000

10,000,000

0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

CI
N

Ds
, A

Rs
 [#

]

Ru
nt

im
e

[h
]

Triples [#] Billions

Runtime ARs CINDs

Figure 8: RDFind when increasing the number of
input triples with a support threshold of 1,000.

Scaling the number of triples. We aim at testing
RDFind’s robustness with this experiment by evaluating
its efficiency when varying the number of input triples. For
this experiment, we consider the Freebase dataset, which
is among the largest rdf datasets: With 3 billion triples
and a total size of 400 GB, it exceeds the amount of avail-
able memory in our cluster by a factor of 10. We run our
system over different sample sizes of the Freebase dataset us-
ing a support threshold of 1, 000. Furthermore, we consider
predicates only in conditions, because the above experiments
rarely showed meaningful cinds on predicates.

Figure 8 illustrates the runtime of RDFind and the num-
ber of cinds and ars discovered for different numbers of
input triples. We observe a slightly quadratic runtime be-
havior of our system. This is because the size of capture
groups increases along with the number of input triples,
and the cind extraction runtime grows quadratically with
the capture group sizes. Nevertheless, RDFind can process
the full dataset, which demonstrates its high scalability, and
thereby discovers more than 1 million pertinent cinds. In-
deed, including more triples leads to more pertinent cinds.
In contrast, the number of association rules (ars) grows to
a peak at 1 billion triples and declines afterwards. Ars have
stricter semantics than cinds and hence they are more easily
violated by adding triples. Although this impairs the effec-
tiveness of our pruning with ars, overall the system shows
to scale well with the number of input triples.

Scaling out. We now evaluate the scalability of our sys-
tem when increasing the number of machines. We consider
the medium-size LinkedMDB dataset with a varying sup-
port threshold h and number of machines, each running
a single thread. As Flink allows for parallelism in a sin-
gle node through multi-threading, we consider an additional
case with 10 machines, each running two threads.

Figure 9 shows the measured runtimes and the average
speed-up w.r.t. a parallelism of 1. We observe that our sys-
tem scales almost linearly with the number of machines. In
particular, when the support threshold is low and very few
capture groups dominate the runtime, the load balancing
ensures high resource utilization. On average, we measured
a speed-up of 8.14 on 10 machines. We also observe that the
intra-node parallelism allows RDFind to gain an additional
speed-up of 1.38 on average. This shows that our system
can leverage any provided additional resources.

8.4 Impact of Support Threshold
Having shown the high scalability of our system, we now

focus on evaluating the efficiency of our system when the
number of pertinent cinds increases. We run an experiment
with different support thresholds for a variety of datasets.

962

1
3
5
7
9
11
13

0
500

1,000
1,500
2,000
2,500
3,000

1 (1) 2 (2) 4 (4) 8 (8) 10 (10) 20 (10)

Sp
ee

d-
up

 fa
ct

or

Ru
nt

im
e

[s
]

Parallelism (Machines) [#]

h = 10,000 h = 1,000 h = 100
h = 50 h = 25 Speed-up

Figure 9: RDFind when increasing the number
of machines on LinkedMDB with varying support
threshold h.

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000

Ru
nt

im
e

[s
]

Support threshold

Countries Diseasome LUBM1 DrugBank
LinkedMDB DB14-MPCE DB14-PLE

Figure 10: RDFind with different datasets and sup-
port thresholds.

Impact on runtime. We first evaluate how the support
threshold impacts RDFind’s runtime. Figure 10 shows the
runtimes for our system when discovering pertinent cinds
on multiple datasets and different support thresholds h and
reveals a pattern on all datasets: For large support thresh-
olds, RDFind is almost indifferent to the threshold setting
and provides almost a constant runtime. For instance, for
LUBM1, this is the case for h≥10. In contrast, the runtime
quickly rises when decreasing h below 10. The reason for
this is the distribution of conditions w.r.t. their frequencies:
As shown in Figure 4, most conditions in datasets hold on
only very few triples. Thus, for very small support thresh-
olds our system can prune only few conditions, which leads
to more captures and, more importantly, to larger capture
groups. This agrees with our observation that the cind ex-
traction becomes the dominating component for small sup-
port thresholds because of its quadratic complexity w.r.t.
capture group sizes. However, as we show in the following
experiments, low-support cinds are also useful for specific
applications.

