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ABSTRACT
Databases are one of the great success stories in IT. However,
they have been continuously increasing in complexity, hampering
operation, maintenance, and upgrades. To face this complexity,
sophisticated methods for schema summarization, data cleaning,
information integration, and many more have been devised that
usually rely on data pro�les, such as data statistics, signatures,
and integrity constraints. Such data pro�les are o�en extracted by
automatic algorithms, which entails various problems: �e pro�les
can be un�ltered and huge in volume; di�erent pro�le types require
di�erent complex data structures; and the various pro�le types are
not integrated with each other.

We introduce Metacrate, a system to store, organize, and analyze
data pro�les of relational databases, thereby following the proven
design of databases. In particular, we (i) propose a logical and a
physical data model to store all kinds of data pro�les in a scalable
fashion; (ii) describe an analytics layer to query, integrate, and ana-
lyze the pro�les e�ciently; and (iii) implement on top a library of
established algorithms to serve use cases, such as schema discovery,
database refactoring, and data cleaning.

1 THE CASE FOR DATA PROFILES
Before describing our system Metacrate, let us �rst make a case
for the relevance of structural metadata for data management. �e
importance and capabilities of data in business and science have
been recognized long ago. Ever since, huge amounts of data of all
types and in all domains are collected. In consequence, the data
and their hosting information systems have become very complex.
Complex relational schemata easily comprise thousands of tables
with tens of thousands of columns, rendering typical tasks, such as
data cleaning or data mining extremely tedious. In fact, it is already
a challenge to identify the data relevant to a certain problem in the
�rst place [8]. It is hence necessary to automate or at least support
such activities.

And indeed, such data-driven methods have been proposed in
the �elds of database exploration [3, 7], data cleansing [4], data
anamnesis [9], schema summarization [13, 14], data discovery [8,
15], and data integration [2]. To scale to the ever-growing amounts
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of data, these methods operate on structural metadata rather than
examining the actual data. For instance, TF-IDF vectors allow to
detect content-wise similar schema elements [8] and schemata can
be summarized using integrity constraints and column statistics [13].
We refer to such structural metadata as data pro�les. However, all
these algorithms need to manage these data pro�les, which entails
a host of challenges.

Volume. Data pro�les are not necessarily small in size. �e
number of integrity constraints usually grows quadratically or even
exponentially with the schema size. While in a single schema we
might �nd hundreds of thousands of them [9], in a data lake it will
be orders of magnitude more. In addition, one might might need
to deal with a lot of di�erent data pro�le types on huge or across
many schemata. All this pertains to the size of the data pro�les.

Variety. To model data pro�les, a wide range of data structures
is needed. For instance, a histogram of column values is modeled
quite di�erently from a functional dependency (FD). Furthermore,
there is an abundant amount of versions of each type of data pro�le.
As an example, a recent survey reported 35 major variations of
FDs [5]. We want to be able to model, store, and analyze each
type. Trying to tackle this with classical data models, such as the
relational one, would yield a very complex schema – and highly
complex corresponding SQL queries.

Integration. As a third point, we emphasize the importance
of integrating di�erent data pro�les. A data pro�le usually char-
acterizes the underlying data w.r.t. one speci�c property, such as
some statistic or relationship. In consequence, above mentioned
data management algorithms o�en need to integrate di�erent types
of data pro�les. Each data pro�le describes one or more schema
elements, which in turn are interconnected in a schema graph. �is
naturally enables integration, but technically requires a common
model for schema elements and the schema graph as well as a query
interface, which is capable of expressing meaningful relationships
on this common model.

Facing the challenges above, we introduce the open-source sys-
tem Metacrate1 (i) to answer the research question of how to build
a scalable and �exible repository for data pro�les; and (ii) to pro-
vide researchers with a tool to investigate novel data management
methods based on (sophisticated combinations of) data pro�les.
�at is, we seek to pave the way for modern data pro�ling methods
and their complex, abundant data pro�les to actual applications.

