
Mining Change Rules
Daniel Lindner

daniel.lindner@student.hpi.de
Hasso Plattner Institute
University of Potsdam

Germany

Franziska Schumann
franziska.schumann@student.hpi.de

Hasso Plattner Institute
University of Potsdam

Germany

Nicolas Alder
nicolas.alder@student.hpi.de

Hasso Plattner Institute
University of Potsdam

Germany

Tobias Bleifuß
tobias.bleifuss@hpi.de

Hasso Plattner Institute
University of Potsdam

Germany

Leon Bornemann
leon.bornemann@hpi.de
Hasso Plattner Institute
University of Potsdam

Germany

Felix Naumann
felix.naumann@hpi.de
Hasso Plattner Institute
University of Potsdam

Germany

ABSTRACT
Changes in data happen frequently, and discovering how the
changes interrelate can reveal information about the data and
the transactions on them. In this paper, we define change rules
as recurring patterns in database changes. Change rules em-
body valuable metadata and reveal semantic as well as func-
tional relationships between versions of data. We can use change
rules to discover formerly unknown relationships, anticipate
data changes and explore anomalies if changes do not occur as
expected.

We propose the CR-Miner algorithm, which dispenses the
manual formulation of rules to uncover this hidden knowledge
in a generic and domain-independent way. Given a dataset to-
gether with its past versions, we efficiently discover change rules
and rank them according to their potential for a manual review.
The experimental results confirm that our method finds change
rules efficiently in big data: On a subset of Wikipedia infoboxes
encompassing data from four years and different categories, we
discover 4 456 change rules. Rules between changes from 48 706
tables of open-government data observed over the period of one
year can be discovered within 33 minutes, and rules between
about 2.5 million Wikipedia infoboxes from 153 templates within
77 minutes.

1 INTRODUCTION
Discovering salient patterns in data is a large field of interest in
the area of knowledge discovery in databases [43]. Rather than
investigating patterns only in a static view on a database, we raise
the question of how data changes are interrelated. A prominent
example of ever-changing data is the publicly maintained online
encyclopedia Wikipedia – in particular, its infoboxes. Wikipedia
infoboxes sum up information in a concise and structured way,
unifying some properties that entities of a category share [39]
– their schema. Albeit not always visibly connected by a direct
link, many of its data changes are related.

For example, infoboxes in Wikipedia articles of professional
football players usually feature properties that state the number
of games they played for each team of their senior career. Figure 1
shows that Steven Whittaker and Efe Ambrose both played for
the Hibernian F.C. concurrently, i.e., they often played in the same
games. We see that the counters for senior club appearances on

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

�����������	
����

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�	
�

�
	
�

�

�

��
�

�
�
��
�

�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
	
�

�
�
	
��

�

�
�

��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�
�
�
��
�
�

�

�

��
�
�
�
	
�

Absolute support: 31
Confidence: 0.96875
Histogram:

EDBT’22, June 03–05, 2022, Edinburgh, UK Daniel Lindner, Franziska Schumann, Nicolas Alder, Tobias Bleifuß, Leon Bornemann, and Felix Naumann

For the purpose of this work, we allow constraints on two addi-
tional, derived dimensions: the table that a change belongs to and
its change-type. The lowest granularity level on which we observe
changes is at �eld-level (also known as cell-level), so a combination
of id and property. For relational input, a �eld is part of a row (id)
and a column (property) that are all in turn part of a table. The table
dimension table allows restricting change-patterns to one table.

We can distinguish three di�erent types of changes in the type
dimension:

Insert Field 8 does not exist at time C:�1 but does exist at
time C: .

Update Field 8 exists at time C:�1 with a value of E and exists
at time C: with a value ofF , where E 6= F .

Delete Field 8 exists at time C:�1 but not at time C: .
A �eld exists if the �eld’s entity (row) exists in the database and
the �eld contains a non-NULL value (i.e., is not empty). As input
data is not always stored in a database, in our experiments, we
consider any of the following strings as NULL-values (including
any white spaces): "-", "/", "–", "—", "%", "Null", "null", "NULL", and
empty values.

Further, we do not consider constraints on the value or time
dimension in this paper. This restriction increases the probability
that we can observe matches of a change pattern at multiple points
in time. That is desirable for our use case, as contemplating change
dependencies makes sense only if we observe the involved change
patterns multiple times. We can imagine other use cases where
the data values and their “severity” of change are incorporated,
but leave this to future work (Section 6). Thus, a change pattern
⇠Φ captures the location (i.e., a unique �eld, row, column, or table
identi�er) and the change type (insert, update, or delete) of a change.

3.2 Change Dependencies
We denote a general change dependency as an implication between
two change patterns ⇠8 and ⇠ 9 of the following form, where : and
I are non-negative integers and : + I  =:

⇠8
[:, :+I]
=======) ⇠ 9

A change dependency holds, if whenever change pattern⇠8 matches
a change at C? , then the �rst subsequent match of ⇠ 9 occurs at the
earliest after : and at the latest after I points in time. Further, we
enforce the restriction that ⇠8 does not match again before this
match of ⇠ 9 , because we assume the timewise closest changes to
have the strongest relation.

Example. In Wikipedia articles of professional football players,
there is a column counter in the infobox, which states each player’s
number of games for a senior league team (Figure 1). Steven Whit-
taker and Efe Ambrose both played for the Hibernian F.C. at the
same time, i.e., they often played in the same games. Editors happen
to frequently update the counter for senior club appearances in the
infobox of the former Scottish national player Steven Whittaker.
Usually, within the next 17 hours Efe Ambrose’s infobox is also
updated. This dependency can be expressed as:

⇠id=SW, p=caps4, type=update
[0, 17]
=====) ⇠id=EA, p=caps6, type=update

As usual, we call the left-hand side of the implication antecedent
and the right-hand side consequent. Our de�nition also covers the
special cases of antecedent and consequent changing at the same
point in time (: = I = 0), or with an interval of exactly I timestamps
between them (: = I).

We now de�ne the occurrence of a change dependency over time
windows with the goal of counting numbers of occurrences. A
change dependency ⇠8

[:, :+I]
=======) ⇠ 9 has a valid occurrence in time

windowF = [?, ? + : + I], if
• ⇠8 matches at point in time ? ,
• ⇠ 9 matches at @ with ? + :  @  ? + : + I but not in [?,@)

and
• ⇠8 does not match in (?,@] either.

For example, in Figure 2 there is only one occurrence of⇠8
[0, 2]
====) ⇠ 9

that is counted. The pertinent points in time are highlighted in the
�gure. Only for the matches of⇠8 at C12 and⇠ 9 at C13 all mentioned
criteria are ful�lled. For the others, the antecedent either matches
again before the consequent is observed (⇠8 at C11 then again, ⇠8
at C12 before ⇠ 9 at C13), or the consequent matches earlier in time
after the antecedent (⇠ 9 at C13 after ⇠8 at C12 and before ⇠ 9 at C14).

Figure 2: Example of a valid change dependency occurrence
and the corresponding time window.

3.3 Support and Con�dence
In accordance with the de�nition of support for itemsets, we de�ne
the support sup(⇠8) of a change pattern ⇠8 as the number of points
in time for which this pattern matches at least one change. For given
: and I, let, be the set of all time windows in which a change
dependency could occur, i.e.,, [: + I] ✓ {[1,: + I + 1], [2,: + I +
2], ..., [= �: � 1,=], [= �:,=]}. The support of a change dependency
⇠8

[:, :+I]
=======) ⇠ 9 is de�ned by the number of time windows in which

it has a valid occurrence. For the relative support, this is divided by
the number of overall time windows |, |= = � : . For example, to
determine the support of the change dependency

⇠id=SW, p=caps4, type=update
[0, 17]
=====) ⇠id=EA, p=caps6, type=update

we count every valid time window where Efe Ambrose’s counter
is updated within 17 hours after Whittakers’s counter has been

Figure 1: Example of a change rule between the Wikipe-
dia infoboxes of Steven Whittaker and Efe Ambrose1, two
professional football players.

both player’s Wikipedia pages were updated repeatedly around
the same time, with Steven Whittaker’s page always being the
first.

Such a relationship is what we call a change rule. Since these
infobox updates do not happen automatically but are carried out
by volunteer editors, the changes do not happen simultaneously,
but varying time spans may lie between one entry and the next.
Our algorithm CR-Miner can find change rules where the related
changes happen long apart from each other, as well as patterns
that show smaller time intervals and can thus reveal patterns like
controversies on Wikipedia [9], so-called edit-wars, that have
been fought, e.g., over the music genre of a band. In some use-
cases, instead of the most common items, items that appear rarely
are of genuine interest. For example, changes that happen often
and regularly are not worth investigating: when an event occurs
every day, it is easy to predict, but one does not gain any insights
from this prediction. Thus, we want to identify rare change rules,
which differ from common patterns.

1https://en.wikipedia.org/wiki/Steven_Whittaker
and https://en.wikipedia.org/wiki/Efe_Ambrose

Series ISSN: 2367-2005 91 10.48786/edbt.2022.01

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.01

The task of finding interesting relations and rules describing
how data is connected is often tackled by employing association
rule mining approaches [13]. Association rules were the first rules
that could efficiently be discovered, and various algorithms for
finding them in transactional databases have been proposed [29].
However, most of these algorithms are based on finding associ-
ated items that appear within the same transaction, i.e., at the
same time. Temporal association rule mining is an extension of
association rule mining, which incorporates the time dimension
of patterns [10]. Both approaches are suited for static item sets,
whereas our method helps investigate changes in data and their
connections.

Change exploration is based on the insight that entries in data-
bases are rarely static, and it aims to unlock valuable information
from understanding data changes as a new dimension of data
analysis [7]. Bleifuß et al. define one subproblem of change ex-
ploration as ‘finding other values that experience similar change
(in value) or correlated change (in time)’. As part of the Janus
project3, this paper presents an algorithm to tackle this problem
of finding change rules. By examining how changes in data are
connected, one can find (hidden) rules, redundancies, underlying
causes of change, and also predict future changes. For instance, in
the example above with the two football players, a system could
suggest to Wikipedia editors to update Efe Ambrose’s counter
whenever they update Steven Whittaker’s counter. In this case,
however, a manual check would still be necessary, because the
changes have a common underlying cause (a game played by
both players), but are not strictly dependent. At the same time,
the change rule hints at information that is probably not even
explicitly available on Wikipedia: the lineup of individual games.

