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Abstract—Data analytics are moving beyond the limits of a
single data processing platform. A cross-platform query optimizer
is necessary to enable applications to run their tasks over multiple
platforms efficiently and in a platform-agnostic manner. For
the optimizer to be effective, it must consider data movement
costs across different data processing platforms. In this paper,
we present the graph-based data movement strategy used by
RHEEM, our open-source cross-platform system. In particular, we
(i) model the data movement problem as a new graph problem,
which we prove to be NP-hard, and (ii) propose a novel graph
exploration algorithm, which allows RHEEM to discover multiple
hidden opportunities for cross-platform data processing.

I. INTRODUCTION

The research and industry communities have recently iden-
tified the need for cross-platform data processing: more and
more applications require running their queries/tasks1 on more
than one data processing platform [3], [11], [12], [16]. Several
systems have thus appeared with the goal of supporting cross-
platform data processing [5], [7]–[9], [15]. The key component
of all these systematic solutions is a cross-platform query
optimizer, which finds the set of platforms that minimizes the
execution cost of a given task. Performing a given task on mul-
tiple data processing platforms typically requires moving and
transforming data across platforms. However, the above cross-
platform solutions either do not consider data movement costs
at all or do not consider different movement alternatives. As
a result, they may hinder many cross-platform opportunities.

Considering data movement costs renders cross-platform
query optimization quite challenging for many reasons:
(i) there might be several alternative data movement strategies.
A simple file-based strategy, such as in [9] and [17], may miss
many opportunities for cross-platform data processing; (ii) the
cost of each data movement strategy must be assessed so that
the optimizer can explore the trade-off between selecting opti-
mal execution operators and minimizing data movement costs;
(iii) data movement might involve several intermediate steps
to connect two operators of different processing platforms, as
also stated in [15]; and (iv) data movement and transformation
costs are platform-dependent.

In this paper, we delve into the data movement mechanism
of RHEEM’s optimizer [2], [4], an open source cross-platform
system [1]. Our data movement mechanism is the first to
tackle all of the above challenges. The idea is to model data
movement as a graph problem and to devise an efficient graph

1Henceforth, we use the term task without loss of generality.

algorithm to solve it. After giving an overview of our optimizer
(Section II), we present our major contributions:
(1) We represent the space of possible communication steps
as a graph and model cross-platform data movement as a new
graph problem, which we prove to be NP-hard (Section III).
(2) We propose a novel graph exploration algorithm to effi-
ciently solve this new graph problem (Section IV).
(3) We show that our data movement solution allows us to
discover multiple hidden opportunities for cross-platform data
processing, which were not possible before (Section V).

II. CROSS-PLATFORM QUERY OPTIMIZATION

Let us first outline RHEEM [4] and its cost-based optimizer
so as to establish our data movement mechanism’s context.

RHEEM background. RHEEM decouples applications from
data processing platforms with the goal of enabling cross-
platform data processing. It receives as input a procedural
RHEEM plan, its optimizer produces an execution plan, which
is then given to the executor to run it. A RHEEM plan is
essentially a directed data flow graph. The vertices are RHEEM
operators and the edges represent the data flow among the
operators, such as in Spark or Flink. RHEEM operators are
platform-agnostic and define a particular kind of data transfor-
mation over their input, e. g., a Reduce operator aggregates all
input data into a single output. As of now, RHEEM supports
neither nested loops nor control-flow operators. A complete
list of the currently supported operators can be found in
RHEEM’s documentation [1]. Notice that only Loop operators
accept feedback edges, thus enabling iterative data flows. A
RHEEM plan without any loop operator is essentially a DAG.
On the other side, an execution plan is also a data flow
graph, but it differs from a RHEEM plan as (i) its vertices
are platform-specific execution operators and (ii) it might
comprise additional execution operators for data movement
among platforms (e. g., a Broadcast operator). Conceptually,
given a RHEEM plan, an execution plan indicates on which
data processing platforms RHEEM must enact each RHEEM
operator so that the execution cost is minimized. We refer the
reader interested in further details about RHEEM to [1], [4].

Cross-platform optimizer. It is the cross-platform optimizer
that allows RHEEM to produce an (platform-specific) execution
plan for a given RHEEM plan. The main idea behind our
optimizer is to split a single task into multiple atomic operators
and to find the most suitable platform for each operator (or
set of operators) so that the total cost is minimized.
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Fig. 1: Cross-platform optimization pipeline.