Generally speaking, Metacrate is a hub between data pro�ling
algorithms (which produce the data pro�les) and data management
algorithms (which consume them). In addition to that, (i) we enable
immediate storing of any kind of data pro�le; (ii) we expose the data
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pro�les in a well-organized, integrated fashion; (iii) we provide a
query layer to explore and exploit the contents of Metacrate; (iv) and
we provide a library of basic data management algorithms to quickly
build work�ows on top of Metacrate and also as a proof of concept
for our design. In the following, we summarize the architecture of
Metacrate (Section 2), exemplify its capabilities (Section 3), brie�y
cover related work (Section 4) and conclude (Section 5).

2 DESIGNING A METADATABASE
Before delving into Metacrate’s design, let us brie�y outline the
environment it is supposed to operate in. As depicted in Figure 1,
there are data pro�ling tools that produce data pro�les and there
are data management tools that need access to the data pro�les to
accomplish their various tasks. Metacrate acts as a hub between
those two parties, thereby taking care of storing and organizing
the pro�les (logical metadatabase) and o�ering them via a query
interface (analytics engine). With these main goals in mind, we
describe the di�erent components of Metacrate in the following.
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Figure 1: Overview of Metacrate.

2.1 Logical metadatabase
Metacrate provides a logical data model that is abstract enough to
deal with all kinds of data pro�les and at the same time is speci�c
enough to be queried in a meaningful way. �is data model can be
separated into two parts, the schema elements and pro�le collections.

Schema elements. Metacrate models the elements of relational
schemata, i.e., schemata, tables, and columns, in a straight-forward
manner. All schema elements have a name, a description, and a
location (e.g., a URI). Furthermore, they are hierarchically organized.
�at is, every column resides in a table, which in turn resides in
a schema. As a peculiarity, Metacrate automatically assigns each
schema element a composite ID that allows to immediately tell what
kind of schema element it represents (schema, table, or column) and
what the IDs of the parent and child schema elements are. Not only
are the composite IDs a very compact representation of schema
elements, but they also allow for basic navigation among schema
elements without having to consult some physical data structure.

Pro�le collection. A pro�le collection is the main abstraction
in Metacrate to describe data pro�les. Intuitively, it is a set of data
pro�les of any speci�c type, such as histograms or functional de-
pendencies. �e only requirement is that the data pro�les express
their references to schema elements with the above described com-
posite IDs. �is ensures that the data pro�les can be integrated with
each other. In addition to the data pro�les, each pro�le collection
has a scope that describes for which schema elements it provides
data pro�les. �is has two important implications: At �rst, it is
possible to retrieve pro�le collections intentionally by their type
of data pro�le and the schema element that pro�le is needed for
(e.g., “Retrieve the key candidates for table T .”). Second, it is possible
to model the absence of integrity constraints (e.g., “Does this pro�le
collection contain a key candidate for column T [A]?”). For advanced
use cases, Metacrate can further keep track of custom metadata
for each pro�le collection, such as se�ings of the algorithms that
created the data pro�les (e.g., sampling threshold or number of
histogram buckets).

For external tools to interact with the above described logical
model, Metacrate de�nes a management API with basic operations,
in particular creating, looking up, and deleting schema elements
and pro�le collections. It is the responsibility of storage connectors
to execute these operations on some actual storage engine. Note
that the storage connectors must be able to automatically store any
kind of data pro�le. Otherwise, external tools would have to de�ne
how to store their custom data pro�les, which contradicts our goals.
As of writing this paper, Metacrate supports an in-memory storage
engine, SQLite, and Apache Cassandra, leaving the choice between
a light-weight or a more complex but scalable storage engine.

2.2 Analytics engine
Metacrate complements its storage component by an analytics
engine, which can be seen as the counterpart of query engines in
relational databases. However, Metacrate does not adopt a closed
algebra to formulate analytics, because the various data pro�le types
and their processing requirements are not known at design time.
And even if we knew all types of data pro�les in advance, we learned
that formulating SQL queries, for instance, to analyze data pro�les
is cumbersome and error-prone. Instead, Metacrate employs a
Scala-based data �ow API that supports user-de�ned functions and
whose operator set is extensible. As demonstrated in the following
section, this combination allows to formulate rich analytics in a
concise manner. We further provide a complementary analytics
library with common functionality for various data management
tasks (e.g., [3, 7–9, 11, 13]), so as to facilitate the development of
data management tools and to allow for complex ad-hoc queries to
Metacrate. Examples for this library are given in the next section.