Impact on result. We now evaluate how the support
threshold impacts the result of our system. Figure 11 dis-
plays the complete number of pertinent cinds (including
ars) that RDFind discovers for multiple support thresholds.
We observe that the number of pertinent cinds is to some
extent inversely proportional to the support threshold. De-
creasing the support threshold by two orders of magnitude
increases the number of cinds by three orders of magnitude
in the evaluation datasets (the ars behave similarly and
usually account for 10–50% of the cinds). In consequence,
the majority of cinds in rdf datasets have a small support,
while there are only a few broad cinds, i.e., only few cinds
are supported by a large number of triples. Still, these very
broad cinds are of high importance as they state general
properties of their respective dataset. For example, we found

1

100

10,000

1,000,000

100,000,000

1 10 100 1,000 10,000

CI
N

Ds
 [#

]

Support threshold

Countries Diseasome LUBM1 DrugBank
LinkedMDB DB14-MPCE DB14-PLE

Figure 11: Number of pertinent cinds for different
datasets and supports.

that the DBpedia dataset (DB14-MPCE) embeds the two
cinds (o, p=associatedBand) ⊆ (o, p=associatedMusicalArtist)
and (s, p=associatedBand) ⊆ (s, p=associatedMusicalArtist)
with supports of 41,300 and 33,296, respectively. This
suggests that the associatedBand predicate is a subprop-
erty of associatedMusicalArtist and hence it is a hint to re-
vise the ontology. On the other side, low-support cinds
are also useful to some applications. For instance, DB-
pedia holds the cinds (s, p=writer ∧ o=Angus Young) ⊆
(s, p=writer∧o=Malcolm Young) and, vice versa, (s, p=writer∧
o=Malcolm Young) ⊆ (s, p=writer∧o=Angus Young), both hav-
ing a support of 26. This reveals that the AC/DC members,
Angus and Malcolm Young, have written all their songs to-
gether: a new fact, that is not explicitly stated in DBpedia.
These results demonstrate the relation between cind sup-
port and cind semantics and justify why users should set
different support thresholds for different use cases.

8.5 Pruning Effectiveness
To investigate the effectiveness of our pruning techniques

and algorithmic choices, we compare RDFind with two sim-
plified versions: RDFind-DE (Direct Extraction) extracts
cinds from capture groups without the capture-support
pruning, load balancing, and approximate-validate extrac-
tion (see Section 7.1). RDFind-NF (No Frequent Condi-
tions) additionally waives any operation related to frequent
conditions (see Section 5).

Figure 12 compares the three variants on our two smallest
datasets. While RDFind and RDFind-DE are similarly effi-
cient, RDFind-NF exhibits drastically inferior performance
in all measurements. We conclude that the pruning tech-
niques related to frequent conditions are highly effective,
even for small datasets and low support thresholds.

We proceed to compare only RDFind and RDFind-DE
on larger datasets in Figure 13. For the large support thresh-
olds, RDFind-DE is slightly more efficient than RDFind in
four of five cases. In these scenarios, the overhead for coping
with dominant capture groups in RDFind is not redeemed.
Still, RDFind’s accumulated runtime is 4.6 minutes shorter
than RDFind-DE’s runtime. For the small support thresh-
olds, RDFind is much more efficient and robust. On the
three smaller dataset, it achieves an average speed-up of 5.7
over RDFind-DE. Because small support thresholds entail
long runtimes, this is an absolute speed-up of 50.4 minutes.
Furthermore, RDFind-DE was not able to handle the larger
DB14-MPCE and DB14-PLE due to main memory require-
ments. These results show the improved robustness, overall
higher efficiency, and the low overhead of cracking dominant
capture groups of RDFind.

963

10

100

1,000

10,000

5 10 50 100 500 1000 5 10 50 100 500 1000

Countries Diseasome

Ru
nt

im
e

[s
]

Dataset, support threshold

RDFind RDFind-DE RDFind-NF

Figure 12: RDFind vs. RDFind-DE vs. RDFind-NF.