An example of how change rules can reveal hidden relation-
ships between changes is the following: When applied to a pro-
duction database of a factory, CR-Miner can discover rules that
resemble the production process, similar to process mining. Pro-
cess mining techniques are used to model, analyze and optimize
processes from event-based data [37]. In addition to conventional
process discovery algorithms, which require a very specific input
format to build a process model, CR-Miner can be applied to
event logs and databases connected to the processes in question
(e.g., an inventory), to discover hidden dependencies between
process steps and various processes. Such detected change rules
can also be an entry point into further investigation and process
monitoring.

Part of the challenge of discovering interesting change rules is
that databases can change in multiple ways: they can be updated,
deleted, or new entries can be added over time. Moreover, all
these types of changes can occur on different levels in a database:
A whole table can be deleted, a column or row might be added,
a single value in a field can change. And a field is also always
part of a row, a column, and a table. Therefore, change rules
should be regarded at multiple levels of granularity to discover
the underlying rules. The problem is deepened in large databases,
such as public databases, that do not have one underlying source
of truth. Many different people might curate them, and some
change rules might not always hold over time, or their change
interval might vary. Together, this results in a large search space,
which is why the automatic discovery of change rules also poses a
computational problem. Thus, algorithms that efficiently navigate
this vast search space are needed. The CR-Miner algorithm we
present in this paper does not traverse all possible combinations

3https://IANVS.org

of change rules, but prunes the search space early on, aided
by lower and upper thresholds for support and confidence. In
summary,

• we define the new notion of change rules,
• we propose the CR-Miner algorithm to discover such

change rules efficiently,
• we illustrate how the discovered change rules can be re-

duced to the most interesting ones, and
• we show on two datasets from different domains how our

approach scales and yields interesting rules.
The remainder of the paper is organized as follows: Section 2

discusses related work, Section 3 introduces our notation and
change rule definitions, Section 4 continues with the description
of our algorithm and how to obtain and rank change rules, Sec-
tion 5 shows our experiments in detail, and Section 6 sums up
our insights and concludes our work. All code and results are
publicly available4.

2 RELATED WORK
The problem of change rule mining is connected to (rare) item-
set mining and association rule mining. They share the same
essential problem and associated challenges, particularly regard-
ing efficiency. Incorporating time-chronological order in rules
is strongly related to temporal pattern mining, which aims to
discover frequent subsequences by examining time intervals. Our
work expands the field of change exploration, which investigates
change as a dimension of data that needs to be understood. In the
following, we discuss its related research areas in more detail.

2.1 Pattern and Rule Mining
Frequent itemset mining and association rule mining have been
a field of interest for at least 25 years [13, 14]. Several algorithms,
such as Apriori [2], Eclat [41], or Frequent Pattern-Growth [17],
aim at finding sets of items that co-occur in many transactions
of a transaction database. Association rule mining extends these
approaches by finding rules within frequent itemsets, i.e., there
is a direction of the relationship between the items [1]. Mea-
sures like confidence or lift [6] are assigned to these rules to
compare their reliability and interestingness. There have been
further improvements regarding the performance of the mining
algorithms, multiple implementations run on distributed systems,
and state-of-the-art frameworks incorporate these implementa-
tions [14, 23]. However, they share the limitation that they do
not take the temporal dimension into account: Frequent itemsets
and association rules are found only within transactions that are
unordered sets, whereas we want to discover constraints that
hold across a period of time points.

Temporal Pattern Mining addresses these limitations by dis-
covering frequent sequences in transactions that contain or-
dered sets of events [33, 40, 42]. Initially, the problem of rep-
resenting and reasoning about temporal knowledge was stated
by Allen in 1983 [3]; his proposed 13 temporal relationships
remain ubiquitous in the field until today. Since then, many
works have focused on improved representations for obtaining
these relationships [10, 18, 31] or more efficient mining algo-
rithms [25, 28, 30, 32, 33, 42]. However, both association rule
mining as well as temporal pattern mining approaches share the
assumption that there are individual transactions containing sets
(or sequences) of events (or items). It is further assumed that

4https://github.com/HPI-Information-Systems/mining-change-rules

92

there are many such transactions that share some of these items,
so that patterns are defined as frequent if they appear in many
transactions [33].

The setting for mining change rules is fundamentally different.
As detailed in Section 3, we study the case of having data available
in a single, time-ordered sequence of change events that cannot
be meaningfully partitioned into individual transactions. This is
the same scenario studied by frequent episode mining, in which a
single event sequence is mined for frequently occurring parallel
episodes (event sets) or serial episodes (event sequences) [4, 27].
There are however, several issues due to which episode mining ap-
proaches are not directly applicable to our problem: First, episode
mining approaches are suited to discover patterns of arbitrary
size but generally assume a moderate amount of input data [5, 27].
However, our dataset sizes are far larger than usual approaches
for episode mining can handle. Our largest dataset contains more
than 10 million event occurrences of close to 6 million different
event types spread over more than 35 000 timestamps (see Table 2
in Section 5.1). Such a size dwarfs the usual datasets in episode
mining, which contain only slightly more than 100 000 event
occurrences of less than 8 000 event types [27]. We are aware of
just one work that tackles similarly sized datasets, namely [5],
although it should be mentioned that their datasets contain much
fewer event types than ours. However, their approach uses an
event type hierarchy that allows them to aggregate occurrences
of different events to occurrences of a common category, leading
to the inference of more coarse-grained events with high sup-
port counts. Second, their approach is distributed, whereas our
approach uses a parallel setting on a single machine. And lastly,
the authors use high support thresholds for their large datasets
to prune the search space. This is not possible for our use-case,
because we are not necessarily interested in patterns that occur
very frequently, as those tend to be not interesting in a change
exploration scenario.

Instead, we make the large dataset sizes manageable by re-
stricting ourselves to rules of size two, introducing an additional
time-constraint (minimum time between antecedent and conse-
quent), and using an incremental generation of rule candidates.
We show that the classical episode mining approach WINEPI [27]
fails to efficiently process the datasets of our size in Section 5.3.2.

2.2 Rare Pattern Mining
Rare itemsets are an interesting type of pattern if one seeks
events that happen infrequently compared to the overall event
occurrences, i.e., events that stand out from the usual activities.
In general, rare itemsets are harder to find than frequent itemsets:
On the one hand, setting the minimum support to a relatively
high value, as one usually does in frequent itemset mining, will
exclude items that appear rarely. Setting the minimum support
very low, on the other hand, creates a vast amount of candidate
set combinations. This two-sided challenge has been coined as
the rare item problem [26].

Most standard pattern or rule mining algorithms are highly
inefficient when setting the minimum support threshold low due
to the significantly increased search space. Furthermore, most
of these algorithms are based on the assumption that all items
have the same kind of properties when it comes to their occur-
rences, i.e., they assume similar overall frequencies throughout
the data [26]. This assumption obviously does not hold true in
every use case. For example, in some datasets we primarily see

the occurrence of regular events that are not particularly com-
pelling, but the events that appear rarely are the ones that are
actually of interest. If two events always occur together, but they
rarely occur in comparison to the other events in the dataset,
this association will not be found by traditional pattern or rule
mining algorithms.

In Section 5, we examine an open-government database that
contains administrative data where many tables are updated daily,
which does not mean that they are all semantically connected.
An ordinary association rule mining algorithm would find a huge
number of rules containing mostly the frequently updated tables
and fail to discover rarer rules that are more interesting in this
context. Our algorithm can find more salient rules, and we report
on our results for the mentioned dataset in Section 5.4.2.

Specific algorithms have been proposed for finding rare item-
sets and rare association rules [11, 15, 16, 26, 36, 38]. One tech-
nique to tackle the problem of rare association rule mining is
to set upper boundaries as constraints on the frequency of the
itemsets [20, 21, 34, 35], a strategy we employ in our algorithm
as well.

A remaining challenge of rare association rule mining is to
tell apart interesting rules from random noise [19], especially
if no prior knowledge about the data is available to assess the
results. In Section 4 we explain how we address this problem
in an optional step of our algorithm by employing probability
distributions.

2.3 Change Exploration
Data in databases are rarely static but can undergo many changes.
The field of change exploration examines this change dimension
of data [7]. Questions like ‘When, how often, by whom, and, from
what to what has the data been changed? ’are investigated because
they can have interesting answers that hold information about
more than just one entry in a database. For example, knowing
data history can help to validate facts and to anticipate future
changes [12]. Change, however, is in itself hard to describe and
Bleifuß et al. tackle this challenge by proposing the change cube, a
model to capture data changes [7]. Within the context of the Janus
project5, which aims to advance the research in the area of change
exploration, we add to the above-mentioned inquires, by explor-
ing the question: ‘Which rules exist between data changes? ’ In this
paper, we propose a way of finding these rules in a relational
database.

3 MODELLING CHANGE RULES
We describe what we regard as changes and introduce a notation
for change patterns that facilitates understanding the nature of
change rules and their analysis. Furthermore, we propose a def-
inition of change rules in a time-window-based fashion that is
based on the concept of association rules and can adapt standard
measures like support and confidence accordingly.

3.1 Change Patterns
The change-cube is a generic model that captures change in four
dimensions [7]. Each element in the change-cube is a quadruple
of the form ⟨time, id, property, value⟩ or in brief ⟨t, id, p, v⟩, called
a change. Such a change states that at a point in time t (When?)
the property p (Where?) of an entity with the stable identifier id
(What?) was changed to the new value v (How?). In the following,
we assume these points in time t to appear within an overall
5Janus project page at www.IANVS.org

93

observed time-window [1 . . . 𝑛], for which we denote timestamps
as 𝑡𝑘 , 𝑘 ∈ 1 . . . 𝑛.