Internally, Metacrate employs the cross-platform data processing
system Rheem [1] for query execution. In detail, Metacrate feeds
schema elements and pro�le collections to Rheem using dedicated
engine connectors. Rheem then selects an actual data processing
platform to execute the query on, e.g., Java Streams or Apache
Spark. In combination with the various storage engines, Metacrate
can therefore either employ light-weight components for simple
scenarios or make use of distributed components to scale to complex
scenarios with millions and more of data pro�les.



3 METACRATE IN ACTION
As shown in Figure 1, Metacrate is a backend system rather than
a user-facing application. �at is, third-party applications can
include it as a library and use it to store and query data pro�les. To
demonstrate our system, we use Jupyter notebooks2 as a simple yet
powerful text interface. In addition, we provide and integrate a set
of speci�c visualizations for query results. With this tool set, we
populate Metacrate with schemata and data pro�les and execute
various ad-hoc queries. �e full notebooks for the steps outlined
here can be found and re-enacted on our web page.3

3.1 Populating Metacrate
Before any analytics, Metacrate must be fed with the schemata
of the datasets to be analyzed and the relevant data pro�les. To
load the schemata, we provide applications that can extract them
from relational database management systems, SQL �les, and CSV
�les. �e creation of data pro�les is not a concern of Metacrate,
however. Instead, we provide integration with the data pro�ling
tool Metanome and its many algorithms [10], such that its data
pro�les can be imported into Metacrate. Besides that, we provide
an API for data pro�ling tools to write their data pro�les directly
into Metacrate. For the following queries, we load the schema of a
dataset with 52 tables and its 10,024 basic data pro�les. We have,
however, also operated Metacrate with hundreds of millions of data
pro�les, e.g., when storing relationships among thousands of small
web tables [12].

3.2 �erying Metacrate
Before pu�ing a new dataset to use, it is important to �rst under-
stand what data it provides, how to query it, and which potential
quality problems the dataset has [9]. In the following, we demon-
strate how Metacrate supports in obtaining such a data anamnesis.
Assuming that Metacrate is already populated as described above,
we query and visualize the data pro�les in a Jupyter notebook. As
a �rst step to approach a new dataset, we create an overview of
how many columns and tuples the tables in the dataset have using
Metacrate’s Scala-based query API.

1 val schema = metacrate.getSchemaByName("schema")
2 val cols = metacrate.loadColumns(schema)
3 .map(col => (getTableId(col.id), 1))
4 .reduceByKey(_._1, (cnt1, cnt2) => (cnt1._1, cnt1._2+cnt2._2))
5 val rows = metacrate.loadProfiles[TupleCount](scope = schema)
6 val colsAndRows = cols.keyBy(_._1)
7 .keyJoin(rows.keyBy(_.getTableId))
8 .assemble { case (col, row) =>
9 (row.getTableId, col._2, row.getNumTuples) }

10 .resolveTableNames(_._1, { case (counts, table) =>
11 (table.name, counts._2, counts._3) })

As shown in the screenshot in Figure 2, the result can be directly
visualized in the Jupyter notebook by plo�ing the tables on a plane
using their number of columns and tuples as coordinates. �is query
exempli�es the most important building blocks of Metacrate queries.
At �rst, we look up a schema by its name (Line 1). �en, we load
all columns within that schema into the analytics engine (Line 2),
resolve the table ID for each column (Line 3), and count how o�en
we �nd each table ID (Line 4). �is already gives us the number of
columns per table. To obtain the numbers of tuples per table, we
2h�p://jupyter.org/
3h�ps://hpi.de/naumann/projects/data-pro�ling-and-analytics/metacrate.html

Figure 2: Visualizations of numbers of columns and tuples
for each table in a schema.

ask Metacrate to determine and load a pro�le collection containing
data pro�les for tuple counts and with the scope encompassing our
schema (Line 5). Now, we can integrate the column and tuple counts
by joining on Metacrate’s table IDs (Line 6–9). Eventually, we
resolve the table IDs to names for presentation purposes (Line 10).
To give an idea of query execution times, this and the following
queries take less than a second on our example dataset, even with
a light-weight storage and analytics backend.

