Prof. Dr. Felix Naumann

Thorsten Papenbrock

Research Assistant, PhD Candidate

für Softwaresystemtechnik
Prof.-Dr.-Helmert-Straße 2-3
D-14482 Potsdam
Room: G-3.1.09


Phone: +49 331 5509 294
Email:  thorsten.papenbrock(a)hpi.de
Profiles: Xing
Research: GoogleScholar, DBLP, ResearchGate



Research Interests

Data Profiling:

Solving computationally complex tasks is a challenge and a central activity in data profiling. This involves primarily the discovery of metadata in many gigabyte-sized datasets, which is why algorithms developed for this purpose need to be efficient and robust. Because data profiling offers such a plethora of challenging, yet unsolved tasks, I have chosen it as my primary research area. I am in particular interested in the discovery of data dependencies, such as inclusion dependencies, unique column combinations, functional dependencies, order dependencies, matching dependencies, and many more.

Data Cleansing:

Data is one of the most important assets in any company. Therefore, it is crucial to ensure its quality and reliability. Data cleansing and data profiling are two essential tasks that - if performed correctly and frequently - help to guarantee data fitness. In this area, I am particularly interested in (semi-)automatic duplicate detection methods and normalization techniques as well as their efficient implementation.

Parallel and Distributed Systems:

Due to the complexity of many tasks in IT, a clever algorithm alone is often not able to deliver a solution in time. In these cases, parallel and distributed systems are needed. Especially when facing ever larger datasets, i.e., big data, we need to consider technologies such as map-reduce (e.g. Spark and Flink), actors (e.g. Akka), and GPUs (e.g. CUDA and OpenCL) to implement scalability into our solutions.



  • Database Systems I (2013, 2014, 2015, 2016, 2017)
  • Database Systems II (2013)
  • Data Profiling and Data Cleansing (2014)
  • Information Integration (2015)
  • Data Profiling (2017)
  • Distributed Data Analytics (2017)


  • Advanced Data Profiling (2013, 2017)
  • Proseminar Information Systems (2014)

Bachelor Projects:

  • Data Refinery - Scalable Offer Processing with Apache Spark (2015/2016)

Master Projects:

  • Joint Data Profiling - Holistic Discovery of INDs, FDs, and UCCs (2013)
  • Metadata Trawling - Interpreting Data Profiling Results (2014)
  • Approximate Data Profiling - Efficient Discovery of approximate INDs and FDs (2015)
  • Profiling Dynamic Data - Maintaining Matadata under Inserts, Updates, and Deletes (2016)

Master Thesis:

    • Discovering Matching Dependencies (Andrina Mascher, 2013)
    • Discovery of Conditional Unique Column Combination (Jens Ehrlich, 2014)
    • Spinning a Web of Tables through Inclusion Dependencies (Fabian Tschirschnitz, 2014)
    • Multivalued Dependency Detection (Tim Draeger, 2016)
    • Discovery Algorithms for Conditional Functional Dependencies (Maximilian Grundke, 2017)
    • Discovering Matching Dependencies (Philipp Schirmer, 2017)

    Online Courses:

    • Datenmanagement mit SQL (openHPI, 2013)


    Functional Dependency Discovery: An Experimental Evaluation of Seven Algorithms

    Papenbrock, Thorsten; Ehrlich, Jens; Marten, Jannik; Neubert, Tommy; Rudolph, Jan-Peer; Schönberg, Martin; Zwiener, Jakob; Naumann, Felix in Proceedings of the VLDB Endowment 2015 .

    Functional dependencies are important metadata used for schema normalization, data cleansing and many other tasks. The efficient discovery of functional dependencies in tables is a well-known challenge in database research and has seen several approaches. Because no comprehensive comparison between these algorithms exist at the time, it is hard to choose the best algorithm for a given dataset. In this experimental paper, we describe, evaluate, and compare the seven most cited and most important algorithms, all solving this same problem. First, we classify the algorithms into three different categories, explaining their commonalities. We then describe all algorithms with their main ideas. The descriptions provide additional details where the original papers were ambiguous or incomplete. Our evaluation of careful re-implementations of all algorithms spans a broad test space including synthetic and real-world data. We show that all functional dependency algorithms optimize for certain data characteristics and provide hints on when to choose which algorithm. In summary, however, all current approaches scale surprisingly poorly, showing potential for future research.
    Further Information
    Tags evaluation functional_dependency_discovery hpi isg profiling