A change pattern 𝐶Φ captures a set of changes by restricting
one or multiple dimensions of the change-cube through a set of
equality constraints Φ. Each equality constraint in Φ is of the
form 𝑑 = 𝑥 , where 𝑑 is one of the dimensions of the change-
cube and 𝑥 is a value that appears in the respective dimension.
For example, 𝐶p=counter includes all changes that affect the
property counter. A change pattern 𝐶Φ matches a change 𝑐 if
all constraints in Φ hold for 𝑐 . A change pattern 𝑝 occurs at a
timestamp 𝑡 if and only if there is at least one change that matches
𝑝 and 𝑐.𝑡 = 𝑡 . We call the set of all timestamps at which a change
pattern 𝑝 occurs the occurrences of 𝑝 .

For the purpose of this work, we allow constraints on two
additional, derived dimensions: the table that a change belongs
to and its change-type. The lowest granularity level on which
we observe changes is at field-level (also known as cell-level), so
a combination of id and property. For relational input, a field is
part of a row (id) and a column (property) that are all in turn part
of a table. The table dimension table allows restricting change-
patterns to one table.

We can distinguish three different types of changes in the type
dimension:

Insert Field 𝑖 does not exist at time 𝑡𝑘−1 but does exist at
time 𝑡𝑘 .

Update Field 𝑖 exists at time 𝑡𝑘−1 with a value of 𝑣 and exists
at time 𝑡𝑘 with a value of𝑤 , where 𝑣 ̸= 𝑤 .

Delete Field 𝑖 exists at time 𝑡𝑘−1 but not at time 𝑡𝑘 .
A field exists if the field’s entity (row) exists in the database and
the field contains a non-NULL value (i.e., is not empty). As input
data is not always stored in a database, in our experiments, we
consider any of the following strings as NULL-values (including
any white spaces): "-", "/", "–", "—", "%", "Null", "null", "NULL", and
empty values.

Further, we do not consider constraints on the value or time
dimension in this paper. This restriction increases the probability
that we can observe matches of a change pattern at multiple
points in time. That is desirable for our use case, as contemplating
change rules makes sense only if we observe the involved change
patterns multiple times. We can imagine other use cases where
the data values and their “severity” of change are incorporated,
but leave this to future work (Section 6). Thus, a change pattern
𝐶Φ captures the location (i.e., a unique field, row, column, or
table identifier) and the change type (insert, update, or delete) of
a change.

3.2 Change Rules
We denote a general change rule as an implication between two
change patterns 𝐶𝑖 and 𝐶 𝑗 of the following form, where 𝑘 and 𝑧
are non-negative integers and 𝑘 + 𝑧 ≤ 𝑛:

𝐶𝑖
[𝑘, 𝑘+𝑧]
=======⇒ 𝐶 𝑗

A change rule holds, if whenever change pattern 𝐶𝑖 matches a
change at 𝑡𝑝 , then the first subsequent match of 𝐶 𝑗 occurs at
the earliest after 𝑘 and at the latest after 𝑘 + 𝑧 points in time.
Further, we enforce the restriction that 𝐶𝑖 does not match again
before this match of 𝐶 𝑗 , because we assume the timewise closest
changes to have the strongest relation.

Example. In Wikipedia articles of professional football players,
the properties caps1, caps2, . . . in the infobox state each player’s

𝐶𝑖
0, 2

𝐶𝑗

𝐶𝑖 𝑪𝒊, 𝐶𝑘 𝑪𝒋, 𝐶𝑙 𝐶𝑗

1311 12 14… …t

matches of
change
patterns

time
windows

Figure 2: Example of a valid change rule occurrence and
the corresponding time window.

number of games for their first, second, . . . senior league team
(Figure 1). Steven Whittaker and Efe Ambrose both played for the
Hibernian F.C. at the same time, i.e., they often played in the same
games. Editors happen to frequently update the counter for senior
club appearances in the infobox of the former Scottish national
player Steven Whittaker. Usually, within the next 17 hours Efe
Ambrose’s infobox is also updated. This rule can be expressed as:

𝐶id=SW, p=caps4, type=update
[0, 17]
======⇒ 𝐶id=EA, p=caps6, type=update

As usual, we call the left-hand side of the implication an-
tecedent and the right-hand side consequent. Our definition also
covers the special cases of antecedent and consequent changing
at the same point in time (𝑘 = 𝑧 = 0), or with an interval of
exactly 𝑢 timestamps between them (𝑘 = 𝑢, 𝑧 = 0).

We now define the occurrence of a change rule over time
windows with the goal of counting numbers of occurrences. A
change rule𝐶𝑖

[𝑘, 𝑘+𝑧]
=======⇒ 𝐶 𝑗 has a valid occurrence in time window

𝑤 = [𝑝, 𝑝 + 𝑘 + 𝑧], if
• 𝐶𝑖 matches at point in time 𝑝 ,
• 𝐶 𝑗 matches at 𝑞 with 𝑝 +𝑘 ≤ 𝑞 ≤ 𝑝 +𝑘 + 𝑧 but not in [𝑝, 𝑞)

and
• 𝐶𝑖 does not match in (𝑝, 𝑞] either.

All other occurrences are invalid. For example, in Figure 2 there
is only one occurrence of 𝐶𝑖

[0, 2]
====⇒ 𝐶 𝑗 that is valid and, hence,

counted. The pertinent points in time are highlighted in the figure.
Only for the matches of 𝐶𝑖 at 𝑡12 and 𝐶 𝑗 at 𝑡13 all mentioned
criteria are fulfilled. The other occurrences are invalid, because
the antecedent either matches again before the consequent is
observed (𝐶𝑖 at 𝑡11 then again, 𝐶𝑖 at 𝑡12 before 𝐶 𝑗 at 𝑡13), or the
consequent matches earlier in time after the antecedent (𝐶 𝑗 at
𝑡13 after 𝐶𝑖 at 𝑡12 and before 𝐶 𝑗 at 𝑡14).

3.3 Support and Confidence
In accordance with the definition of support for itemsets, we
define the support sup(𝐶𝑖) of a change pattern 𝐶𝑖 as the number
of points in time for which this pattern matches at least one
change. For given 𝑘 and 𝑧, let𝑊 be the set of all time windows
in which a change rule could occur, i.e.,𝑊 [𝑘 + 𝑧] ⊆ {[1, 𝑘 + 𝑧 +
1], [2, 𝑘+𝑧+2], ..., [𝑛−𝑘−1, 𝑛], [𝑛−𝑘, 𝑛]}. The support of a change
rule 𝐶𝑖

[𝑘, 𝑘+𝑧]
=======⇒ 𝐶 𝑗 is defined by the number of time windows in

which it has a valid occurrence. For the relative support, this is
divided by the number of overall time windows |𝑊 |= 𝑛 − 𝑘 . For
example, to determine the support of the change rule

𝐶id=SW, p=caps4, type=update
[0, 17]
======⇒ 𝐶id=EA, p=caps6, type=update

94

we count every valid time window where Efe Ambrose’s counter
is updated within 17 hours after Whittakers’s counter has been
updated and there are no further updates to both counters in the
meantime.

The confidence of a change rule is defined as

conf(𝐶𝑖
[𝑘, 𝑘+𝑧]
=======⇒ 𝐶 𝑗) =

sup(𝐶𝑖
[𝑘, 𝑘+𝑧]
=======⇒ 𝐶 𝑗)

sup(𝐶𝑖)

It quantifies how often we see a valid occurrence of a change rule
compared to the number of matches of the antecedent change
pattern.

In our real-life example, this amounts to: How often do we
see a valid occurrence of the change rule stating that Ambrose’s
senior appearance counter is being updated within 17 hours of
an update to Steven Whittaker’s counter (31 times) compared to
the overall number of updates of Whittaker’s counter (32 times)?
Both support and confidence are essential measures that are used
in our algorithm (Section 4).

3.4 Search Space Complexity
For fixed 𝑘 and 𝑧, the search space for change rules is defined by
the number of combinations of change patterns, as well as the
possible time windows. Let𝑚 be the number of all change pat-
terns; then the amount of possible change pattern combinations
overall is𝑚 · (𝑚 − 1).

The total number of possible antecedent changes to examine
for any point in time 𝑡𝑘 and the consequent changes occurring
on any of the following 𝑧 points in time is: ∑𝑧

𝑙=0 |𝐶𝑘 |·(|𝐶𝑘+𝑧 |−𝑏𝑧),
where 𝑏𝑧 = |𝐶𝑘 ∩𝐶𝑘+𝑧 |, i.e., 𝑏𝑧 is the number of changes 𝑐𝑖 that
occur at both points in time. There are 𝑛 time points at which any
change rule can appear in our overall time frame (considering
that consequent changes happening at the same point in time are
also covered by our definition above). As we need to calculate the
support of the found candidate change rules in order to validate
whether they fulfill the specified thresholds, we observe a space
of ∑𝑛

𝑘=1
∑𝑧
𝑙=0 |𝐶𝑘 |·(|𝐶𝑘+𝑙 |−𝑏𝑧). Thus, in the worst case, we have

to consider 𝑛 · (𝑧 + 1) ·𝑚2 candidate change rules. Because 𝑧 ≤ 𝑛,
the search space for the algorithm lies in 𝑂(𝑛2 ·𝑚2).

We have discussed the search space a naïve algorithm would
have to traverse to find all change rules. Of course, some exam-
ined elements never change (at least not in the finite observed
time frame). Thus, it makes more sense to regard only the changes
we actually encounter in the transactions instead of all the pos-
sible rules. Moreover, one cannot make discover any reliable
rules for changes that appear only once or twice in the entire
dataset. Thus, some change rules can be excluded early in the
search process. Section 4 explores in detail how our algorithm
finds change rules efficiently and ranks them according to their
interestingness.

