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ABSTRACT
Data and metadata in datasets experience many different
kinds of change. Values are inserted, deleted or updated;
rows appear and disappear; columns are added or repur-
posed, etc. In such a dynamic situation, users might have
many questions related to changes in the dataset, for in-
stance which parts of the data are trustworthy and which
are not? Users will wonder: How many changes have there
been in the recent minutes, days or years? What kind of
changes were made at which points of time? How dirty is
the data? Is data cleansing required? The fact that data
changed can hint at different hidden processes or agendas:
a frequently crowd-updated city name may be controversial;
a person whose name has been recently changed may be the
target of vandalism; and so on. We show various use cases
that benefit from recognizing and exploring such change.

We envision a system and methods to interactively ex-
plore such change, addressing the variability dimension of
big data challenges. To this end, we propose a model to
capture change and the process of exploring dynamic data
to identify salient changes. We provide exploration primi-
tives along with motivational examples and measures for the
volatility of data. We identify technical challenges that need
to be addressed to make our vision a reality, and propose di-
rections of future work for the data management community.
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1. CHANGE IN DATA AND METADATA
Data change, all the time. This undeniable fact has mo-

tivated the development of database management systems
in the first place. While they are good at recording this
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change, and while much technology has emerged to retrieve
and analyze this data, there is not yet much research to ex-
plore and understand the nature of such change, i.e., the
behavior of data and metadata, including schemata, over
time. While such metadata change typically happens much
less frequently, in our experience schemata are much less sta-
ble than what is alluded to in DBMS textbooks and what
is desirable from a DB-admin’s or application developer’s
point of view. Explicitly recognizing, exploring, and analyz-
ing such change can reveal hidden properties, can alert to
changes in data ingestion procedures, can help assess data
quality, and can improve the analyses that data scientists
conduct on the dataset over the time dimension.

We define the problem of data change exploration as fol-
lows: For a given, dynamic dataset, efficiently identify, quan-
tify, and summarize changes in data at (1) value-, (2) aggre-
gate-, and (3) schema-level, and support users to effectively
and interactively explore this change, as laid out in our short
previous work [11]. Beyond the actual changed values, this
problem definition includes such broad issues as (i) the fact
that change occurred, (ii) the speed and frequency at which
this change occurred, (iii) the source of the change, (iv) other
values that experience similar change (in value) or correlated
change (in time), or (v) reviewing the “history” of an entity.
Each of these questions shall be answered at all three men-
tioned levels. In Section 4 we propose a more comprehensive
list of possible exploration primitives relevant to a change
exploration system.

While there is much related work, which we discuss in the
next section, none comes close to delivering what we pro-
pose. With this work we address a common but less studied
addition to the well-known “V”s of big data [37]: To the
common notions of volume, velocity, and variety that char-
acterize big data problems, we address variability. While va-
riety is typically viewed as differences in format, semantics
and other properties between multiple data sources, we in-
troduce variability as describing such differences even within
a data source over time.

1.1 Use cases
Data change happens in very many different situations,

and consequently there are many different use cases for the
ability to explore such change, for example:

Curiosity / exploration. For datasets of unknown con-
tent and unknown behavior, data exploration [18, 34] can
help understand them, complementing any initial data pro-
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Table 1: Interpretation of temporally close value
change-events.

Value changes Same property Different properties

Same entity Correction Update
Two entities Relationship Causality

Many entities Formatting Bulk- or periodic

filing [3] and analysis. The exploration of data changes adds
another dimension to this process and can give insights that
cannot be found in a static version of the dataset. All of our
scenarios in Section 1.2 could be motivated by curiosity.