Figure 1 illustrates the workflow of our optimizer.
Step (1): Given a RHEEM plan, the optimizer first inflates
the input plan by applying a set of flexible m-to-n map-
pings. These mappings list how each of the platform-agnostic
RHEEM operators can be implemented on the different plat-
forms with execution operators. The result is an inflated
RHEEM plan that defines all possible combinations of exe-
cutions operators of the original RHEEM plan. That is, an
inflated RHEEM plan is a highly compacted representation of
all execution plans. Step (2): The optimizer then annotates
the resulting inflated RHEEM plan with estimates for both the
costs of each execution operator and data cardinalities. The
total cost estimate for an execution operator o depends on the
cost of the resources it consumes (CPU, memory, disk, and
network), defined as: costo = tCPU

o + tmem
o + tdisk

o + tnet
o . For

instance, the cost function to estimate the CPU cycles required
by the SparkFilter operator is CPUSF := cin(Filter)× α+ β,
where parameter cin denotes the input cardinality of operator
o, α denotes the number of required CPU cycles for each
input tuple, and parameter β describes some fixed overhead
for the operator start-up. RHEEM provides a cost learner to
calibrate all cost parameters, such as α and β. Step (3): Next,
the optimizer takes a graph-based approach to determine how
to move data efficiently between data processing platforms
and annotates the inflated RHEEM plan with the corresponding
costs. In this paper, we focus on this aspect. Step (4): The
optimizer uses all these annotations to determine the optimal
execution plan via an enumeration algorithm.

III. DATA MOVEMENT AS A GRAPH PROBLEM

In contrast to federated databases, a cross-platform setting
typically has completely different data formats. Hence, dif-
ferent data transformations might take place to move data,
which makes planning and assessing communication in cross-
platform settings a unique problem. First, there might exist
several alternatives to move data, e. g., from RDD to a file or
to a Java object. Second, for a cross-platform optimizer to be
effective, it must assess the cost of each strategy, including the
strategy of not changing the platform. Third, data movement
might involve several intermediate steps. We thus model the
problem of finding the most efficient communication path
among execution operators as a new graph problem.

Channel conversion graph. We represent the space of
possible communication steps as a channel conversion graph
(CCG for short). The vertices in a CCG are data structures
(communication channels), and the edges are data transfer and
transformations (conversion operators) from one data structure
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Fig. 2: A channel conversion graph along with root and
target operators from different platforms.

to another. In detail, data flows among operators via channels,
which can be, for example, an internal data structure or a
stream within a platform, or simply an external file. The
yellow boxes in Figure 2 depict some standard channels in Java
Streams, Postgres, Spark, and Flink. Note that channels can be
reusable, i. e., they can be consumed multiple times, or non-
reusable, i. e., they can be consumed once. For instance, a file
is reusable while a stream is usually not. Conversion operators
handle any necessary data transformation to move data from
between two channels, e. g., convert an SQL query result
to a data stream. They also deal with semantic integration
issues, such as transforming data from one format to another
(e. g., from CSV to TSV). Conversion operators are in fact
regular execution operators. The benefit of using conversion
operators for both data transfer and transformation is twofold:
(i) there is less overhead in the execution pipeline; and (ii) as
conversion operators are in fact regular execution operators,
the conversion costs do not require a new cost model.

Definition 1 (Channel conversion graph): A CCG is a
directed graph G := (C,E, λ), where the set of vertices C is
the channels, E comprises the directed edges indicating that
the source channel can be converted to the target channel, and
λ : E → O is a labeling function that attaches the appropriate
conversion operator o ∈ O to each edge e ∈ E.

CCG yields another major benefit: it allows us to model
the problem of finding the most efficient communication path
among execution operators as a graph problem. This approach
is very flexible: If there is any way to connect execution
operators via a sequence of conversion operators, we will
discover it. Let us further motivate the utility of CCGs for
data movement with a concrete example.

Example 1: Figure 2 shows an excerpt of RHEEM’s de-
fault CCG that is used to determine how to move data
from a JavaMap execution operator (root) to a FlinkReduce
(target1) and a SparkMap (target2) execution operator. While
the root produces a Java Stream as output channel, target1
and target2 accept only a Flink DataSet and a (cached)
RDD, respectively, as input channels. Multiple conversions are
needed to serve the two target operators.
Minimum conversion tree. We model such scenarios of
finding the most efficient communication path from a root pro-
ducer to multiple target consumers as the minimum conversion
tree (MCT) problem.