4 THE CR-MINER ALGORITHM
Our approach consists of two steps: First, we find change rules
that satisfy a minimum and maximum support and a minimum
confidence – described in Section 4.2. For each change rule, we
create a histogram that states how often the consequent occurred
for each specific number of points in time after the antecedent.
These histograms are necessary to calculate an interestingness
measure that we use to rank the potentially large set of discov-
ered change rules. To be more precise, in a second step, we use

probability density functions based on these histograms to com-
pare the change rules and rank them by their Jensen-Shannon
divergence to the calculated average distribution. The details of
this second step are described in Section 4.3.

4.1 Input Format
For the change rule mining step, the points in time when a change
pattern 𝐶𝑖 occurred are assigned to each change pattern. Our al-
gorithm expects an index inputIndex from the change patterns to
their corresponding sorted points in time and the size of the time
window 𝑧. The index needs to be created once per dataset. Since it
is easy and inexpensive to create, we omit a detailed description.
Further input parameters are minimum confidence min_conf and
minimum and maximum support min_sup and max_sup, which
limit the output to change rules of the desired quality.

4.2 Change Rule Mining
The aim of the mining step is to efficiently find valid occurrences
of change rules in order to obtain rules that fulfill confidence and
support thresholds and to provide histograms of the occurrences.
In Section 3.2, we introduced the concept of change rules defined
over time windows. One interpretation of the problem is the iden-
tification of time windows with valid change rule occurrences.
We must ensure that our algorithm combines the latest possible
occurrence of an antecedent with the earliest possible occurrence
of a consequent, as we have seen in Figure 2.

The main idea of CR-Miner is the following: For each point
in time, it combines the occurrences of consequents with an-
tecedents that occurred within the last 𝑧 points in time, including
the current point in time. We call these antecedents active an-
tecedents.

First, our algorithm filters the input index of change patterns
such that their number of occurrences is within the specified
support range. Due to the Apriori property, change patterns with
support lower than the minimum support threshold cannot be
part of a change rule that reaches the threshold, and our algorithm
can discard them. On the other hand, a change pattern 𝐶𝑖 with a
high support can be part of a change rule 𝐶𝑖

[𝑘, 𝑘+𝑧]
=======⇒ 𝐶 𝑗 , where

𝐶 𝑗 has a low support. If 𝐶𝑖 is the antecedent, the confidence is
not high, and would not meet the minimum confidence. For the
inverse change rule 𝐶 𝑗

[𝑘, 𝑘+𝑧]
=======⇒ 𝐶𝑖 , with 𝐶𝑖 as the consequent,

it would be questionable whether an occurrence of 𝐶 𝑗 really
implies the occurrence of 𝐶𝑖 . However, our algorithm could not
discard the rule based on support and confidence. Thus, our
algorithm also removes change patterns with support higher
than the maximum support threshold.

After this initial pruning of change patterns, our algorithm
builds an inverse index time2pattern of consequent change pat-
terns with the input index and the remaining set of consequents.
This inverse index points from a point in time to the consequents
that occur at that point in time. Table 1 gives an overview over
the central data structures in our approach, including this one.

For each point in time, Algorithm 1 is executed once to create
all possible candidates at this point in time. First, in line 1, we
update the set of active antecedents actives, such that each an-
tecedent is mapped to the number of points in time that passed
since its most recent occurrence. E.g., for Figure 2, only the sec-
ond occurrence of 𝐶𝑖 is part of this map from point in time 𝑡12
onwards. If the occurrence of an antecedent is older than allowed
by the window size, it is removed from the active antecedents.

95

Table 1: Data structures used in Algorithm 1.

Name inputIndex time2pattern actives pruned histograms

Content 𝐶𝑖 → [𝑡5, 𝑡11, 𝑡12]
𝐶 𝑗 → [𝑡4, 𝑡13]

𝑡11 → 𝐶𝑖
𝑡12 → 𝐶𝑖 ,𝐶𝑘

𝐶𝑖 → 3
𝐶 𝑗 → 5

𝐶𝑖 → {𝐶𝑘 }
𝐶𝑙 → {𝐶 𝑗 ,𝐶𝑘 }

(𝐶𝑖 ,𝐶 𝑗) → [5, 2, 0, 3]
(𝐶𝑘 ,𝐶 𝑗) → [6, 1, 2, 6]

Description an index from
change patterns to
points in time at
which they occur

an index from points
in time to all con-
sequent change pat-
terns that occur there

an index from antecedents
to the time span since its
last occurrence within the
window

a set of pruned
combinations

current histograms of
change rules

Our algorithm now starts to iterate over all consequent change
patterns at that point in time (line 2) and combines them with
active antecedents in line 4 if the combination has not already
been pruned (line 3). Our algorithm skips the consequent occur-
rence if there has already been a consequent occurrence since the
antecedent occurrence (line 5). In doing so, it ignores the second
occurrence of 𝐶 𝑗 in Figure 2. Our algorithm uses the remaining
occurrences of the consequent and the antecedent to find an
upper bound on the future occurences of the candidate rule in
lines 7–9. Based on this upper bound in combination with the
past occurrences of this rule (line 10), the algorithm tests if it is
possible that the current change rule fulfills the confidence and
support thresholds, as shown in lines 11–13. If this is not the case,
our algorithm prunes this combination of antecedent and conse-
quent and does not consider it in the future (line 16). Otherwise,
we update the histogram of this change rule (line 14). Finally, our
algorithm filters the discovered rules to fulfill minimum support
and confidence and saves their histograms.

As long as our algorithm investigates each possible combina-
tion of change patterns as antecedents and consequents, these
steps are independent of each other. Hence, our algorithm splits

Algorithm 1: Candidate combination for a point in time.
Input: min_conf: minimum confidence,

min_sup: minimum absolute support,
t𝑖 : the current point in time

Data structures : see Table 1
Output: updated histograms for point in time t𝑖

1 update actives
2 foreach c𝑖 ∈ time2pattern[t𝑖] do
3 candidates := actives \ (pruned[c𝑖] ∪ {c𝑖 })
4 foreach a𝑖 ∈ candidates do
5 if ∃t𝑘 ∈ inputIndex[c𝑖] : t𝑖 − t𝑘 ≤ actives[a𝑖]
6 continue
7 remain_ci := |{t𝑘 | t𝑘 ∈ inputIndex[c𝑖] ∧ t𝑘 > t𝑖 }|
8 remain_ai :=

|{t𝑘 | t𝑘 ∈ inputIndex[a𝑖] ∧ t𝑘 > t𝑖 }|
9 remain_rule := min {remain_ci, remain_ai}

10 histogram := histograms[a𝑖 , c𝑖]
11 possible_sup := ∑

histogram + remain_rule

12 possible_conf := possible_sup
|inputIndex[a𝑖]|

13 if possible_sup ≥ min_sup ∧ possible_conf ≥
min_conf

14 histogram.add(actives[a𝑖])
15 else
16 pruned[c𝑖] := pruned[c𝑖] ∪ {a𝑖 }

the input index into partitions and executes the described ap-
proach in parallel for all combinations of partitions to improve
the overall performance.

Still, our algorithm has to combine change patterns 𝐶𝑖 as an-
tecedents and consequents that occur within a window of size 𝑧
for each point in time. Because the algorithm filters change pat-
terns that are not within the support range, the number of change
patterns that need to be considered is not𝑚 but decreases to a
number we refer to as𝑚𝑓 . Only the 𝑎 average active antecedents
are combined with the consequents. In Figure 3, we have seen
that the majority of change patterns occur infrequently. As a
result, 𝑎 ≪𝑚, if the window size 𝑧 is not too large. The complex-
ity of our algorithm is thus in 𝑂(𝑛 ·𝑚𝑓 · 𝑎). Only if all change
patterns occur frequently and no support thresholds are applied,
it is in 𝑂(𝑛 ·𝑚2).

The set of parameters should always be adjusted to the specific
dataset and use-case. In general, the minimum and maximum
support thresholds should not be set too far apart, as this can lead
to the discovery of arbitrary rules, in which a rare event implies
a frequent event with a high confidence. To account for this, we
included a maximum support threshold and used narrow support
intervals in our experiments. Also, we have found that a minimum
confidence of 0.9 yields meaningful rules for our use-case (see
Section 5.2 for all parameters). Smaller support thresholds and a
high minimum confidence shrink the algorithm’s search space
per point in time, ease pruning, and are thus beneficial for the
run-time. The chosen window size and gap k depend entirely
on the granularity of data and the posed question. For example,
if the window size is kept very small, the algorithm finds only
rules including changes that happen shortly after one another.
To choose the window size, considering a realistic time span
between supposedly interrelated events can be a starting point.

4.3 Finding Change Rules with Unusual
Distributions

As is the case for association rule mining, searching for change
rules often leads to large result sets even when employing a high
minimum support. Not all of these discovered change rules are
necessarily of interest. There are some interestingness measures
commonly used in association rule mining, such as support, con-
fidence, entropy or lift, and many other measures have been
proposed for specific use cases [22]. As described in Section 4.2,
we use support and confidence for early pruning of the search
space. In a real-world scenario, a manual review step would likely
follow. However, as the number of rules can grow quadratically
with the size of the dataset, it is usually infeasible to review
them all manually, even when prior knowledge about the data is
available, but especially when there is no point of reference to
assess the results. Thus, we present a ranking method that can
be employed as an optional step to the result set obtained with

96

CR-Miner to account for change rules that are possibly the most
interesting ones to review.

Determining which change rules are interesting is always a
matter of context. Similar to the premise of rare association rule
mining (section 2.2), we want to find change rules that are differ-
ent from the dominant patterns in the dataset. I.e., we are inter-
ested in change rules whose distributions of occurrence deviates
from any domain-specific norm or random co-occurring patterns.
Thus, our ranking method is based on the distribution of change
rules in the dataset to find those that differ from the majority.
This is an optional post-processing step of our algorithm and
might not be needed for every dataset. In our experiments, we
show how such a ranking helps interpret the discovered change
rules in the Socrata dataset (Section 5). We provide a possible ap-
proach to determine unusual change rules without incorporating
domain knowledge. As we observed one predominant distribu-
tion shape within the discovered rules in this specific dataset,
we describe a solution to find rules differing from this average
rule. For a dataset with multiple common patterns of change rule
distributions, another approach can be to cluster rules by their
distributions and to apply distance measures within the resulting
clusters.