Data production change / systemic change. Large ap-
plications today often consist of many diverse components
and subsystems, connected via complex data flow graphs.
Furthermore, some of the components can be independently
developed by third parties. The output that such a compo-
nent produces might occasionally undergo a systemic change:
for instance, when the component is updated to a new ver-
sion or certain parameters are changed. Results of a sys-
temic change, for example, the way that one data stream in
a subcomponent is collected, processed, and/or transported
are well known to cause dramatic errors. These are often
hard to debug when such a sweeping systematic change is
unexpected by the rest of the application. Our vision en-
tails the discovery of such systematic changes, with a small
example shown in Scenario 3.

Workload exploration. In cases where changes to a data-
set are recorded, but the actual update statements/transac-
tions are not, change exploration can help reverse engineer
a sequence of data manipulation statements [25], identify
reoccurring change instructions, and determine the general
workload of the system [5]. Scenario 3 gives an example on
how change exploration can help to assess the workload of
a system and eventually reduce it.

Change monitoring / change prediction. Observed
patterns of data change can be used to predict occurrences
of future changes [49] or change patterns [28], independent
of the actual data values. Such models can be used to pre-
allocate resources or to issue warnings when change does
not occur as predicted. In Scenario 2, we explore schema
changes that are likely to affect all entities of a certain type
or class – a change monitoring system could alert if some
entities were unexpectedly unaffected.

Detecting errors in data and schema. Real-life data
is often dirty and needs thorough cleaning [16, 17, 42] prior
to further analysis. Particularly in crowd-sourced datasets,
such as Wikidata, change exploration can reveal problems in
the data values, such as vandalism [7] or sweeping, and thus
likely accidental, deletes. We show examples of vandalism
discovery in Scenario 1.

In addition, changes can also be explored by property,
attribute, or column. Classifying properties by their change
behavior can uncover schema misuse or misplaced values.

Building trust. For certain types of datasets, such as
crowd-sourced or third party data, taking data at its face
value can be a risky proposition. However, with the change
history of the dataset, users can build trust [9]. As an ex-
ample, consider infoboxes of Wikipedia pages, which contain
a structured summary of the page’s most important facts.
Now consider the value for the population of Chicago from

Chicago’s infobox, which can be changed by anyone with
an internet connection. Change exploration allows analysis
of this value in various dimensions: First, we can consider
all previous values – do they follow the expected gradual
growth over the past years? Next, our proposed volatility
measure can reveal what the expected change rate is for
any population value of US cities – is Chicago’s updated at
a similar frequency? Finally, we can measure the overall
change frequency for all of Chicago’s infobox data – is it
updated regularly at all? Scenario 1 shows how a user can
detect value disagreement, which might decrease the trust
in those values.

At a more general level, we can distinguish several use
cases, depending on the number of involved properties and
entities. Table 1 shows six possible interpretations of ob-
served changes in a short amount of time. For instance, a
change of a single value for a single property might reflect a
minor error correction. However, if many entities experience
change in the same property, this might reflect a general re-
formatting of those values.

1.2 Motivating examples
To illustrate the usefulness and interestingness of change

exploration, let us consider several scenarios for change ex-
ploration and analysis, which are relevant for multiple types
of users. The first scenario on exploring value disagree-
ment is interesting for DBAs, editors (users that update the
data) and data quality engineers. The second scenario on
schema change exploration and the fourth scenario on time-
correlated change-events give valuable insights to a data sci-
entist, but the second one can also be of interest for a system
designer because it can reveal past modeling decisions. For a
DBA, the third scenario should be more interesting because
it reveals information about dynamics and therefore neces-
sary resource allocation and performance improvements.

1.2.1 Scenario 1: Explore value disagreement
For this and the next scenario, we consider exploring all

changes made to Wikipedia’s infoboxes. These are user-
curated, structured parts of Wikipedia pages. The base data
for this scenario is provided by [7] and includes about 500
million change records, i.e., recorded changes of individual
values, such as the insertion of a person’s shoe size or the
change of a country’s population. In this scenario, an editor
is interested in discovering topical controversies in Wikipe-
dia [14], resulting in so-called edit-wars or even vandalism.
Let us understand which exploration steps enable a user to
discover parts of the dataset that suffer from such (unrea-
sonably) frequent alterations. In the subsequent discussion,
each underlined operator corresponds to a formal operator
defined in Section 4, and maps to a simple interaction in our
change exploration system.