Longest
run:

82
sec

10.1
min

52.1
min

17.8
min

2.3
h

22
sec

29
sec

3.7
min

6.5
min

23.6
min

0%

25%

50%

75%

100%

LU
BM

-1
, 1

0

Dr
ug

Ba
nk

, 1
0

Li
nk

ed
M

DB
, 2

5

DB
14

-M
PC

E,
 2

5

DB
14

-P
LE

, 1
00

LU
BM

-1
, 1

00
0

Dr
ug

Ba
nk

, 1
00

0

Li
nk

ed
M

DB
, 1

00
0

DB
14

-M
PC

E,
 1

00
0

DB
14

-P
LE

, 1
00

0

Small supports Large supports

Ru
nt

im
e

[%
 o

f l
on

ge
st

 ru
n]

Dataset, support threshold RDFind RDFind-DE

x x

Figure 13: RDFind vs. RDFind-DE for small and
large supports. Longest run refers to the execu-
tion time of the slower algorithm, respectively. The
crosses represent algorithm failures.

8.6 Why Not Minimal CINDs First?
Recall that RDFind finds all broad cinds at first and

then removes all non-minimal ones. It is an intriguing idea
to discover only minimal cinds at first by employing refer-
enced and dependent implication as explained in Section 3.1.
We implemented this idea by doing multiple passes over the
capture groups, extracting only certain kinds of cinds in
each pass, and generating a reduced candidate set for the
next pass. This strategy turned out to be up to 3 times
slower even than RDFind-DE. Usually, broader cinds are
also minimal cinds as exemplified in Figure 2, so the over-
head of this strategy is greater than its savings. This clearly
shows the efficiency of the strategy we follow in RDFind.

9. RELATED WORK
Data profiling is a well-established ongoing research area

that seeks to discover different kinds of integrity constraints
(ICs) and other metadata, such as functional and inclusion
dependencies [1]. However, conditional ICs [10, 15] have at-
tracted only little attention so far, even though they are a
valuable extension to plain ICs [1]. We believe this is due
to the additional computational complexity of condition dis-
covery aggravating the already complex IC discovery tasks.

CIND discovery. The only existing works on cinds dis-
covery are the Cinderella/Pli algorithm [7] and Data Au-
ditor [16]. However, these works differ from RDFind, be-
cause not only do they target relational data, but also their
results and algorithmic foundations are fundamentally dif-
ferent. As input they take a partial ind, that holds only on a
part of the underlying data. Then, they look for conditions

that select only the included tuples on the dependent side
of the partial ind, potentially allowing for a certain error of
the condition. In contrast to RDFind, both algorithms are
not directly taking into account conditions on the referenced
side of cinds. This is a simplification of the actual cind dis-
covery problem, as the choice of the referenced condition
influences the set of possible dependent conditions.

IND discovery. Ind discovery algorithms for relational
data, in particular Mind [13], Binder [31], and Sindy [24],
find inds by (implicitly) joining all columns in a dataset
and successively extracting ind candidates with each tuple
of the join product. They scale well with the number of tu-
ples in the inspected database but not with the number of
ind candidates. RDFind also employs a (distributed) join-
extract strategy (with captures instead of columns). How-
ever, we enhance and speed up this process by employing
lazy pruning and using multi-pass cind extraction. These
enhancements let RDFind scale to huge amounts of cind
candidates, which distinguishes it from all ind discovery al-
gorithms. Moreover, RDFind’s load-balancing ensures good
scale-out even in presence of dominant capture groups.

RDF data profiling. Given the recent popularity of the
LOD initiative [8], there is a plethora of tools for analyz-
ing and profiling rdf data. Most of these systems focus on
either RDFS/OWL schema discovery [22, 26] or on gather-
ing statistics of Linked Data [6, 20]. ProLOD++ [2] com-
prises a wider variety of data profiling and mining tasks
for rdf data, such as schema discovery and key discovery.
Furthermore, past research considers association rules (dif-
ferent from our ars) on rdf data that are akin to cinds of
the form (α, β=v1) ⊆ (α, β=v2) for fix, user-specified α and
β [3]. This work focuses on using these rules for rdf data
management tasks, such as synonym detection, but not on
the discovery itself. While RDFind’s cinds can also sup-
port these data management tasks, we show that the much
broader class of cinds can also serve many further use cases.