4.3.1 Change Probability Distributions. We use probability
distribution functions to describe the shape of a change rule, i.e.,
how often can we observe the consequent after the antecedent for
each number of points in time between𝑘 and𝑘+𝑧. The probability
distribution function pdf is always tied to antecedent 𝐶𝑖 and
consequent 𝐶 𝑗 of a change rule 𝐶𝑖

[𝑘, 𝑘+𝑧]
=======⇒ 𝐶 𝑗 . The function’s

input is a variable 𝑎 ∈ [𝑘, 𝑘 + 𝑧] for which the pdf returns the
probability that consequent 𝐶 𝑗 occurs exactly 𝑎 points in time
after antecedent𝐶𝑖 , given that𝐶 𝑗 actually occurs. The probability
distribution enables us to compare change patterns and therefore
quantify differences between them.

pdf𝐶𝑖 ,𝐶 𝑗
(𝑎) =

histogram𝐶𝑖 ,𝐶 𝑗
[𝑎]∑𝑘+𝑧

𝑠=𝑘 histogram𝐶𝑖 ,𝐶 𝑗
[𝑠]

, 𝑘 ≤ 𝑎 ≤ 𝑘 + 𝑧

Eventually, each change rule is described by a probability
distribution – a prerequisite for the next step.

4.3.2 Distributional Difference Measure. The probability dis-
tributions quantify how two change patterns occur together
within a defined time frame. They do not classify a change re-
lationship as being interesting, common or merely random. We
observe that the distributions of most captured (in particular
frequent) change patterns in a database look similar, and that
there is one dominant pattern. This dominant pattern might re-
flect the specific domain or the frequent mutual co-occurrence
of change rules. E.g., two Wikipedia infoboxes can change daily,
but the changes are not necessarily semantically dependent on
each other. If this random chance of mutual occurrences dom-
inates change data, it is reflected in most change distributions.
The same might be true for a domain, where a logging service
updates tables in static time intervals.

We express this dominant pattern with a probability distri-
bution, too: we average all change rules into a general change
distribution. The number of all change rules is denoted as 𝑑 .

pdfgeneral(𝑎) =
∑
𝐶𝑖 ,𝐶 𝑗 pdf𝐶𝑖 ,𝐶 𝑗

(𝑎)
𝑑

, 𝑘 ≤ 𝑎 ≤ 𝑘 + 𝑧

As we want to analyze large amounts of data, an efficient
calculation of the general probability distribution is required. We

Table 2: General statistics of all datasets. The table shows
the number of timestamps (# T), event types (# ET) and
event counts (# EC) per dataset.

Dataset Category #T #ET #EC

Wikipedia

Education 35 062 1 101 267 1 529 207
Geography 35 062 6 153 201 6 684 065
Media 35 062 4 087 946 6 651 898
Military 35 062 479 347 841 905
Politics 35 062 1 651 499 2 488 533
Sports 35 062 5 879 497 10 847 686
Transport 35 062 13 174 17 813

Socrata – 359 55 122 4 373 371

do this by approximating the general distribution from a sampled
subset. We draw one rule for each antecedent 𝐶𝑖 into this subset.
The general distribution resembles the average change rule and
should therefore incorporate dominating properties.

To find diverging distributions, we employ the Jensen-Shannon
divergence, which is a measure used to quantify the difference
of two probability distributions [24]. We use it to quantify the
difference between the general distribution and the probability
distribution of a change rule. A large difference score expresses
a change distribution that is very different from the dominating
norm and vice versa.

The final result we obtain is a ranking of all rules by their
Jensen-Shannon divergence score. This ranking helps determine
which rules should be manually reviewed for further use. In
our experiments we show that this is indeed the case: We have
discovered 20 832 change rules in total which could be reduced
to 309 salient ones.

5 EXPERIMENTS
After introducing our concept of change rules and describing
our approaches to mine and rank them, this section explores our
approach in practice. We employ our algorithm on two different
real-world datasets to demonstrate its overall performance and
show exemplary results of the change rules we find for unary
change patterns.

5.1 Data and Preprocessing
General statistics about all datasets are reported in Table 2. In
the following, we elaborate on how we extracted and prepared
the data from both the Wikipedia and Socrata data source.

5.1.1 Wikipedia. Our first dataset comprises the changes of
Wikipedia infoboxes, an example of which is shown in Figure 1.
Wikipedia infoboxes contain data in the form of key-value pairs
and belong to a particular template type, e.g., infobox person.
Bleifuß et al. [8] matched versions of the same infoboxes in
Wikipedia articles and, as a result, identified each infobox with
a unique and stable key. We consider changes from January 1,
2015, to December 31, 2018 at an hourly granularity, ignoring
initial inserts of infobox values, e.g., upon the creation of a new
infobox or the addition of a field.

We transform these infobox versions to a relational structure
through the following modelling: infobox template types trans-
late to tables, the keys of the infoboxes serve as row identifiers,
and the keys of an infobox value as column identifiers. Due to
renaming of infobox template types, restructurings and merges

97

of infobox template types, or simply due to vandalism, infoboxes
can use different templates throughout their lifetime (even with-
out changes to the rest of the infobox). To be able to assign these
infoboxes to one table, we always use the last infobox template
type in the change history of a given infobox as the table identi-
fier.

The infobox template types are rather fine-grained, so our map-
ping to the relational model would create 8 263 tables, whereas
we do not expect rules between completely unrelated infoboxes.
To reduce the search space for the change rule mining and lower
the probability of finding random rules, we grouped several ta-
bles, i.e., infobox template types, by topics. For this purpose, we
ranked the infobox template types by the number of infoboxes
and manually assigned a topic to the top 200 of them, if a topic
was evident considering the template name. Thus, we derived
the seven categories education, geography, media, military, poli-
tics, sports, and transport. Overall, these categories include over
2.4 million infoboxes of 153 infobox template types. Table 3 shows
the number of infobox types per category.

Filtering all changes by these categories, results in a final data-
set containing almost 30 million occurrences of nearly 20 million
change patterns. As we can see in Figure 3(i), the dataset is sparse
– the majority of change patterns occurs infrequently, and the
number of change patterns decreases for higher frequencies. 84 %
of change patterns occur once, and only 66 599 change patterns
have at least 20 occurrences in four years.

5.1.2 Socrata. For the Socrata dataset, we obtained table his-
tories by downloading daily snapshots of the published tables
over the course of one year, from November 1, 2019, to Novem-
ber 2, 2020. For each table, we then generated stable identifiers for
columns and rows using a matching approach by Bleifuß et al. [8]
and are thus able to extract changes on field-level granularity.

The final dataset that we use for our evaluation consists of
48 706 tables containing on average 18 columns and 416 rows. Be-
cause the API was unavailable on some days, the dataset contains
snapshots for 359 timestamps; we simply ignore missing days.
Whenever any value of a field has been changed, the dataset
contains a new version of the respective table.

First of all, we extracted changed fields and the change types
by comparing the subsequent versions of the tables. We then
aggregated the set of changes on a column granularity and ob-
tained 22 456 464 occurrences of 583 145 change patterns – Fig-
ure 3 shows their distribution. As we can see, the vast majority of
change patterns occur fewer than ten times. Except for these in-
frequent change patterns, the number of occurrences per change
pattern is within one order of magnitude for all days in the data-
set. Thus, the data is denser than the Wikipedia data.

For the Socrata dataset, we performed an additional step of
preprocessing based on two observations. On the one hand, in-
sertions or deletions of rows always affect all columns. On the
other hand, there are changes within multiple columns of a table
on the same day. As a result, there are multiple change patterns
with the same occurrences. By grouping these change patterns,
we reduce our input data from 583 145 to 52 565 change patterns.
This is a reduction by 91 %, without an information loss.

5.2 Experimental Setup
To ensure reproducibility, we state the parameters and hardware
we chose to retain the presented results.

0 200 400 600 800 1000
number of occurrences

0100
101
102
103
104
105
106
107

ch
an

ge
 p
at
te
rn
s

(i) Wikipedia

0 50 100 150 200 250 300 350
number of occurrences

0100
101
102
103
104
105

ch
an

ge
 p
at
te
rn
s

(ii) Socrata, aggregated on column-level granularity

Figure 3: Distribution of change pattern occurrences in the
two datasets (bin width = 10 occurrences).

5.2.1 Algorithm Performance Experiments. The experiments
were performed on a server equipped with an Intel Xeon E5-
2630 processor with 10 cores/20 threads and 64 GB RAM. We
implemented the CR-Miner algorithm in Python and executed it
with a Python 3.7.6 interpreter.

The algorithm’s relevant performance dimensions are con-
fidence and support thresholds, the number of points in time,
window size, input size, and partition size. The last dimension af-
fects only performance, whereas the others influence the results,
too. We used predefined subsets of change patterns with their
occurrences and fixed the parameters that were not part of the
current experiment. Unless stated otherwise, we used as defaults
an input sample with 1 000 change patterns that are randomly
sampled from the respecting dataset and consider changes at all
points in time of the input dataset, a window size of 11, mini-
mum support of 0, maximum support of 1, minimum confidence
of 0.9, and partition size of 200 in a single-core setup. For the
experiments on input size and partition size, we used ten cores.
Reported times are the average run-time of three executions.

5.2.2 Obtaining Change Rules. For the Wikipedia dataset, we
perform the rule mining only for changes within the same cate-
gory. To avoid random rules, we only consider change patterns
that occur at least 20 times and at most at 45 % of the days. More-
over, we group the change patterns according to their occur-
rence frequency. We define frequency intervals with a size of
#days · 0.05 and apply our algorithm to change patterns with
frequencies within the same interval. I.e., we use the interval
boundaries divided by the 35 064 hours of the four years from
2015 to 2018 as relative support thresholds. The window size is
24 hours.

