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Abstract: Inclusion dependencies are among the most important database dependen-
cies. In addition to their most prominent application – foreign key discovery – inclu-
sion dependencies are an important input to data integration, query optimization, and
schema redesign. With their discovery being a recurring data profiling task, previ-
ous research has proposed different algorithms to discover all inclusion dependencies
within a given dataset. However, none of the proposed algorithms is designed to scale
out, i.e., none can be distributed across multiple nodes in a computer cluster to in-
crease the performance. So on large datasets with many inclusion dependencies, these
algorithms can take days to complete, even on high-performance computers.

We introduce SINDY, an algorithm that efficiently discovers all unary inclusion
dependencies of a given relational dataset in a distributed fashion and that is not tied
to main memory requirements. We give a practical implementation of SINDY that
builds upon the map-reduce-style framework Stratosphere and conduct several experi-
ments showing that SINDY can process huge datasets by several factors faster than its
competitors while scaling with the number of cluster nodes.

1 Discovering Inclusion Dependencies

Given a relational dataset, an inclusion dependency (or short IND) is a constraint express-
ing that all values of some column (combination) A are also found in some other column
(combination) B. This is formally expressed as A ⊆ B and read as “A is included in B”.
In the context of this IND, A is called the dependent column and B the referenced column.

This rather simple type of dependency has a broad range of applications, the most promi-
nent one being foreign key discovery. In a dataset that consists of multiple relations,
foreign keys describe how their records relate to each other, thus, their knowledge is cru-
cial to any further work with this dataset. However, for various reasons this knowledge
can be lacking: datasets are obtained as dumps in some export format that does not cap-
ture the schema of the dataset but merely its content; not all databases are capable of
enforcing foreign key constraints; and even if so, capturing these constraints is sometimes
avoided for performance reasons as the foreign key enforcement involves some computa-
tional overhead. Besides foreign keys, INDs are valuable knowledge to many other appli-
cations [CTF88, Gry98, LV00], like schema redesign (e.g., detect duplicate information)
and data integration (e.g., joining tables from multiple data sources).

As opposed to the detection of other data dependencies, such as functional dependen-



cies [HKPT99, ASN14] or uniqueness constraints [SBHR06, HQRA+13], the IND detec-
tion problem suffers the general deficiency of not being able to prune candidates early on:
If one wants to know whether A ⊆ B holds for some columns A and B, one usually has
to read both columns completely: To confirm this dependency, each value of A must be
shown to be in B, and disproving it requires to show for a value of A that each value of B
is different to this value. To this end, previous IND discovery algorithms mostly comprise
a data reorganization phase to make columns better comparable, which takes the major
share of the runtime. Pruning techniques are only applied in the subsequent comparison
phase, where it does not pay off much.

Given this problem, a promising and new approach to push the envelope of efficient de-
tection is to scale out. We propose SINDY (scalable inclusion dependency discovery), an
algorithm that distributes the discovery of INDs among multiple nodes in a computing
cluster. In particular, the usually expensive, I/O-bound data reorganization benefits from
high I/O throughput rates that can be achieved thereby.

As SINDY reuses some ideas and concepts of previous algorithms, we first present related
work in Sec. 2. Then, in Sec. 3, we explain the distributed setting of our approach and
explain the discovery of INDs in distributed computing environments in detail in Sec. 4.
We conducted various experiments with SINDY on mostly real-world datasets, the results
of which we present in Sec. 5. Eventually, we conclude in Sec. 6.

2 Related Work

The discovery of all inclusion dependencies is an important and well studied profiling
task [CFP82]. A good part of the previous work deals with the more specific problem of
foreign key detection [RAB+09, ZHO+10]. However, since in general only a few INDs
correspond to actual foreign keys, these approaches do not aim at finding all the INDs of
a dataset and rather optimize for precision and recall than for runtime. In consequence,
they are inapplicable to other IND use cases, such as query optimization [Gry98], integrity
checking [CTF88], or schema matching [LV00] that require complete results.

Bell and Brockhausen devised a system that starts by collecting data statistics from which
it derives a set of IND candidates [BB95]. These IND candidates are then successively
checked against the dataset using SQL join-statements. This checking procedure also
uses intermediate results to prune yet unchecked candidates. Despite the pruning, the
proposed algorithm is much slower than more recent works in this area, mostly due to the
exhaustive use of SQL join-statements for the IND validations.