Metacrate also allows for much more intricate analyses, in par-
ticular, when paired with the analytics library. For instance, if we
do not know the foreign keys (FKs) of a schema, we can detect
them from inclusion dependencies using a classi�er that takes into
account various di�erent data pro�les [11]. �e analytics library
provides this classi�er and it just needs to be invoked:

1 ForeignKeyClassifier.classify(
2 metacrate.loadProfiles[InclusionDependency](scope = schema),
3 metacrate.loadProfiles[TupleCount](scope = schema),
4 metacrate.loadProfiles[ColumnStatistics](scope = schema)
5 ).store("Automatically detected FKs", scope = schema)

Note that in this example, we store the detected FKs in a new pro�le
collection rather than visualizing them (Line 4). �e possibility
to seamlessly derive new pro�le collections from existing ones
is very useful for complex analyses. For instance, the FKs are a
valuable input to many schema summarization techniques. One
such summarization technique assesses the importance of tables by
analyzing their size, their join edges, and the information entropy
of their columns. [13]. Metacrate’s library provides this method:

1 TableImportance.assess(
2 metacrate.loadProfiles[ForeignKey](scope = schema),
3 metacrate.loadProfiles[TupleCount](scope = schema),
4 metacrate.loadProfiles[ColumnStatistics](scope = schema)
5 )

�e result is a ranking of the tables that can either be stored, visu-
alized, or processed further. In this instance, we choose to present
this ranking in a graph, where the tables are the nodes, their size
corresponds to their rank, and the edges are the previously captured
FKs, as shown in Figure 3.

3.3 More examples
Besides the above outlined data anamnesis scenario, Metacrate
supports many other uses cases for that we provide further Jupyter
notebooks in our demonstration. For instance, in our data discovery
notebook, we employ Metacrate to discover similar columns based
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Figure 3: Excerpt of schema visualization with automati-
cally inferred foreign keys and importance values.

on q-gram sketches [7] and visualize the results in a matrix plot as
shown in Figure 4a. �is technique can help to identify columns
with data relevant to a certain task [8]. As another example, in our
data cleaning notebook, we identify tables that entail suspiciously
many FDs, which is an indicator for low schema quality [9]. We
then sort out the FDs from those tables that are not implied by a key
and explore them in a sunburst chart as shown in Figure 4b. �at
way, we can quickly spot opportunities for schema normalization.

(a) Attribute similar-
ity matrix (excerpt).

(b) Sunburst chart with the highlighted
FD Title, Authors, Location→CRC.

Figure 4: Data discovery and data cleaning visualizations.

4 RELATEDWORK
Much research has been conducted on data management using data
pro�les and accordingly special-purpose systems have been built.
Speci�cally, Bellman is a database exploration tool that detects,
amongst others, keys and join paths [7]; Clio is a system that can
manage schemata and schema mapppings [2]; and Aurum is a data
discovery framework [8] to detect database tables and elements that
are relevant to a concrete problem. All these tools de�ne a �xed
set of algorithms on a �xed set of data pro�les. Metacrate, hence,

lends itself to take care of storing the data pro�les for these tools
and providing a scalable execution engine for their algorithms. A
further related system is Metanome, a data pro�ling tool [10]. While
Metanome can store and visualize integrity constraints, it does not
comprise further integration and analysis capabilities. However,
Metanome and Metacrate are closely integrated and complement
one another. Another data pro�ling tool proposes the SQL-like
language RQL to discovery integrity constraints on datasets [6].
Again, this approach di�ers from Metacrate, because it is used to
produce data pro�les rather than integrating or analyzing them.

5 CONCLUSIONS
We present Metacrate, a system to store, integrate, and analyze data
pro�les. Built upon scalable technologies, Metacrate can handle
large amounts of metadata and it is well-suited to back a broad range
of data management tools as well as to execute ad-hoc analyses.
�us, Metacrate �lls an open gap in the data management landscape.
As future directions, we plan to improve Metacrate’s integration
with more data pro�le producers and consumers and to provide
more algorithms and visualizations in the analytics library.
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