
Enabling Change Exploration
Vision Paper

Tobias Bleifuß
Hasso Plattner Institute
tobias.bleifuss@hpi.de

Theodore Johnson
AT&T Labs – Research

johnsont@research.att.com

Dmitri V. Kalashnikov
AT&T Labs – Research
dvk@research.att.com

Felix Naumann∗
Hasso Plattner Institute
felix.naumann@hpi.de

Vladislav Shkapenyuk
AT&T Labs – Research

vshkap@research.att.com

Divesh Srivastava
AT&T Labs – Research
divesh@research.att.com

ABSTRACT
Data and metadata suffer many different kinds of change: values
are inserted, deleted or updated; entities appear and disappear;
properties are added or re-purposed, etc. Explicitly recognizing,
exploring, and evaluating such change can alert to changes in data
ingestion procedures, can help assess data quality, and can improve
the general understanding of the dataset and its behavior over time.
We propose a data model-independent framework to formalize such
change. Our change-cube enables exploration and discovery of such
changes to reveal dataset behavior over time.

ACM Reference format:
Tobias Bleifuß, Theodore Johnson, Dmitri V. Kalashnikov, Felix Naumann,
Vladislav Shkapenyuk, and Divesh Srivastava. 2017. Enabling Change Ex-
ploration. In Proceedings of ExploreDB’17, Chicago, IL, USA, May 14-19, 2017,
3 pages.
https://doi.org/http://dx.doi.org/10.1145/3077331.3077340

1 EVER-CHANGING DATABASES
Data change, all the time. This undeniable fact has motivated the
development of DBMSs in the first place. While they are good at
recording this change, and while much technology has emerged to
analyze this data, focus has been on querying and analyzing this
data, rather than on exploring and understanding change behavior.

Also: schemata change, quite often. While such metadata-change
happens less frequently, schemata are much less stable than what
is alluded to in DBMS textbooks, in our experience. And modern
“schemaless” DBMSs exacerbate the need to explore changing meta-
data.

We define the problem of change exploration as follows: For a
given, dynamic dataset, efficiently capture and summarize changes
at value-, aggregate-, and schema-level, and enable users to effec-
tively explore this change in an interactive and graphical fashion.

∗Research done while on sabbatical leave at AT&T Labs – Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ExploreDB’17, May 14-19, 2017, Chicago, IL, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4674-0/17/05. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3077331.3077340

The traditional area of time-series analysis is largely complemen-
tary to our vision of change exploration, as explained in Section 2,
where we also examine other related research areas.

Beyond the actual changed values, our problem definition in-
cludes all traditional investigative questions:What was changed?
A data value, the name of a property, the validity of a dependency?
Who induced the change, and why, i.e., what is the provenance
or underlying process causing the change?Where did the change
occur, i.e., did it happen in the context of related, simultaneous
change events? When did the change occur, in particular is there a
change pattern over time? How was the change effected, i.e., was it
an insert, and update or a delete? We are thus interested in a wide
variety of these variability aspects over time.

Change happens in all kinds of situations, and consequently we
can identify various use-cases for the ability to query and explore
such change, including the following.
Profiling. For datasets of unknown content and unknown behav-
ior, change exploration can help understand them, complementing
any initial data profiling analysis [1]. For example, assume a col-
umn in a dataset does not fit its label and causes confusion. A data
change analysis might reveal that over time the column was repur-
posed but its label remained. A related problem is data lineage or
provenance [4], which tries to identify the origin of a piece of data.
Our aim goes beyond that: we want to understand the context of
change and identify unapparent, implicit links between changes
and spot the interesting ones amongst them.
Systemic change. In setups with complex databases, e.g., to man-
age IP network data, identifying systemic change is important, as
it can have impact on how the data should be interpreted. Often,
however, analysts only realize that something happened when their
results are flawed. Our proposed system can detect and notify about
changes in the way a data stream is collected, processed, and/or
transported.
Data and schema cleaning. Any additional information about
data and metadata dynamics can be exploited to improve data
quality. For instance, changes that are rapidly undone may be due
to vandalism – information that is unavailable in a static snapshot
of the dataset. Or, frequent moves of values between properties
point to a poorly designed schema or interface.