Because the user wants to determine whether settlement
entities are affected by vandalism or edit wars, the user al-
ready filtered down the changes to actual updates (not initial
inserts or final deletes) of settlement type. The discov-
ered changes affect many different properties of settlements,
such as population total and area code, which the user
wants to distinguish. A split by property produces 849 sep-
arate change lists, one for each property. The user can now
rank these lists by their volatility, a normalized measure of
change frequency. Surprisingly, among the most volatile lists
are those for the properties official name and name, which

86



6/2007 12/2007 6/2008 12/2008 6/2009 12/2009 6/2010 12/2010 6/2011 12/2011
Time (resolution: 1 month)

0%
5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%
100%

%
 o

f c
ha

ng
e

image_skyline

population_as_of

o cial_name
subdivision_name

leader_name

subdivision_name1

subdivision_type

settlement_type

subdivision_type1mapsize

subdivision_type2

image_map

map_caption

subdivision_name2

image_caption

population_density_km2website

longs

name

population_total

Others

Figure 1: Distribution of the modified properties
for settlements over time in the explored data set
of Scenario 1. Surprisingly, two name attributes are
among the 20 most frequently changed properties.

would be assumed to be quite stable. After all, the name
of a city or town should not change very often, as opposed
other properties, such as population. Figure 1 shows a vi-
sualization of these findings.

Interested in which settlements experience such changes,
the user now unions the two lists for official name and
name and splits on entities, creating thousands of separate
change lists, one for each settlement that experienced at
least one renaming. Ranking by size reveals that the city of
Chicago has experienced 328 name changes in its Wikipedia
infobox with a total of 70 distinct names, including City of

Chicago and City of Chicago, Illinois, but also City

of Chicago(Home Of the Whopper) and Shlama Lama Ding

Dong. Recognizing that most of these changes are mere
vandalism, the user returns to the previous list of ranked
properties and deliberately excludes properties expected to
be mostly static. This action results in a new exploration
branch, in which the user can continue exploring changes
more likely to be genuine.

In this way, prior work on controversy detection for Wi-
kipedia [14] can be naturally supported at the level of its
structured data. In general, such explorations can help users
also detect vandalism and spam, and they are of course not
limited to Wikipedia. By enabling users to explore the en-
tire history of values, we empower them to judge whether
the current values are trustworthy based on their own priors.

1.2.2 Scenario 2: Explore schema changes
Infobox templates guide Wikipedia authors and editors

in creating property-value pairs. In particular, they are
meant to ensure a common vocabulary of property names
and thus increase infobox readability but also enable struc-
tured queries to the data. However, editors can change prop-
erty names at will, some properties are hardly used, new
properties appear. To maintain clean schemata and with it
well-structured data, it is important to be able to identify
both systematic and gradual changes in schema.

A simple approach is to explore the appearance and dis-
appearance of properties. A split of changes by property
produces one change set per property. The data explorer
can now use a pre-defined ranking function, for instance
ranking by the date of the first appearance of the property

among the data, which lists all properties in the order they
appeared.

Defining a ranking function to order by disappearance is
more involved: To establish that a property has indeed dis-
appeared, it must be verified that for each entity the last
change is a deletion. For those, the ranking function re-
turns the latest date of such a deletion, otherwise it returns
the current date. Combining appearance and disappearance,
one can determine the lifetime of a property, and visualize
them for further analysis by the user.

Even more advanced ranking functions for sets of changes
that are split on property can determine their usage skew
over time or other time-series analytics. Of course, a proven
method in exploratory tools is to simply plot the number of
change-occurrences per day/week/month along a time-axis.