10. CONCLUSION & FUTURE WORK
This paper introduced the novel concept of pertinent

cinds on rdf datasets and presented the RDFind system
for their discovery. In contrast to existing cind algorithms,
which find partial inds at first and then generate conditions
for each partial ind individually, RDFind discovers all cinds
in a single run employing efficient pruning techniques. We
showed experimentally that our algorithm outperforms the
state-of-the-art algorithm Cinderella by orders of magni-
tude and is robust enough to handle large rdf datasets that
were not possible to handle before.

For the future, it would be helpful to (inter-)actively aid
users in determining an appropriate support threshold to
find the relevant cinds for their applications. Also, dis-
cerning meaningful and spurious cinds, e.g., using the local
closed world assumption [14], is an interesting aspect to in-
vestigate. Finally, we have enabled new research to incor-
porate cinds in many rdf data management scenarios, e.g.,
data integration, ontology re-engineering, knowledge extrac-
tion, and query optimization.

Acknowledgements
This research was partially funded by the German Research
Society (DFG grant no. FOR 1306).

964

11. REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling

relational data: A survey. VLDB Journal,
24(4):557–581, 2015.

[2] Z. Abedjan, T. Grütze, A. Jentzsch, and F. Naumann.
Mining and profiling RDF data with ProLOD++. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 1198–1201, 2014. Demo.

[3] Z. Abedjan and F. Naumann. Improving RDF data
through association rule mining. Datenbank-Spektrum,
13(2):111–120, 2013.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. Proceedings of the International
Conference on Very Large Databases (VLDB), pages
487–499, 1994.

[5] M. Arias, J. Fernández, M. Mart́ınez-Prieto, and
P. de la Fuente. An Empirical Study of Real-World
SPARQL Queries. In International Workshop on
Usage Analysis and the Web of Data (USEWOD),
2011.

[6] S. Auer, J. Demter, M. Martin, and J. Lehmann.
LODStats – an extensible framework for
high-performance dataset analytics. In Proceedings of
the International Conference on Knowledge
Engineering and Knowledge Management (EKAW),
pages 353–362, 2012.

[7] J. Bauckmann, Z. Abedjan, U. Leser, H. Müller, and
F. Naumann. Discovering conditional inclusion
dependencies. In Proceedings of the International
Conference on Information and Knowledge
Management (CIKM), pages 2094–2098, 2012.

[8] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -
The Story So Far. International Journal on Semantic
Web and Information Systems (IJSWIS), 5(3):1–22,
2009.

[9] M. A. Bornea, J. Dolby, A. Kementsietsidis,
K. Srinivas, P. Dantressangle, O. Udrea, and
B. Bhattacharjee. Building an efficient RDF store over
a relational database. In Proceedings of the
International Conference on Management of Data
(SIGMOD), pages 121–132, 2013.

[10] L. Bravo, W. Fan, and S. Ma. Extending dependencies
with conditions. In Proceedings of the International
Conference on Very Large Databases (VLDB), pages
243–254, 2007.

[11] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, and D. F. Savo. The MASTRO
system for ontology-based data access. Semantic Web
Journal (SWJ), 2(1):43–53, 2011.

[12] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
efficient SQL-based RDF querying scheme. In
Proceedings of the International Conference on Very
Large Databases (VLDB), pages 1216–1227, 2005.

[13] F. De Marchi, S. Lopes, and J.-M. Petit. Efficient
algorithms for mining inclusion dependencies. In
Proceedings of the International Conference on
Extending Database Technology (EDBT), pages
464–476. 2002.

[14] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang.
Knowledge vault: A web-scale approach to

probabilistic knowledge fusion. In Proceedings of the
International Conference on Knowledge discovery and
data mining (SIGKDD), KDD ’14, pages 601–610,
New York, NY, USA, 2014. ACM.

[15] W. Fan. Dependencies revisited for improving data
quality. In Proceedings of the Symposium on Principles
of Database Systems (PODS), pages 159–170, 2008.