De Marchi et al. identified the validation of INDs as the bottleneck of the discovery pro-
cess and developed an algorithm that greatly optimizes it [DLP09]. The algorithm consists
of two phases: In the first phase, it transforms the database into an inverted index pointing
each value to the set of attributes containing the value. In the second phase, the algorithm
then validates IND candidates against the inverted index by intersecting their referenced
attribute groups with all attribute sets of the inverted index that also contain the dependent
attribute group. The set intersections are an efficient way to validate many IND candidates



simultaneously without querying the dataset for each check. Related works still outper-
form De Marchi’s algorithm, because it needs multiple passes over the inverted index and
waives any pruning [BLNT07]. In our case, where the computation is distributed among
computers, we can perform only minor pruning, but the heavy use of parallelization com-
pensates this disadvantage. The need to pre-calculate the whole inverted index also makes
the De Marchi algorithm inapplicable for datasets that do not fit into main memory. Our
distributed algorithm, which targets in particular such large datasets, solves this issue with
data distribution and dynamic memory handling.

Bauckmann et al. presented the SPIDER algorithm [BLN06], which builds upon an adapted
sort-merge-join. Like the join-algorithm, SPIDER executes in two phases: In the first
phase, it sorts the values of each attribute, removes duplicate values, and writes the re-
sulting sorted lists to disk. In the second phase, SPIDER then simultaneously iterates the
sorted lists and can thereby determine for each value the set of attributes that contain this
value. Like De Marchi’s algorithm, SPIDER intersects these attribute groups with all IND
candidates whose dependent attributes occur in the attribute group in order to exclude in-
valid IND candidates. The dynamic construction of attribute groups from the sorted value
lists allows SPIDER to omit all those attributes from the validation procedure that do not
appear in any valid IND candidate any more. Although this pruning makes SPIDER an
efficient IND discovery algorithm on single compute nodes, it prevents the algorithm from
being efficiently parallelized. SPIDER also requires an open file for each attribute; this
is expensive and limited by many operating systems. Our algorithm, in contrast, is not
subject to such restrictions.

3 Distributed Setting

Consider the example database depicted in Tab. 1 with discographic data over two rela-
tions. Its six columns yield 6 · (6 − 1) = 30 IND candidates, one for each column pair.1

A closer look reveals that this database comprises six INDs, e.g., album ⊆ track alb,
position ⊆ track pos , and album ⊆ title . To extract these six INDs from the set of IND
candidates, SINDY applies a special procedure that requires only a single pass over the
data rather than comparing each candidate separately. In particular, this procedure can be
scaled out over many computers as we detail in Sec. 4.

Hence, SINDY is designed to run on clusters. In such a distributed scenario, multiple
independent computers (workers) are available for the execution of the algorithm. These
workers have no shared state or control, which renders the design of distributed algorithms
particularly challenging. However, the workers are interconnected via a network and can
exchange messages and data. Furthermore, the input datasets are (redundantly) distributed
over these nodes, e.g., as CSV files in an HDFS2. Facing these circumstances, our main
goal is to distribute the incurring workload among the workers in a manner that utilizes
all their available resources like CPU cycles, main memory, and especially I/O bandwidth

1In practical scenarios, this number can be sometimes reduced by incorporating already known metadata such
as datatypes [DLP09] or minimum and maximum values.

2http://hadoop.apache.org/



album position title

Thriller 4 Thriller
Thriller 5 Beat it
Back in Black 1 Hells Bells
Back in Black 6 Back in Black

(a) Example table Tracks.

track alb track pos name

Thriller 4 Michael Jackson
Thriller 4 Vincent Price
Thriller 5 Michael Jackson
Thriller 5 Eddie van Halen
Back in Black 1 AC/DC
Back in Black 6 AC/DC

(b) Example table Artists.

Table 1: An example database with two relations.

simultaneously. Hereby, we want to achieve increased performance as more workers – and
thus more resources – are available for the computation.

Map/Reduce frameworks like Apache Hadoop that support this goal have gained remark-
able attention over the last years and are nowadays widely used. By means of a simple
programming model, they allow to create distributed applications, that can be executed in
a fault-tolerant and scalable manner (wrt. available main memory as well as the number of
workers). Following this trend, generalizations of the map-reduce paradigm have been re-
searched, especially by the Stratosphere research project. Amongst others, in Stratosphere
complex processing pipelines replace the static map-reduce structure [ABE+14].