MINIMUM CONVERSION TREE PROBLEM. Given a root chan-
nel cr, n target channel sets Cti (0 < i ≤ n), and the CCG
G = (C,E, λ), find a subgraph G′ such that:
(1) G′ is a directed tree with root cr and contains at least
one channel cti for each target channel set Cti , for cti ∈ Cti ;
(2) any non-reusable channel in G′, must have a single
successor, i. e., a conversion or a consumer operator;
(3) there is no other subgraph G′′ that satisfies the above two
conditions and has a smaller cost (i. e., the sum of costs of all
its edges) than G′. The cost of an edge e is the estimated cost
for the associated conversion operator λ(e).

Example 2: In Figure 2, the root channel is cr := Stream
and the target channel sets are Ct1 := {DataSet} (for target1)
and Ct2 := {RDD,CachedRDD} (for target2). The minimum
conversion tree for this scenario could be: The Stream root
channel is converted to a Java Collection, which is converted
twice, namely to a Flink DataSet (thereby satisfying Ct1 ) and
to an RDD (thereby satisfying Ct2 ). Note that this is possible
only because Collection is reusable.

Theorem 1: The MCT problem is NP-hard.
Due to space limitations, all proofs can be found in [13].

Related work. The MCT problem seems related to the min-
imum spanning tree and single-source multiple-destinations
shortest paths, but it differs from them for two main reasons.
First, MCTs have a fixed root and need not span the whole
CCG. Second, MCT seeks to minimize the costs of the
conversion tree as a whole rather than its individual paths
from the root to the target channels. It is the Group Steiner
Tree (GST) problem [14] that is the closest to our MCT
problem. However, this problem is typically considered on
undirected graphs and without the notion of non-reusable
channels. Furthermore, GST solvers are often designed only
for specific types of graphs, such as planar graphs or trees.
Moreover, [10] focuses on providing new channels to move
data more efficiently, rather than finding the best path for data
movement. Thus, it is complementary to our work.

IV. DATA MOVEMENT ALGORITHM

We introduce MCTfinder, our algorithm to solve the MCT
problem. Given a CCG G, a root channel cr, and n target
channel sets Ct := {Ct1 , ..., Ctn}, MCTfinder proceeds in
two steps: (i) it simplifies the problem by modifying the input
parameters (kernelization). (ii) it exhaustively explores the
graph (channel conversion graph exploration) to find the MCT.
Kernelization. In the frequent case that several target con-
sumers, e. g., targeti and targetj , accept the same channels,
Cti = Ctj , with at most one non-reusable channel and
at least one reusable channel, we can merge them into a
single set by discarding the non-reusable channel: Cti,j =
{c | c ∈ Cti ∧ c is reusable}. The rationale is that it is most
cost-efficient to find a single reusable channel that serves as
many consumers as possible. Doing so decreases the number
of target channel sets and thus, reduces the maximum degree
(fanout) of the MCT, which is a major complexity driver of
the MCT problem. In fact, in the case of only a single target

channel set, the MCT problem becomes a single-source single-
destination shortest path problem. We can thus solve it with,
e. g., Dijkstra’s algorithm.

Example 3 (Merging target channel sets): In Figure 2,
target2 accepts the channels Ct2 = {RDD,CachedRDD}.
Assuming that target1 is a SparkReduce operator instead,
which accepts the same set of channels as target2, we could
then merge their input channels into Ct1,2 = {CachedRDD}.

Lemma 1: A solution for a kernelized MCT problem also
solves the original MCT problem.
Channel conversion graph exploration. After kernelization,
MCTfinder proceeds to explore the CCG, thereby building
the MCT from “its leaves to the root”: Intuitively, it searches
– starting from the root channel cr – across the CCG for
communication channels that satisfy the target channel sets
Ct; It then backtracks the search paths, thereby incrementally
building up the MCT. Overall, MCTfinder’s graph traversal
is composed of three main parts: (i) it visits a new channel,
checks if it belongs to any target channel set, and potentially
creates a partial singleton conversion tree; (ii) then it traverses
forward, thereby creating partial MCTs from the currently
visited channel to any subset of target channel sets; and (iii) it
merges the partial MCTs from the steps (i) and (ii) and returns
the merged MCTs. The algorithm terminates when the partial
MCTs form the final MCT.

Theorem 2: Given a CCG, MCTfinder finds the minimum
conversion tree if it exists.