[16] L. Golab, F. Korn, and D. Srivastava. Efficient and
Effective Analysis of Data Quality using Pattern
Tableaux. IEEE Data Engineering Bulletin,
34(3):26–33, 2011.

[17] J. Gryz. Query folding with inclusion dependencies. In
Proceedings of the International Conference on Data
Engineering (ICDE), pages 126–133, 1998.

[18] P. Hayes and P. F. Patel-Schneider. RDF 1.1
Semantics. W3C Recommendation, February 2014.
https://www.w3.org/TR/rdf11-mt/.

[19] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. Cords: automatic discovery of
correlations and soft functional dependencies. In
Proceedings of the International Conference on
Management of Data (SIGMOD), pages 647–658.
ACM, 2004.

[20] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne,
and A. Hogan. Observing linked data dynamics. In
Proceedings of the Extended Semantic Web Conference
(ESWC), pages 213–227, 2013.

[21] Z. Kaoudi and I. Manolescu. RDF in the clouds: a
survey. VLDB Journal, 24(1):67–91, 2015.

[22] S. Khatchadourian and M. P. Consens. ExpLOD:
Summary-based exploration of interlinking and RDF
usage in the linked open data cloud. In Proceedings of
the Extended Semantic Web Conference (ESWC),
pages 272–287, 2010.

[23] L. Kolb and E. Rahm. Parallel Entity Resolution with
Dedoop. Datenbank Spektrum, 13(1):23–32, 2012.

[24] S. Kruse, T. Papenbrock, and F. Naumann. Scaling
out the discovery of inclusion dependencies. In
Proceedings of the Conference Datenbanksysteme in
Business, Technologie und Web Technik (BTW), pages
445–454, 2015.

[25] M. Levene and M. W. Vincent. Justification for
inclusion dependency normal form. IEEE Transactions
on Knowledge and Data Engineering (TKDE),
12(2):281–291, 2000.

[26] H. Li. Data Profiling for Semantic Web Data. In
Proceedings of the International Conference on Web
Information Systems and Mining (WISM), pages
472–479, 2012.

[27] LUBM. http://swat.cse.lehigh.edu/projects/lubm/.

[28] S. Ma, W. Fan, and L. Bravo. Extending inclusion
dependencies with conditions. Theoretical Computer
Science, 515:64–95, 2014.

[29] M. S. Marshall, R. Boyce, H. F. Deus, J. Zhao, E. L.
Willighagen, M. Samwald, E. Pichler, J. Hajagos,
E. Prud’hommeaux, and S. Stephens. Emerging
practices for mapping and linking life sciences data
using RDF - A case series. Web Semantics: Science,
Services and Agents on the World Wide Web, 2012.

965

[30] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB Journal,
19(1):91–113, 2010.

[31] T. Papenbrock, S. Kruse, J.-A. Quiané-Ruiz, and
F. Naumann. Divide & conquer-based inclusion
dependency discovery. Proceedings of the VLDB
Endowment, 8(7):774–785, 2015.

[32] N. Redaschi and UniProt Consortium. UniProt in
RDF: Tackling Data Integration and Distributed
Annotation with the Semantic Web. In Proceedings of
the International Biocuration Conference, 2009.

[33] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M.
Procopiuc, and D. Srivastava. On multi-column
foreign key discovery. Proceedings of the VLDB
Endowment, 3(1-2):805–814, 2010.

APPENDIX
A. PROOFS

Here, we provide the proofs of our Lemmata 1–3.

Lemma 1. Given a cind ψ := (α, φ) ⊆ (β, φ′) with sup-
port supp(ψ), the condition frequencies of φ and φ′ are equal
to or greater than supp(ψ).

Proof. From the support definition, we have that the in-
terpretation of the dependent capture (α, φ) contains supp(ψ)
values. The referenced capture (β, φ′), which is a superset,
therefore contains at least supp(ψ) values. As each value in
the interpretation of a capture must be found in at least one
triple and each triple yields exactly one value, the capture’s
embedded condition must satisfy at least as many triples as
this number of values. Thus, both φ and φ′ must have a
condition frequency ≥ supp(ψ).