We particularly took care that SINDY can be easily implemented within such frameworks,
to benefit from their aforementioned advantages. However, using such frameworks comes
with the drawback that they mostly offer high-level interfaces that only give control over
the data processing to a certain level of detail. This is similar to formulating a SQL query,
where one also cannot specify the algorithms to be used for joins, sortations etc. Neverthe-
less, we believe that this trade-off is worthwhile for IND discovery, because frameworks
like Stratosphere can leverage this abstract specification for optimization purposes and are
capable of intelligently picking suitable data processing strategies.

4 Distributing the discovery of INDs

The goal of IND discovery is to state for every irreflexive column pair (A, B) in the
given relational dataset if A ⊆ B holds. However, instead of checking each column
pair individually, SINDY efficiently checks all pairs in a single pass over the data. We
provide the foundation for our approach with an alternative formalization of INDs: Let
O = A ./ B ./ . . . be the full outer join of all columns in a database, then

A ⊆ B ⇔ ∀t ∈ O : (t[A] 6= ⊥ ⇒ t[B] 6= ⊥) (1)

Existing algorithms already use this formalization implicitly. For instance, SPIDER [BLN06]
performs an optimized sort-merge join to find INDs and MIND [DLP09] pivots the database
for this reason. Then, they iterate the join result once or more often to find the inclusion
dependencies as described above. SINDY consists of a join and a checking phase, too, but



performs both phases in a distributed manner. In the following, we explain these phases in
detail and afterwards describe how they are implemented in Stratosphere.

4.1 Join columns to attribute sets

In the first phase, the full outer join O = A ./ B ./ . . . of all columns in the database
is computed. Since each tuple in the join product is of the form tO,v = (vA, vB , . . . )
with vX ∈ {v,⊥} (i.e., each tuple can only contain null values and one distinct value v),
these tuples can be simply represented as r(tO,v) = (v, {X|tO,v 6= ⊥}). Additionally,
Equation 1 neither makes use of the actual values in O nor profits from tuples where the
exact same attributes are null; therefore, we can discard the value and opportunely remove
duplicates. As the result of this process, SINDY yields attribute sets that represent O.

Figure 1 exemplifies the dataflow of the outer join procedure on two workers with some
tuples of the example from Sec. 3. To find the attribute sets, each worker initially reads
its local share of the input data and splits each read record into cells, i.e., tuples with
a value and a singleton set containing the corresponding attribute. For instance, the
record (“Thriller”, 4, “Thriller”) from the example table tracks is split into the three
cells (“Thriller”, {album}) and (4, {position}), and (“Thriller”, {title}). SINDY now re-
orders all cells among the workers of the cluster: For n workers with IDs 0, . . . , n−1
we define the target worker for each cell from its value by means of a partition function
p : V → {0, 1, . . . , n − 1}. It is thereby guaranteed that cells with the same value are
placed on the same worker. Ideally, the partition function distributes the values evenly

among the workers. A suitable choice for p is p(v)
def
= hash(v) mod n.
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Figure 1: Dataflow for a distributed full outer join on all columns of a dataset. The attribute
names and some values are abbreviated for the purpose of lucidity.

Finally, each worker groups all its cells by their values and aggregates their attribute sets
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Figure 2: Dataflow for deriving INDs from the outer join product.

using the union operator. The value of each aggregated cell can be discarded, leaving only
the attribute sets. Note that the aggregation with the union operator is a commutative,
associative operation – it is therefore possible to pre-aggregate the cells on each worker
before they are sent to the target worker to reduce network load. However, experiments
showed that this almost doubles the runtime. The rationale behind this is that the aggre-
gation for cells requires disk-based execution, which dominates the runtime. Performing
an additional pre-aggregation potentially requires each cell to be written and read twice as
many times as when performing only the aggregation. Nevertheless, oftentimes columns
of a dataset contain only a few distinct values that are then frequently read. It makes good
sense to cache cells with values on the reading worker that occur repeatedly and send only
cells to the target worker that are not found in this cache yet.