Complexity and correctness. MCTfinder solves the MCT
problem exactly, which comes at the cost of exponential
complexity: There are (n−1)! ways to traverse a full CCG of
n channels and we might need to maintain 2k partial trees in
the intermediate steps, where k is the number of target channel
sets. However, in practical situations, MCTfinder finishes in
the order of milliseconds, as the CCG comprises only tens of
channels and is very sparse. Also, the number of target channel
sets k is mostly only 1 or 2 and can often be diminished
by kernelization. More importantly, MCTfinder avoids perfor-
mance penalties from inferior data movement plans. Still, one
may consider making it approximate, inspired from existing
algorithms for the Group Steiner Tree problem [6].

V. VALIDATION

Our data movement solution is an integral part of the
optimizer of RHEEM, our open-source cross-platform sys-
tem [1]. For the sake of simplicity, we henceforth refer to the
optimizer simply as RHEEM. We demonstrate how our solution
enables RHEEM to: (i) spot hidden opportunities for cross-
platform processing that improve performance, (ii) outperform
the common practice of moving data through files, and (iii) still
scale graceful for large RHEEM plans.

A. Setup

We ran all our experiments on a cluster of 10 machines:
each with one 2 GHz Quad Core Xeon processor, 32 GB main
memory, 500 GB SATA hard disks, a 1 Gigabit network card
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Fig. 3: Experimental results.

running the 64-bit platform Linux Ubuntu 14.04.05. We con-
sidered three tasks from three different domains: Aggregate
(TPC-H Q1 - OLAP), SGD (stochastic gradient descent - ML),
and CrocoPR (cross-community pagerank - Graph Mining).
These tasks run over three different datasets: Aggregate
on TPC-H data, SGD on HIGSS (7.4GB), and CrocoPR on
a subset of DBpedia (2GB). We considered the following
platforms: Java’s Streams (JavaStreams), Spark 2.4.0 (Spark),
Flink 1.7.1 (Flink), Giraph 1.2.0 (Giraph), a self-written Java
graph library (JGraph), and HDFS 2.6.5 to store all datasets.
All the numbers we report are the average of three runs.

B. Results

Figure 3(a) shows the effectiveness of our graph-based data
movement solution when compared to the common practice of
moving data via files. We observe that for SGD and CrocoPR,
it is always more than one order of magnitude faster, in fact for
CrocoPR, we decided to kill the process after 700 seconds.
We saw similar results for Aggregate, but we omit them
due to space limitations. This clearly shows the importance of
our data movement approach.

Figure 3(b) illustrates the optimization time of our optimizer
when increasing the number of RHEEM operators. For this,
we generated synthetic RHEEM plans with two topologies we
found to be at the core of many data analytic tasks: pipeline
and tree. The results show the high efficiency of our optimizer
for both topologies: it optimized plans with 100 operators in
less than 1 sec and with 1,000 in only 6 secs, even though
finding a plan with 1,000 operators is very unlikely.

Now let us show how our data movement mechanism helps
RHEEM to efficiently combine multiple platforms. Figure 3(c)
reports these results. Overall, we find that RHEEM outperforms
all single-platform executions: It is up to 20× faster than
Spark, up to 15× faster than Flink, up to 13× faster than
JavaStreams, up to 2× faster than Giraph. There are several
reasons for having this large improvement. For Aggregate,
RHEEM selects Flink in combination with Spark, which allows
it to run this task slightly faster than the fastest baseline
platform. It achieves this improvement by (i) exploiting the
fast stream data processing mechanism native in Flink for
the projection and selection operations, and (ii) avoiding the
slow data reduce mechanism of Flink by using Spark for the
ReduceBy operation. For SGD, RHEEM handles the model
parameters, which is typically tiny (∼ 0.1KB for our input
dataset), with JavaStreams while it processed the data points

(typically a large dataset) with Spark. For CrocoPR, surpris-
ingly our optimizer uses a combination of Flink, JGraph, and
JavaStreams, even if Giraph is the fastest baseline platform
(for 10 iterations). This happens because after the preparation
phase of this task, the input dataset for the PageRank operation
on JGraph is ∼ 544 MB only. These results clearly show
that RHEEM can spot hidden cross-platform opportunities that
improve performance significantly.

VI. CONCLUSION

We presented a cross-platform data movement mechanism
that finds the best way to transfer data among multiple data
processing platforms. In particular, we modeled the problem as
a new graph problem and proposed an efficient and scalable
algorithm to solve it. Our evaluation showed that our data
movement mechanism enabled RHEEM’s optimizer to discover
cross-platform opportunities, which were not possible before.
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