Lemma 2. The support s of the association rule α=v →
β=v′ is equal to the support of its implied cind (γ, α=v) ⊆
(γ, α=v ∧ β=v′).

Proof. Let s be equal to the support of α=v → β=v′.
By definition, the frequencies of the conditions φ1 :=
α=v∧β=v′ and φ2 := α=v are also s. Because all triples
in an rdf dataset are distinct, the s triples selected by φ1

(and hence by φ2) must have pairwise distinct values in γ.
Thus, the interpretation of capture (γ, α=v) contains s ele-
ments.

Lemma 3. Let T be an rdf dataset and G its capture
groups. Then, a cind ψ := c ⊆ c′ is valid on T iff ∀G ∈
G : c ∈ G⇒ c′ ∈ G, with supp(ψ) = |{G ∈ G : c ∈ G}|.

Proof. By construction of the capture groups, for each
value v in the interpretation of a certain capture c, I(T, c),
c is contained in a dedicated capture group Gv - and vice
versa. In other words, values and capture groups are in a
one-to-one relationship. In consequence, (the interpretation
of) c′ contains all values of c if and only if c′ is member
of all capture groups in which c is a member. Moreover,
the number of capture group memberships of c is exactly the
number of values in c and, hence, the support of ψ.

B. USE CASES
Cinds can play an important role on versatile rdf data

management scenarios, as inds do on relational databases.
In the following, we demonstrate three of such use cases,

namely query minimization, knowledge discovery and on-
tology reverse engineering, using examples from real-world
datasets.

Query optimization. As rdf data spans a graph, queries
involve many joins. With joins being a very costly oper-
ation, this impacts the performance of rdf queries. As
stated in the introduction, cinds allow to remove unnec-
essary joins. For instance, knowing that (s, p=teaching) ⊆
(s, p=rdf:type∧o=professor) would allow us to remove the sec-
ond query triple in the following query: SELECT ?s ?o WHERE

{?s teaching ?o . ?s rdf:type professor}. As a result of such
a minimization, the query can be answered with a sim-
ple scan of the data, avoiding an expensive join operation.
Hence, queries can obtain significant performance gains from
query minimization. For example, Figure 14 demonstrates
the performance improvement when minimizing and running
LUBM query Q2 [27] in RDF-3X [30]. We observe that the
minimized version of query Q2 is three times faster than the
original one.

Table 1

LUBM10 original Q2 minimized Q2 Q2 - cold
caches

Q2-min -
cold caches

Q2 - hot
caches

Q2-min - hot
caches

Cold caches 171.2 144 0.170 0.129 0.031 0.011

Warm caches 31 10.8 0.153 0.154 0.031 0.011

0.185 0.138 0.034 0.011

0.166 0.144 0.029 0.010

original Q2 31 0.182 0.155 0.030 0.011

minimized Q2 10.8 0.1712 0.144 0.031 0.0108

R
un

tim
e

(m
se

c)

0

45

90

135

180

Cold caches Warm caches
10.8

144

31

171.2

original LUBM Q2 minimized LUBM Q2

R
un

tim
e

(m
se

c)
0

10

20

30

40

original Q2 minimized Q2

10.8

31

�1

Figure 14: Effect of query minimization using cinds.

Knowledge discovery. cinds might reveal un-
known facts about data instances that cannot be in-
ferred from the ontology itself. As already men-
tioned, the DBpedia cinds (s, p=writer ∧ o=Angus Young) ⊆
(s, p=writer ∧ o=Malcolm Young) (support: 26) and, vice
versa, (s, p=writer ∧ o=Malcolm Young) ⊆ (s, p=writer ∧
o=Angus Young) (support: 26), reveal that the AC/DC
members, Angus and Malcolm Young, have written all
their songs together. This reveals a fact that is not ex-
plicitly stated in DBpedia. A second example is the
cind (s, p=areaCode∧o=559) ⊆ (s, p=partOf∧o=California)
(support: 98) meaning that cities with code 559 are lo-
cated in California. Another example from the Drug-
Bank dataset is the cind (o, s=drug00030∧p=target) ⊆
(o, s=drug00047∧p=target) (support: 14), which reveals that
anything cured by drug00030 is also cured by drug00047.
There are many more facts that can be unveiled from cinds.