4.2 Derive INDs from the join product

The join product from the previous phase is present as a distributed set of attribute sets.
To identify INDs from this product we reformulate the criterion from Equation 1 as it is
similarly applied in [DLP09] and [BLN06]:

A ⊆ B ⇔ ∀ attribute set S : (A ∈ S ⇒ B ∈ S) ⇔ B ∈
⋂

S : A∈S

S (2)

SINDY performs this check by creating inclusion lists for each attribute set as depicted in
Fig. 2 for our example. Let S be an attribute set with n attributes, then n inclusion lists of
the form (A,S \A) with A ∈ S are created. These inclusion lists are globally grouped by
the first attribute and the attribute sets are intersected. Similar to the union aggregation in
the previous phase, the intersection aggregation is associative and commutative and thus
allows pre-aggregation as well; the same mechanisms can be reused for this aggregation.
Furthermore, the number of attributes in a dataset is usually much lower than the number of
values. Therefore, cache-based pre-aggregation seems to be especially suitable here; and
once an inclusion list associates an attribute with the empty set, any further aggregation



with an inclusion list for the same attribute is moot and can be omitted. Nevertheless, this
approach also allows to handle huge schemata, as we can perform the aggregation of the
inclusion lists with disk-based execution if necessary. Finally, the aggregated inclusion
lists can be disassembled into INDs: For every inclusion list (A,S), each A ⊆ B (B ∈ S)
is a valid IND, because of Equation 2. Hereby, every inclusion list yields a set of unique
INDs, as the attribute A is distinct in every inclusion list.

Data 
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Multi-File 

FlatMap
Split 

Records

Reduce 
by value

union attributes

FlatMap
Create 

inclusion lists

Reduce 
by first attribute

intersect attributes

Data 
Sink

Figure 3: Stratosphere plan for unary IND
detection.

The logic of SINDY can be directly ex-
pressed in terms of map and reduce opera-
tors and is therefore well-suited for the im-
plementation on frameworks like Strato-
sphere. In Fig. 3, we show the execution
plan for the unary IND detection. Note
that this exact plan can also be imple-
mented with Spark – and in addition, it can
be split into two Map/Reduce jobs to be
deployed on Hadoop.

5 Evaluation

To evaluate SINDY, we performed several experiments with different datasets3. Most im-
portantly, we tested its scale-out behavior and compared the runtimes with the state-of-
the-art algorithm SPIDER. For our experiments, we used a cluster with a dedicated master
node (2.67 GHz Intel Xeon processor and 8 GiB of RAM) and 10 workers with 2.6 GHz
Intel Core 2 Duo processor and 8 GiB of RAM of which we dedicated 6 GiB for Strato-
sphere. All computers were interconnected with a switch router using Gigabit ethernet.
We used Hadoop Filesystem 2.2 and Flink 0.6.24, which is the most recent version of the
Stratosphere software. SPIDER was executed on a machine with two 8-core 2 GHz Intel
Xeon processors, 128 GiB of RAM, and a RAID-1 storage.

5.1 Scale-out and comparison

We measured the scale-out behavior of SINDY with small (starting from 16 KiB, COMA)
and large datasets (up to 5.8 GiB, MB-core) and present the results in Fig. 4a. We used one
to ten workers for the execution and finally added intra-worker parallelization of factor 2
(last measurement). For small datasets that have a short runtime of only a few seconds,
the scale-out is not appropriate and can even slow down the execution. For large datasets,
though, scaling-out pays off. Adding a second worker can already halve the execution
time. For all ten workers, the scale-out is not completely linear, though. We suspect that
this is the typical load balancing issue: oftentimes we could see that some workers took

3http://hpi.de/naumann/projects/repeatability.html
4https://flink.incubator.apache.org/



longer than others to complete their work share. The runtime is determined by the slowest
worker. The more workers are involved, the higher is the chance that one of these workers
has to cope with an higher-than-average workload.

(a) Scale-out of SINDY on different datasets.
(b) Performance comparison of SINDY and SPI-
DER.

Figure 4: Scale-out behavior and comparison with state-of-the-art.