In this position paper we propose a general model, the change-
cube, and show how it can serve as a basis for a large variety of
questions and use-cases to explore changes at data and schema
level.

https://doi.org/http://dx.doi.org/10.1145/3077331.3077340
https://doi.org/http://dx.doi.org/10.1145/3077331.3077340

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA T. Bleifuß et al.

2 RELATEDWORK
Because data change is a fundamental concept of databases, many
research areas are related, though none fully cover what we propose.
As this short paper cannot afford a full discussion of each, we list
the areas and briefly explain their relation to our vision.
Traditional DBMS. With the technology to support transactions,
triggers, versioning, logging, incremental view maintenance, etc.,
database systems include many methods to react to change. The
rate of change is an area that is of particular importance to data-
base optimization, in particular how they affect the statistics for
query optimization [11]. Our work aims beyond these very specific
statistics-based use-cases to a general exploration of data change,
and also includes change analysis at schema level.
Temporal and sequence databases. Significant research and
development efforts went into the design of databases or database
extensions to support temporal or sequence data [10]. For instance,
SEQ is a system to support queries not over sets or multisets, but
ordered collections of records [9]. Many later projects aim at further
optimizing such queries and propose specialized query languages.

Our vision can certainly benefit from these previous ideas, which
are mostly conceived for relational databases. We plan to determine
whether to adapt the techniques and insights to our more generic
model of changes or to “outsource” specific analytical queries to
such specialized systems.
Temporal profiling. The general idea of adding a temporal di-
mension to database constraints and other metadata is not new. For
instance, temporal association rules [3] are traditional association
rules but defined over a (certain) time interval of certain length,
during which it has particularly high support (or confidence). Also,
the Linked Data community has actively explored methods for the
temporal analysis of linked data to understand the processes that
populate the data sources and to improve data services [12]. Rous-
sakis et al. [8] distinguish simple and user-defined complex changes
in RDF datasets; our approach can discover complex changes.
Data stream mining. A large body of work has proposed analyt-
ical methods on data streams [2]. The focus of these methods is
mainly on (i) numeric data, (ii) a single dimension/attribute, and
(iii) rapidly changing data. The goal is typically a prediction of val-
ues, based on past behavior, for instance to predict hardware failure
or stock prices, or outlier and pattern detection. In contrast, we
want to enable efficient adhoc exploration, we consider data, meta-
data, and time as equal dimensions, and do not constrain ourselves
with the limitations of a streaming environment.
Data and metadata exploration. With more and more relevant
data available, the need to interactively explore it has been rec-
ognized. For instance, based on profiling results created by the
Bellman tool [6], Dasu et al. have explored how data and schema
changes in a database can be observed through a limited set of meta-
data [5]. That work has focussed on the case of only limited access
to the database. In contrast, we assume full access to the database
and its changes, and are thus able to focus on more fine-grained
change exploration. But also in general, we plan to make use of
the various recent visualization and interaction frameworks [7], to
enable not only static analysis but interactive exploration of the
nature of data change.

3 THE CHANGE-CUBE
We choose a generic model to represent changes to a dataset. It
includes the following four dimensions to represent what changed
where, when, and how:

(1) Time: A timestamp in the finest available granularity.
(2) Entity: The id of an entity that is represented in the dataset.

An entity could correspond to a row in a relational database,
a node in a graph, a subject of an RDF-triple, etc. Groupings
of entities can be modeled separately to represent which
rows belong to the same table, which RDF-subjects are of
the same class, etc.

(3) Property: The property of the entity, corresponding to
columns in a table, properties of a graph, predicates of an
RDF-triple, etc. Properties can be hierarchically organized,
for instance grouped by semantic domain.

(4) Value: The new value (or the null-value (⊥) to represent a
deletion). In principle, values need not be atomic. Values
can also be ids of other entities.