Ontology reverse engineering. rdf data is not always
accompanied by an ontology and even if it is, it does not
always follow the ontology constraints. Cinds can provide
general insights and reveal statements not reflected by the
ontology (if there is one). For instance, our ars can be used
to discover the rdf classes used in a dataset, e.g., the ar
o=lmdb:performance → p=rdf:type (support: 197,271) reveals
that the URI lmdb:performance is a class. Using cinds we
can also suggest to ontology engineers class and predicate
relationships such as: (i) class hierarchies, (ii) predicate
hierarchies, and (iii) the domain and range of predicates.
For instance, the two cinds (s, p=associatedBand) ⊆
(s, p=associatedMusicalArtist) (support: 33,296) and
(o, p=associatedBand) ⊆ (o, p=associatedMusicalArtist)
(support: 41,300) suggest that the associatedBand pred-

966

icate is a subproperty of associatedMusicalArtist. This
is because, according to the rdf semantics [18], if
the predicate associatedBand is a subproperty of as-

sociatedMusicalArtist, then the set of subjects and the
set of objects of the predicate associatedBand are a
subset of the set of subjects and set of objects of as-

sociatedMusicalArtist, respectively. Similarly, the cind
(s, p=rdf:type∧o=Leptodactylidae) ⊆ (s, p=rdf:type∧o=Frog)
(support: 1,010) reveals that the class Leptodactyli-

dae could be a subclass of class Frog. The cind
(o, p=movieEditor) ⊆ (s, p=rdf:type∧o=foaf:Person) (sup-
port: 3,210) reveals that the range of predicate movieEditor

can be the class foaf:Person. Another interesting cind,
such as (s, p=classificationFunction ∧ o=“hydrolase activity”) ⊆
(s, p=classificationFunction ∧ o=“catalytic activity”) (support:
812), states that the classification function hydrolase activ-
ity is a catalytic activity. This gives hints to the ontology
engineer that the activities should be classes and not string
literals, so that class hierarchies can be exploited.

Notice that ars as considered in [3] cannot express all
above cinds as they contain binary conditions and different
projection and selection attributes.

C. IMPLEMENTATION DETAILS
We have implemented RDFind on top of the distributed

data processing system Flink 0.9.0, which gives our pro-
totype the flexibility both to scale up via multi-threading
and scale out via distributed execution. Also, Flink’s execu-
tion engine provides robust out-of-core execution for joins
and aggregations. RDFind preserves the robustness by
adding only data structures with a small memory footprint,

e.g., Bloom filters. This allows RDFind to run in environ-
ments with low memory footprint, yet leveraging any avail-
able resources. Furthermore, RDFind accepts N-Triples9

files as inputs. For the comparison with Cinderella (Sec-
tion 8.2) these files resided in a local filesystem. For all other
experiments (Sections 8.3, 8.4, and 8.5), the files resided in
Hadoop Distributed File System, specifically in HDFS 2.7,
without any specific partitioning of the triples.

RDFind uses a single Flink job, i.e., a single data flow
plan, that implements all three components: FCDetector,
CGCreator, and CINDExtractor. The detailed plan can be
obtained from the implementation on our repeatability page
(see Section 8). Here, we only want to convey the general
strategy to implement RDFind on Flink. Each operation in
RDFind, e.g., Create unary condition counters in Figure 5,
is mostly implemented with a single Flink operator and a
user-defined function that implements the respective algo-
rithm logic. The communication between adjacent steps is
handled by Flink and designated by the type of the receiv-
ing operator. We implemented our communication channels
in Figures 5 and 6 as follows: (i) local communication us-
ing Flink’s Map and FlatMap operators, (ii) group by using a
combination of GroupBy, GroupCombine, and GroupReduce,
(iii) collect using GlobalReduce, (iv) joins (multiple group
by inputs) using a combination of GroupBy and CoGroup,
and (v) broadcast using the Broadcast command. The only
exception is the group by for load balancing of dominant cap-
ture groups. Here, we use a FlatMap operator to split them
into work units and distribute the work units with Flink’s
Repartition operator.

9https://www.w3.org/TR/n-triples/

967