Next, we compared the runtimes of SINDY with full scale-out to the runtimes of SPIDER
(Fig. 4b). As seen before, SINDY does not adapt well to small datasets and is outper-
formed by SPIDER there. However, for the larger datasets, starting with WIKIPEDIA, the
advantages of the scale-out take effect. For our setup with ten workers, the full scale-out
potential is apparently reached at around 900 MB. On the largest dataset, SINDY’s runtime
of 17 minutes in fact saves 85 minutes in comparison to SPIDER. This speedup can be pre-
sumably further improved by adding new workers to the cluster, while for the I/O-bound
SPIDER the hardware improvements are limited and costly; one could switch to SSDs or
extend the RAM to fit datasets in main memory.

5.2 Row and column scalability

Furthermore, we investigated how SINDY behaves as its input data grows. Relational data
can grow in two dimensions, namely the number of columns and the number of rows. To
obtain meaningful measurements, we based our experiments on the two larger real-world
datasets PDB (44.9 GiB) and MB (26.8 GiB).

Figure 5a shows the column-scale behavior of SINDY. To vary the number of columns
for both datasets, the original input files remained unchanged, but for each test execution,
we used only the first k columns of each file. The idea behind this is to let the amount of
processed data grow approximately proportionally with the number of columns on the face
of an uneven distribution of the data volume among the input files. For the MB dataset, the
processing time increases irregularly with the number of processed columns. In particular,
there is a large hop at the area of around 750 columns. We explain this jump, because



(a) Behavior of SINDY on increasing numbers of
columns.

(b) Behavior of SINDY on increasing numbers of
rows.

Figure 5: Behavior of SINDY on increasing numbers of columns and rows.

from there on a large column with JSON data is included that makes up an estimated 50 %
of the dataset’s overall data volume. For the PDB dataset, the runtime grows seemingly
quadratically with the number of columns but settles after around 1,600 columns. The
former observation can be explained with the quadratic growth of IND candidates and the
latter with the fact that at this point 31 columns per table are used – exactly the number of
columns of a large table that contains over 90 % of PDB’s data volume.

For the experiments with row scalability, we also read the complete source files and sam-
pled the input rows for SINDY of each file on the fly. Apparently, the algorithm scales
linearly with the input data, presumably because using x% of the rows also yields approx-
imately x% of the data volume. In summary, these observations suggest that on typical
datasets, the data volume is the main runtime driver for SINDY.

6 Conclusion and Future Work

We presented SINDY, an efficient IND discovery algorithm that can be scaled out on clus-
ters to process large datasets within reasonable time. This scalability is achieved by parti-
tioning the dataset into cells and merging them in a distributed fashion. The result of this
merge is then split up into IND candidates that are again merged in a distributed way. We
have shown that this algorithm scales well with the volume of a dataset and allows for al-
most linear scale-out for large datasets. We did not encounter a dataset that could break the
algorithm due to its size, even for datasets with almost 2,000 columns. Moreover, SINDY
can be quickly adapted to many distributed environments as its logic can be seamlessly
implemented on map-reduce-style frameworks like Stratosphere.

Recently, we have extended SINDY to find not only unary but also n-ary INDs using an
apriori-based approach like MIND [DLP09]. First experiments have shown that this - even
in combination with scale out - is only a limited remedy for the exponential growth of
the IND search space. Therefore, our future effort will deal with the question on how to
efficiently discover n-ary INDs in scale-out scenarios.
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[HKPT99] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An effi-
cient algorithm for discovering functional and approximate dependencies. The Com-
puter Journal, 42(2):100–111, 1999.

[HQRA+13] Arvid Heise, Jorge-Arnulfo Quiane-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and Fe-
lix Naumann. Scalable Discovery of Unique Column Combinations. In Proceedings
of the VLDB Endowment, 2013.

[LV00] Mark Levene and Millist W. Vincent. Justification for inclusion dependency normal
form. IEEE Transactions on Knowledge and Data Engineering, 12(2):281–291, 2000.

[RAB+09] Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, and Ulf Leser.
A Machine Learning Approach to Foreign Key Discovery. In Proceedings of the ACM
Workshop on the Web and Databases (WebDB), 2009.

[SBHR06] Yannis Sismanis, Paul Brown, Peter J. Haas, and Berthold Reinwald. Gordian: effi-
cient and scalable discovery of composite keys. In Proceedings of the International
Conference on Very Large Databases (VLDB), 2006.

[ZHO+10] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc, and
Divesh Srivastava. On Multi-column Foreign Key Discovery. Proceedings of the
VLDB Endowment, 3:805–814, 2010.