Without the time-dimension, the cube represents the traditional
data model independent representation of facts as triples. With the
time-dimension we can incorporate change:

Definition 3.1. A change c is a quadruple of the form

⟨timestamp, id, property, value⟩ or in brief ⟨t, id, p, v⟩

Its semantics is: At time t the property p of the entity identified with
id was created as or changed to v. A change-cube C = {c1, . . . , cn }
is a set of changes. Among the changes, the combinations of (t, id,
p) are unique.

With the uniqueness condition we do not allow multiple simulta-
neous changes to occur for a specific property of an entity. Without
this assumption, a current state of the database would be ambigu-
ous. Further, we assume that id is a stable identifier throughout the
lifetime of the representation of the entity. Without this assumption,
the notion of “change” would be meaningless.

Implicitly, a value of a change is valid from timestamp until
the closest succeeding timestamp of a quadruple with the same id
and property but different value. Or it is valid until now, when no
succeeding quadruple exists. Note that our model of change also
captures changes at schema-level, for instance by the appearance
of a new property or other systematic changes to all values of
a property, including their deletion. Further, in many real-world
situations, additional data is available, such as the id of the person or
system that performed the change. Such additions can be managed
separately if needed, but are not considered further here.

The change-cube is different from the traditional data cube in
three ways: First, instead of affording one dimension for each prop-
erty/attribute of the data, we gather them all into a single dimension,
because we will be asking the same kind of questions for each prop-
erty or for all properties. In addition, we want to be able to easily
add new properties to the model, and explore them. Second, entities
of various tables or classes are gathered in a single cube. If needed,
they can be hierarchically disambiguated. Third, the domains of
all properties are gathered into a single (potentially very large)
value-dimension. In this way, a value that appears in multiple loca-
tions across properties (and tables) can be recognized as such, for
instance to reveal schema changes, such as renaming of attributes.

Enabling Change Exploration ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

Populating the change-cube. Nearly all modern databases store
logs that allow to derive the quadruples needed to populate the
change-cube. In addition, major public-domain datasets contain the
information that reflect their change over time as well: Wikipedia,
DPLP, Musicbrainz, IMDB, to name just a few. As can be expected,
each source represents its changes differently. We have observed
the following and expect further variants in the future:

• Timestamped change-records for each field
• Change-records with transaction-ids for each field
• Transaction-logs, with or without timestamps
• Database differences as dump files
• Timestamped snapshots of the entire database

Each of these variants must be consistently transformed into
the change-cube representation. In cases where a transaction id
is present, we want to use it to populate or refine the timestamp
dimension.
Exploring change. The general model of the change-cube allows
a wide variety of exploratory analytics, including the use-cases
mentioned in the introduction. In this position paper we can only
hint at some of them.

As one potential analysis result we propose the novel notion
of volatility to measure the degree of change, separately for each
level of granularity, i.e., for fields, values, entities, properties, for
sets of entities (e.g., tables), for entire databases, and for particular
timestamps or time intervals. While separate formal definitions are
needed due to their different inputs, their goal and intuition are the
same: We count and normalize the number of recorded changes
(unique timestamps) to the examined item. Thus, we can determine
how often a particular field in a database is changed, or for instance
compare change frequencies of different properties.

The change of metadata is of particular interest, as it is an under-
represented exploration target in research. For instance, we can
explore the gradual misusage of schema elements over time. The ad-
dition, deletion or renaming of properties/attributes can be tracked
– per datatype, per table, or for the entire dataset. Thus, particularly
“vulnerable” areas of a schema can be (visually) identified, reminis-
cent of software-analytics tools that identify frequently changing
code areas. Or, gradual changes in the set of valid dependencies
can reveal data quality issues.

We envision two styles of analytics: First, one with sets of fixed,
domain- and use-case specific queries for known change behaviors
and formining them. Second, we envision an interactive exploration
tool allowing users to use a set of operators on the change-cube
and thus discover interesting behavior of a dataset at all levels.