For the Socrata dataset, we employ a minimum support of
0.05 and a maximum support of 0.45, given a window size of 11
days. Furthermore, the constraint that antecedent and consequent
must stem from the same Socrata domain, which mostly matches
geographic regions, was included. To check how many change
rules with unusual distributions are found, we rank the obtained

98

0.0 0.2 0.5 0.8 1.0
0

100

101

ru
n-
tim

e
[s
]

Socrata
Wikipedia

(i) Ratio of all points in time

0 2 5 8 10
0

100

101

ru
n-
tim

e
[s
]

Socrata
Wikipedia

(ii) Window size

0 100 000 200 000
0

5 · 10³

10⁴

ru
n⁴
tim

e 
[s
]

Socrata
Wikipedia

(iii) Input size, cores = 10

0.0 0.2 0.5 0.8 1.0
0

100

101

ru
n-
tim

e
[s
]

Socrata
Wikipedia

(iv) Minimum confidence

0.0 0.2 0.5 0.8 1.0
0

100

101

ru
n-
tim

e
[s
]

Socrata
Wikipedia

(v) Minimum support

0.0 0.2 0.5 0.8 1.0
0

100

101

ru
n-
tim

e
[s
]

Socrata
Wikipedia

(vi) Maximum support

100 1 000
0

100

101

102

103

ru
n-
tim

e 
[s
]

20 000 changes
10 000 changes

5 000 changes
1 000 changes

(vii) Partition size (Socrata), cores = 10

100 1 000 10 000
0

100

101
102
103
104

ru
n-
tim

e 
[s
]

200 000 changes
100 000 changes
50 000 changes

30 000 changes
20 000 changes
10 000 changes

(viii) Partition size (Wikipedia), cores = 10

Figure 4: Run-times w.r.t. dimensions. If not stated otherwise, input size = 1 000 change patterns, minimum support = 0,
maximum support = 1, minimum confidence = 0.9, partition size = 200, cores = 1.

change rules by their deviation from the sampled general prob-
ability distribution using the Jensen-Shannon divergence score.
We then determine a cut-off by manual revision. For both data-
sets, the minimum confidence enforced is 0.9 and the gap 𝑘 = 0
points in time.

5.3 Run-time Performance Experiments
The run-time experiments are divided into two parts. We first
investigate the impact of different parameter settings and in-
put data sizes on the performance of CR-Miner. Afterwards we
compare CR-Miner to WINEPI [27], an algorithm for mining
serial episodes and show that WINEPI is unable to handle large
datasets.

5.3.1 CR-Miner Performance in Different Settings. We visu-
alize CR-Miner’s run-time regarding the different dimensions
in Figure 4. The first experiment examines the influence of the
number of points in time. As we can see in Figure 4(i), there
is an approximately linear dependency between the number of
points in time and the run-time for both datasets. In Section 4,
we explained that our algorithm iterates over the points in time
once for each combination of input partitions. Thus, we expect
this relationship.

The size of the sliding window also affects performance. Fig-
ure 4(ii) illustrates that the behavior of CR-Miner differs when
applied to different datasets. For the Socrata dataset, wider win-
dows lead to increasing run-times, as expected. The window size
influences the number of active antecedents, which our algorithm

combines with the occurrences of consequents. This set of ac-
tive antecedents grows with larger window sizes. Nevertheless,
frequent change patterns will always be present in this set once
a specific window size is reached. Thus, the curve flattens, and
the run-time does not differ considerably for large window sizes.
For the Wikipedia dataset, the run-time is roughly constant. The
reason for this is the sparsity of the dataset: infoboxes do not
change at high frequencies, and the number of active antecedents
barely increases for time windows covering several hours.

Another dimension is the input data size. We define it as the
number of change patterns whose occurrences we need to con-
sider. Its relationship to the run-time can be seen in Figure 4(iii).
For both datasets, the plot shows a quadratic dependency. Disre-
garding pruning, CR-Miner has to combine all occurrences of all
change patterns within the specified window size. As the number
of these combinations increases quadratically with the number
of change patterns, we expect this behavior.

Quality thresholds, which are enforced for the resulting change
rules, also affect the performance. When investigating the min-
imum confidence, we observe a negative correlation for the
Socrata dataset, as seen in Figure 4(iv). CR-Miner uses the mini-
mum confidence for pruning, i.e., it avoids combinations of con-
sequents and active antecedents for a given point in time. For this
dataset, pruning is effective. Due to the previously discussed spar-
sity of the Wikipedia dataset, pruning does not have a noticeable
effect.

Figures 4(v) and 4(vi) show the experimental results for the
support thresholds. Both thresholds are used for pruning and
filter the input of CR-Miner, too. In general, run-times decrease

99

when a higher minimum support is required. For the Socrata
dataset, this results in an approximately quadratic decrease, with
matches our observations regarding input size. As seen before,
the run-time of CR-Miner when applied to the Wikipedia dataset
is constant for most of the maximum support thresholds. Only for
extremely low values, the run-time is significantly higher. Again,
the cause for this is the data distribution: In Section 5.1, we men-
tioned that over 80 % of the change patterns have only a single
occurrence, and no change pattern has a support higher than
0.1. Thus, when enforcing higher thresholds, the input dataset
is empty. Regarding maximum support, we observe the inverse
behavior for both datasets.

Finally, the partition size is a pure performance parameter of
our algorithm and does not affect the results. Figure 4(vii) shows
the run-time for different input and partition sizes when applied
to the Socrata dataset. For all input sizes, larger partition sizes lead
to longer run-times for two reasons. First, change patterns are not
equally correlated for different combinations of partitions. Thus,
the algorithm runs longer for some combinations, and with fewer
partitions, the work is less evenly distributed. Second, we use ten
cores in this experiment. Not all of them are used at a specific
partition size, in particular when there are fewer combinations
of partitions than cores. The graph shows an extreme example
of this behavior for the input size 1 000: Once the partition size
equals the input size, all work is done by one core. Yet, for this
small input size, a partition size of 200 performs slightly better
than other choices.

The results for the Wikipedia dataset, as shown in Figure 4(viii),
are different. Very small partition sizes cause a significant in-
crease in run-time. CR-Miner iterates over all points in time for
each combination of partitions. Their number is higher due to
the hourly granularity, and as the change pattern occurrences
are sparse, this leads to overhead. For large partition sizes, the
behavior resembles the Socrata dataset. Still, there is a reason-
able partition size for all input sizes, which lies around 10 000. In
conclusion, the choice of a suitable partition size depends on the
characteristics of the dataset.

5.3.2 Comparative Experiments against WINEPI. As mentioned
in Section 2, the task of mining change rules is similar to episode
mining [27]. However, existing techniques do not scale to the
sizes of our datasets. We show this by comparing against an imple-
mentation of WINEPI [27]6. We tweaked WINEPI to search only
for episodes of size 2 to allow for a fair comparison to CR-Miner,
which also only discovers change rules with two elements. Both
algorithms are implemented in Python, were run on the same
server, and were given the same filtering parameters (minimum
support and confidence) as detailed in Section 5.2.2. Additionally,
CR-Miner was also given the maximum support parameter, which
WINEPI does not support. Main memory was limited to 64 GB
and the algorithms were terminated after 24 hours. As WINEPI
is unable to process datasets of our size, we randomly sampled
the event types from our datasets with different sampling rates.

Figure 5 shows the results for the Socrata and the Wikipedia
datasets. Run-time for the wikipedia dataset was obtained by
processing all categories (see Table 2) individually and summing
up the individual run-times. The figure shows that WINEPI al-
ready takes longer than 24 hours to complete for 10 % of the
Socrata dataset and 1 % of the Wikipedia dataset. Furthermore,
as WINEPI materializes all candidates before validation, it runs
out of memory for any sample of 40 % or higher of the Socrata
6https://github.com/HPI-Information-Systems/winepi_serial_length2

1e-5 1e-3 0.1 1.0
0

25000

50000

75000

R
un

tim
e

[s
]

Socrata

CRMiner (nThreads=1) CRMiner (nThreads=10) WINEPI
Normal DNF OOM

1e-5 1e-3 0.1 1.0
Sample size

Wikipedia

Figure 5: Run-time of all approaches. Datapoints where an
approach was not able to finish in time are plotted as 24
hours. The shapes show whether the process did not finish
in time (DNF) or ran out of memory (OOM).

Table 3: Wikipedia infobox types and change rules per cat-
egory.

Change Rules
Category # Infobox Types overall external
Education 8 23 0
Geography 18 81 0
Media 33 951 62
Military 6 171 4
Politics 17 649 18
Sports 51 17 165 4 372
Transport 14 5 0

dataset (5 % or higher for Wikipedia). This demonstrates the su-
periority of CR-Miner, which is able to handle the full datasets
in a comparably short amount of time, even with just a single
thread.

5.4 Discovered Change Rules
In the following, we examine the discovered change rules for
both datasets. The results differ in terms of their interpretability:
Changes in Wikipedia infoboxes can usually be explained without
further domain knowledge, whereas the Socrata data lacks this
advantage due to its administrative and numeric nature.

5.4.1 Change Rules in Wikipedia. Within the seven categories,
our algorithm discovered more than 19 000 change rules in 77
minutes. As we can see in Table 3, these rules are not equally dis-
tributed between the categories: The vast majority belongs to the
sports category. We distinguish internal and external rules, where
antecedent and consequent are change patterns of the same and
different infobox instances, respectively. It seems natural that
multiple values of the same infobox are frequently modified si-
multaneously and create many uninteresting change rules. Thus,
we do not consider internal rules in all further results and dis-
tinguish between the total and external count in Table 3. After
excluding those internal rules, 4 456 change rules between differ-
ent infobox instances, i.e., external rules, remain.

The sports category still provides the vast majority of external
rules, namely 4 372 rules. One typical example of rules in this
category is the one between the football players Steven Whittaker
and Efe Ambrose, as introduced earlier. Whenever Whittaker’s
number of matches played for the fourth club in his career is
updated, Ambrose’s number of matches for his sixth club is up-
dated with a confidence of 0.97 within 17 hours. With an absolute

100

support of 31 occurrences for this change rule, the rule holds
in 31 out of 32 cases. Both counters refer to the same club, the
Edinburgh-based Hibernian F.C., and both players signed there
from 2017 on. Thus, they mostly participated in the same football
matches, and their number of matches are updated accordingly.

This is just one example of a majority of change rules in the
sports category that capture correlating numbers of matches or
points of multiple athletes. These correlations result in numer-
ous rules, because rules capture pair-wise relations. To facilitate
further investigation, we cluster change rules as subgraphs of
infoboxes, where the rules are the edges. Thus, an infobox is in a
cluster together with all other infoboxes that are connected by a
change rule. This results in 176 clusters containing more than two
infoboxes, and the same number of clusters with two infoboxes
being interrelated. The majority of these clusters solely contain
athletes that compete in the same team or league. E.g., Steven
Whittaker and Efe Ambrose are part of a group of 13 interrelated
players – all of them playing for Hibernian F.C. Other clusters
also contain players of specific football clubs, occasionally com-
bined with their coaches, or competitors in specific leagues, e.g.,
race drivers participating in the same series. For instance, clus-
ters contain 13 DTM or 11 WTCC racing drivers, and numerous
football and rugby teams. Only one cluster in the sports category
does not consist of athletes and instead contains three infoboxes
about basketball clubs’ 2017/18 teams that competed in the same
league.

The category with the second-highest number of external rules
is media, for which we found 62 change rules. Applying the same
clustering as for the sports category results in 12 clusters – eleven
with two infoboxes, three with three articles, and one with nine
infoboxes. This last cluster contains rules between genre updates
of nine songs by the band Talking Heads. There has been a multi-
article edit war concerning the genre of the songs, which shows
in rare but repeating changes matching the pattern in the period
of October 2016 to November 2018. The remaining clusters in the
media category can similarly be explained by edit wars affecting
multiple articles’ infoboxes, except for three change rules that
have different TV series as consequent and antecedent. These
rules, which each involve two infoboxes, contain an update of
the infobox’s number of episodes. E.g., the Indian TV series Agar
Tum Saath Ho and TV Ke Uss Paar premiered on October 3, 2016.
Their episodes aired on the same days until their final episodes
were broadcast on March 11, and March 25. Thus, editors updated
the respective Wikipedia infoboxes in similar intervals.

𝐶id=Agar. . . , p=num_episodes, type=update
[0, 16]
======⇒ 𝐶id=TV. . . , p=num_episodes, type=update

Nearly all remaining change rules in the military and politics
categories are caused by edit wars as well. The only exception
is a cluster of three infoboxes concerning the 2018 election of
the US senate in California, this state’s governor and lieutenant
governor. These three elections happened on the same date, and
during counting, their results were updated in the same periods.

Concluding, not a single change cluster contains infoboxes
that miss a naturally explicable interrelation, and our approach
performs well for this dataset and a series of domains. Besides
edit wars, our algorithm solely found rules with real-world events
causing data changes in multiple places, emphasizing that our
approach yields change rules that fulfill the definition and, more
importantly, provide semantic insights to the dataset.

5.4.2 Change Rules in Socrata. Overall, we discovered 20 832
change rules in the Socrata dataset in 33 minutes. The nature of

this dataset makes it difficult to assess the quality of these change
rules manually without further domain knowledge. Manual re-
view of such a large number of change rules is infeasible, so we
applied our ranking method to the obtained change rules, and
determined a cut-off threshold, which reduced the number of
interesting results to 309. We describe our ranking method in
more detail in Section 5.5

We illustrate a problem when manually evaluating change
rules in the Socrata dataset, for which we have no further do-
main knowledge, by examining the rank 8 change rule. The rule’s
antecedent and consequent refer to the table Child Care & Youth
Camp Licensing Program by the Connecticut Office of Early Child-
hood7. The data is part of the licensing process for child care
programs and youth camps to meet state regulations. The table
contains 15 100 rows and 49 columns, e.g., the license number,
the director, and the attention (for addresses). The change rules
themselves state that an insert in the Director column is always
followed by two deletes; one delete each in the LicenseNumber
and Attention columns:

𝐶p=Director, type=insert
[1, 1]
=====⇒𝐶p=LicenseNumber, type=delete

𝐶p=Director, type=insert
[1, 1]
=====⇒𝐶p=Attention, type=delete

Figure 6(ii) shows the probability distribution of the rule. It
reveals that the consequent always follows on day 1 after the
antecedent’s occurrence. The change rule does not tell us how
many fields change within the columns or if they all refer to the
same row. It only states that something changes in the respective
columns. Note that a change of type insert requires a former
null value in an existing field or the addition of an entirely new
field that is also part of a new row. One might hypothesize that
there are several reasons to insert a new director. Either a new
director with a new organization might apply for the licensing,
or an existing organization appoints a new director and notifies
the authority. While in the first scenario, an insert is reasonable,
the second scenario poses the question of why the field is not
just updated. The dataset owner might create a new one instead
of an update, because of the application process design, legal
requirements, or the table’s rights-management. The following
consequent’s changes of LicenseNumber and Attention might
be part of the same row, but this is not necessarily so. Being
part of the same row would imply an underlying connection
between LicenseNumber, Attention and Director of the same
entry, which is reasonable. This exemplary change rule illustrates
an inherent problem of evaluating found change rules without
further domain knowledge or ground truth.

5.5 Ranking Change Rules
From the Socrata dataset we obtained 20 832 change rules in total,
which we ranked according to their Jensen-Shannon divergence
score as described in section 4.3. The general probability distri-
bution for change rules we obtained from the dataset is shown in
Figure 6(i). It shows that antecedent and consequent of a change
rule occur primarily concurrently. Following the ranking’s ob-
jective of finding rules that differ from the dominating norm, we
expect top-ranked rules to have distribution maxima on day 1 or
later to call them interesting (and not on day 0). This is indeed
the case for the top 309 change rules in our ranking, i.e., they
are distributed differently than the general probability distribu-
tion. We therefore conclude that the ranking works as desired,

7https://data.ct.gov/Business/Child-Care-Youth-Camp-Licensing-Program-Data/h8mr-dn95

101

0 1 2 3 4 5 6 7 8 9 10
days

0.0
0.2
0.4
0.6
0.8
1.0

pr
ob

ab
ili
ty

(i) General probability distribution

0 1 2 3 4 5 6 7 8 9 10
days

0.0
0.2
0.4
0.6
0.8
1.0

pr
ob

ab
ili
ty

Rank 8
Rank 19
Rank 341
Rank 342
Rank 1000

(ii) Probability distributions of selected rules

Figure 6: Experiment results of the change rule ranking
on the Socrata dataset.

and change rules with deviating distributions can be obtained
through it.

In more detail, we see three ranges of change rules within the
ranking of the change rules discovered in the Socrata dataset. The
first range consists of consistently unusually distributed rules
(1 < 𝐾 ≤ 309). The second range is imprecise (309 < 𝐾 ≤ 354),
i.e., we observe both change rules with distributions that differ
from the dominant pattern and some with similar distributions.
The third range (𝐾 > 354) contains only change rules whose
distributions are similar to the general one, and are thus not
interesting in this context. Figure 6(ii) shows corresponding ex-
amples. Top-ranked change rules of the first range (e.g., rules
that are ranked 8th and 19th) are characterized by peaks on day 1
or later. However, several limitations have to be considered. Our
ranking approach depends on the existence of a dominant pattern.
While we always found such a pattern in our datasets, this might
not be generalizable. Also, an occurrence of multiple dominant
patterns is conceivable. Further investigation on other datasets
will be required.

To evaluate the ranking approach, we injected occurrences of
synthetic change rules into the Socrata dataset and each of the
Wikipedia categories. To this end, we randomly chose changes
of five antecedent change patterns out of all points in time. For
each antecedent, we chose consequent changes that always oc-
cur at one or two fixed timespans later, according to random
support and confidence values. After applying CR-Miner and
ranking the change rules, we automatically tested whether the
injected change rules (i) were discovered with correct histograms,
and (ii) are ranked high. Criterion (i) was indeed fulfilled for all
injected rules across the datasets. For evaluating Criterion (ii),
we use the mean and median rank of the injected rules. I.e., if
all five injected rules are ranked at the top five positions, mean
and median rank are both 3. This was indeed the case for four
Wikipedia categories; for another two, at least the median rank
is 3. For the other datasets and injected rules, the mean rank
reaches up to 16.6, and the median rank up to 10. Thus, most of
the injected rules are ranked high, and the proposed ranking is
feasible to highlight rules with unusual distributions.

6 CONCLUSION AND FUTURE WORK
This paper introduced the concept of change rules, including
formal definitions and showing their relationship to previously
defined types of rules and rules. Furthermore, we proposed the
CR-Miner algorithm to discover such change rules and showed
how the results could be reduced to the most interesting rules
even without expert knowledge about the dataset. We applied our
approach to two real-world datasets and presented the results.

Experiments confirm that our algorithm scales quadratically
with its input size, whereas it benefits from a stricter confidence
threshold and support constraints and sparse data. For the Socrata
dataset of 35 107 change patterns on a column granularity with
53 occurrences on average over a period of 359 days, 309 rare
change rules with support between 0.05 and 0.1 and confidence of
at least 0.9 could be discovered within 33 minutes using ten cores.
For the Wikipedia dataset of almost 20 million change patterns
with occurrences within four years, over 19 000 change rules with
support between 0.05 and 0.45 and confidence of at least 0.9 were
discovered within 77 minutes. In an incremental scenario, our
algorithm can avoid having to re-process the whole dataset. This
is possible by serializing intermediate histograms and running
Algorithm 1 for new points in time. However, there might be
pruning rules that are no longer applicable.

The optional post-processing step of our algorithm, which
compares the probability distributions of found change rules,
is able to rank rules precisely and can help to heavily reduce
the change rules to review. In our experimental setup, we could
reduce the total number of results of more than 20 832 rules to
309 interesting ones to review for the Socrata dataset.