4 NEXT STEPS
While this vision paper presented a high-level proposal of the
change-cube, we now briefly examine the challenges to create and
implement a system1 to enable change exploration.
Formal underpinnings. While we defined a generic change quad-
ruple and the cube for a set of such changes, we have yet to define
measurements taken on the cube, including the mentioned volatil-
ity measure and its weights. In addition, we plan to further explore
which kinds on change-input our system needs to handle. We were

1https:/hpi.de/naumann/projects/data-profiling-and-analytics/dbchex.html

pleasantly surprised by our initial finding of many open sources
that publish their changes, but each does so differently.
Use-case specific exploratory analytics. We plan to pursue se-
lected use-cases, one from the open data area and one specific to
AT&T, and develop analytical methods to explore the changes in
their data. We expect these to be in the form of specific queries that
target specific hypotheses. Our learnings from the use-cases shall
guide the development of a more general analytical system.
General exploratory analytics. With the ability to query for
changes and general change behavior, we want to develop a sys-
tem that automatically discovers interesting change events and
presents these to the user. Also, we want to make use of classi-
fication techniques to classify (i) types of change behavior and
(ii) data/properties/datasets based in part on their change behavior.
System implementation. To efficiently perform the envisioned
types of analyses, we realize based on our experience that we cannot
rely on queries directed at some simple physical representation of
the change-cube. Rather, we will explore various index structures,
and plan to develop highly efficient implementations of exploration
primitives.
Interactive exploration. While any automatic analysis can pro-
duce interesting results, it is ultimately up to the user to interpret
and act upon them. We plan to develop visualizations for data
changes and the change-cube, and to allow users to guide the
exploration with browsing and querying capabilities, similar to
commercial tools like Tableau.

To conclude, we propose a novel view of databases, by regard-
ing their change over time in their data, their metadata, and their
constraints. We are confident that this new perspective is a useful
addition to the field of data analytics, and we are motivated by the
challenges ahead of us.

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. VLDB Journal 24, 4 (2015), 557–581.
[2] Charu C. Aggarwal. 2007. Data streams: models and algorithms. Vol. 31. Springer

Science & Business Media.
[3] Juan M. Ale and Gustavo H. Rossi. 2000. An approach to discovering temporal

association rules. In Proc. of SAC. 294–300.
[4] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where:

A characterization of data provenance. In Proc. of the International Conference on
Database Theory (ICDT). 316–330.

[5] Tamraparni Dasu, Theodore Johnson, and Amit Marathe. 2006. Database Explo-
ration Using Database Dynamics. IEEE Data Engineering Bulletin 29, 2 (2006),
43–59.

[6] Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav
Shkapenyuk. 2002. Mining Database Structure; Or, How to Build a Data Quality
Browser. In Proc. of SIGMOD. 240–251.

[7] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview of
Data Exploration Techniques. In Proc. of SIGMOD. 277–281.

[8] Yannis Roussakis, Ioannis Chrysakis, Kostas Stefanidis, Giorgos Flouris, and
Yannis Stavrakas. 2015. A flexible framework for understanding the dynamics of
evolving RDF datasets. In Proc. of ISWC. 495–512.

[9] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. 1995. SEQ: A Model
for Sequence Databases. In Proc. of ICDE. 232–239.

[10] Richard T. Snodgrass. 2000. Developing Time-Oriented Database Applications in
SQL. Morgan Kaufmann.

[11] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
– DB2’s LEarning Optimizer. In Proc. of VLDB. 19–28.

[12] Jürgen Umbrich, Boris Villazón-Terrazas, and Michael Hausenblas. 2010. Dataset
Dynamics Compendium: A Comparative Study. In Proc. of the International
Workshop on Consuming Linked Data (COLD).

https:/hpi.de/naumann/projects/data-profiling-and-analytics/dbchex.html

	Abstract
	1 Ever-changing Databases
	2 Related Work
	3 The Change-Cube
	4 Next steps
	References