With the explorative nature of our work, open questions and
challenges remain in this field of research. We now name some
of the more relevant issues as potential next steps building upon
our contribution.

We have focused on the binary event of a change, i.e., whether
a change of value in an entity occurred or not. It shall be inter-
esting to consider the value itself – before and after the change
event in various use cases. Thus, the severity of a change can be
measured and, for instance, used as a weight in the algorithm.
Moreover, we have concentrated our work on finding change
rules where the antecedent as well as the consequent consist of
one change pattern. However, our proposed framework would
also allow multiple change pattern as antecedent, increasing both
the search space and the potential interesting rules to find.

Furthermore, we can imagine possible change rules not only at
the same levels of granularity, as we have explored in this paper,
but also rules across different granularity levels. For example, a
field update in one table can lead to a row insert in another table.
Traversing those, adds another layer of complexity to the number
of candidate change rules.

While we have mined the data for change rules that fulfil
certain support and confidence thresholds over the entire time
frame, some rules might occur only during a specific period (e.g.,
a specific season or only as long as two football players play
for the same club) or show a dynamic pattern. We see potential
in combining or approach with knowledge from sequential rule
mining to investigate on those dynamic change rules.

ACKNOWLEDGMENTS
We thank Divesh Srivastava and Dmitri V. Kalashnikov for their
continued support of our change exploration endeavors in the
context of the Janus project (www.IANVS.org).

102

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining Associ-

ation Rules between Sets of Items in Large Databases. In Proceedings of the
International Conference on Management of Data (SIGMOD). 207–216.

[2] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Min-
ing Association Rules in Large Databases. In Proceedings of the International
Conference on Very Large Databases (VLDB). 487–499.

[3] James F Allen. 1983. Maintaining knowledge about temporal intervals. Com-
mun. ACM 26, 11 (1983), 832–843.

[4] Xiang Ao, Ping Luo, Chengkai Li, Fuzhen Zhuang, and Qing He. 2015. Online
frequent episode mining. In Proceedings of the International Conference on Data
Engineering (ICDE). 891–902.

[5] Xiang Ao, Haoran Shi, Jin Wang, Luo Zuo, Hongwei Li, and Qing He. 2019.
Large-scale frequent episode mining from complex event sequences with
hierarchies. ACM Transactions on Intelligent Systems and Technology (TIST) 10,
4 (2019), 1–26.

[6] Sikha Bagui, Jiri Just, and Subhash C. Bagui. 2009. Deriving strong association
mining rules using a dependency criterion, the lift measure. International
Journal of Data Analysis Techniques and Strategies (IJDATS) 1 (2009), 297–312.
Issue 3.

[7] Tobias Bleifuß, Leon Bornemann, Theodore Johnson, Dmitri V. Kalashnikov,
Felix Naumann, and Divesh Srivastava. 2018. Exploring Change: A New
Dimension of Data Analytics. PVLDB 12, 2 (2018), 85–98.

[8] Tobias Bleifuß, Leon Bornemann, Dmitri V. Kalashnikov, Felix Naumann,
and Divesh Srivastava. 2021. Structured Object Matching across Web Page
Revisions. In Proceedings of the International Conference on Data Engineering
(ICDE). 1284–1295.

[9] Siarhei Bykau, Flip Korn, Divesh Srivastava, and Yannis Velegrakis. 2015. Fine-
grained controversy detection in Wikipedia. In Proceedings of the International
Conference on Data Engineering (ICDE). 1573–1584.

[10] Yi-Cheng Chen, Wen-Chih Peng, and Suh-Yin Lee. 2015. Mining temporal
patterns in time interval-based data. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 27, 12 (2015), 3318–3331.

[11] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk,
Rajeev Motwani, Jeffrey Ullman, and Cheng Yang. 2001. Finding interesting
associations without support pruning. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 13 (2001), 64 – 78.

[12] Xin Luna Dong, Anastasios Kementsietsidis, and Wang-Chiew Tan. 2016. A
Time Machine for Information: Looking Back to Look Forward. SIGMOD
Record 45, 2 (2016), 23–32.

[13] Philippe Fournier-Viger, Chun-Wei Lin, B. Vo, Tin C. Truong, Ji Zhang, and H.
Le. 2017. A survey of itemset mining. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 7, 4 (2017), e1207.

[14] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, and Philip S. Yu. 2019. A Survey of Parallel Sequential Pattern Mining.
ACM Transactions on Knowledge Discovery from Data (TKDD) 13, 3, Article 25
(2019).

[15] Michael Hahsler. 2006. A Model-Based Frequency Constraint for Mining
Associations from Transaction Data. Data Mining and Knowledge Discovery
13 (2006), 137–166.

[16] Jiawei Han and Y. Fu. 1995. Discovery of Multiple-Level Association Rules
from Large Databases. In Proceedings of the International Conference on Very
Large Databases (VLDB).

[17] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without
Candidate Generation. SIGMOD Record 29, 2 (2000), 1–12.

[18] Po-Shan Kam and Ada Wai-Chee Fu. 2000. Discovering temporal patterns for
interval-based events. In International Conference on Data Warehousing and
Knowledge Discovery (DaWaK). Springer Verlag, 317–326.

[19] Yun Sing Koh and Sri Devi Ravana. 2016. Unsupervised Rare Pattern Mining:
A Survey. ACM Transactions on Knowledge Discovery from Data (TKDD) 10, 4,
Article 45 (2016).

[20] Yun Sing Koh and Nathan Rountree. 2005. Finding Sporadic Rules Us-
ing Apriori-Inverse. In Advances in Knowledge Discovery and Data Mining
(PAKDD). 97–106.

[21] Yun Sing Koh, Nathan Rountree, and Richard O’Keefe. 2006. Mining Interesting
Imperfectly Sporadic Rules. In Advances in Knowledge Discovery and Data
Mining (PAKDD). Springer Verlag, 473–482.

[22] P. Lenca, B. Vaillant, Patrick Meyer, and S. Lallich. 2007. Association Rule
Interestingness Measures: Experimental and Theoretical Studies. In Quality
Measures in Data Mining. 51–76.

[23] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. 2008.
PFP: Parallel FP-Growth for Query Recommendation. In Proceedings of the
ACM Conference on Recommender Systems (RECSYS). 107–114.

[24] J. Lin. 1991. Divergence measures based on the Shannon entropy. IEEE
Transactions on Information Theory (TOIT) 37, 1 (1991), 145–151.

[25] Ming-Yen Lin, Suh-Yin Lee, et al. 2005. Fast discovery of sequential patterns
through memory indexing and database partitioning. Journal of Information
Science and Engineering (JISE) 21, 1 (2005), 109–128.

[26] Bing Liu, Wynne Hsu, and Yiming Ma. 1999. Mining Association Rules with
Multiple Minimum Supports. In Proceedings of the International Conference on
Knowledge discovery and data mining (SIGKDD). Association for Computing
Machinery, 337–341.

[27] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. 1997. Discovery of
frequent episodes in event sequences. Data Mining and Knowledge Discovery
1, 3 (1997), 259–289.

[28] F. Masseglia, F. Cathala, and P. Poncelet. 1998. The PSP approach for mining
sequential patterns. In European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD). 176–184.

[29] Bhabesh Nath, Dhruba K Bhattacharyya, and Ashish Ghosh. 2013. Incremental
association rule mining: A survey. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 3 (2013).

[30] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos.
2005. Discovering frequent arrangements of temporal intervals. In IEEE
International Conference on Data Mining (ICDM). 354–361.

[31] Dhaval Patel, Wynne Hsu, and Mong Li Lee. 2008. Mining relationships among
interval-based events for classification. In Proceedings of the International
Conference on Management of Data (SIGMOD). 393–404.

[32] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto,
Qiming Chen, Umeshwar Dayal, and Mei-Chun Hsu. 2004. Mining sequential
patterns by pattern-growth: The prefixspan approach. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 16, 11 (2004), 1424–1440.

[33] Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining sequential pat-
terns: Generalizations and performance improvements. In Proceedings of the
International Conference on Extending Database Technology (EDBT). 1–17.

[34] Laszlo Szathmary, Amedeo Napoli, and Petko Valtchev. 2007. Towards Rare
Itemset Mining. Proceedings of the International Conference on Tools with
Artificial Intelligence (ICTAI) 1, 305–312.

[35] L. Szathmary, Petko Valtchev, A. Napoli, and R. Godin. 2012. Efficient Vertical
Mining of Minimal Rare Itemsets. In International Conference on Concept
Lattices and Their Applications (CLA). 269–280.

[36] Feng Tao, Fionn Murtagh, and Mohsen Farid. 2003. Weighted Association Rule
Mining Using Weighted Support and Significance Framework. In Proceedings of
the International Conference on Knowledge discovery and data mining (SIGKDD).
Association for Computing Machinery, 661–666.

[37] Wil M.P. van der Aalst. 2016. Process Mining - Data Science in Action, Second
Edition. Springer. https://doi.org/10.1007/978-3-662-49851-4

[38] Ke Wang, Yu He, and Jiawei Han. 2003. Pushing support constraints into
association rules mining. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 15, 3 (2003), 642–658.

[39] Wikipedia. 2021. Wikipedia Help Page on Wikipedia Infoboxes. https://en.
wikipedia.org/wiki/Help:Infobox

[40] Chung-Ching Yu and Yen-Liang Chen. 2005. Mining sequential patterns from
multidimensional sequence data. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 17, 1 (2005), 136–140.

[41] Mohammed J. Zaki. 2000. Scalable Algorithms for Association Mining. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 12, 3 (2000), 372–390.

[42] Mohammed J Zaki. 2001. SPADE: An efficient algorithm for mining frequent
sequences. Machine learning 42, 1 (2001), 31–60.

[43] Mohammed J. Zaki and Wagner Meira Jr. 2020. Data Mining and Analysis:
Fundamental Concepts and Algorithms (2 ed.). Cambridge University Press.

103