If direct schema change information is available, such as a
log of ALTER TABLE statements for a relational database,
our model is able to explicitly capture and explore these
changes with the same set of operators.

1.2.3 Scenario 3: Explore dynamics
In many cases, the relevancy or interestingness of a data

item is related to the number of updates it experiences. Our
framework allows to explore change frequency at various lev-
els: Which entities experience the most changes (split by id
and then rank by number of changes)? Which property is
the most dynamic (split by property, slice by updates, and
then rank by number of changes)? Which cell experiences
the most changes? Etc.

An analysis of these dynamics has already proven helpful
in a production database: in this database, the majority of
all updates (around 80%) in the entire database, were to a
single table. In order to understand what was happening,
the DBA had to design a custom temporal database of the
table (which effectively encodes deltas on a per-row basis)
and an ad-hoc analysis script. Through this analysis, the
DBA found that 99% of the time the updates only affected
a couple of fields. What is more, these fields were metadata
fields, e.g., last-update timestamp, about the update. So
the vast majority of updates to this database were overwrit-
ing existing values, and were useless. This database was
struggling with its load, but these insights allowed to shed
most of its update load by throttling this runaway update
script. Our framework can support the DBA by systemizing
such analyses, so that he or she is no longer dependent on
such ad-hoc scripts and lucky findings.

1.2.4 Scenario 4: Time-correlated change-events.
A more traditional use case is the discovery of changes in

data that correlate in time. That is, the change of values in
one property happens (frequently) in close time-proximity
to changes in another property of the same entity (easy) or
a different one. An underlying operation would be a tra-
ditional time-series mining operation to detect such signifi-
cantly often re-occurring events. Our data-model can sup-
port this operation by providing not traditional (numeric)
input values but the (Boolean) change events. For instance,
when analyzing the change history of the Internet Movie
Database (IMDB) we discovered clusters of change behav-
ior based on the releases of series episodes [13]. The fact
that our approach also allows analyzing changes from several
sources simultaneously opens up further compelling analy-
sis possibilities: for example, in this scenario the user can
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Figure 2: Architecture of a change exploration sys-
tem.

check whether changes take place first in the IMDB or first
in Wikipedia and whether they propagate in one or the other
direction and at what time offset. The necessity of a general
change model is already evident from the fact that these two
datasets exist in completely different data formats and that
these data formats can also change over time for each data
set. Furthermore, it would be necessary to develop specific
change analysis tools for each data format, which we intend
to solve with the following proposal for a general change
model and analytical capabilities based on it.

1.3 Structure and contributions
Given the motivation, use cases, and scenarios for change

exploration, we can now formulate our first, overarching
challenge.

Challenge 1. How can we model and explore data and
schema change for a variety of different input sources and
for many different intended uses in an efficient and effective
interactive fashion?

Figure 2 shows an architectural overview of a change ex-
ploration system and serves as a guide for the remainder of
the paper. The proposed system consumes data sources in
various possible representations. Change of a dataset can be
recorded in many different ways, such as transaction-logs,
database differences as dump files, or timestamped snap-
shots of the entire database. Each of these variants must be
consistently transformed into our general change represen-
tation: the central change-cube is our simple model to rep-
resent changes as quadruples of time, entity, property, and
value. The change-cube is sufficiently generic to capture
many different kinds of changes of data and schema from
many different data models. And it is sufficiently expres-
sive to serve a variety of change exploration use cases. We
propose the change-cube as a first foundational step towards
addressing Challenge 1. The remainder of the paper is based
on this suggestion as a general model and the challenges that
arise from it. On top of the change-cube we have defined a
set of exploration primitives to slice, group, aggregate, sort,
split and union sets of changes for further exploration. Many
different clients can use these primitives. For instance, we
have developed a web-based exploration tool to explore the
cube, we have implemented clustering approaches to dis-
cover groups of similar changes, and we are able to define
fixed analytical queries, for instance to monitor the change

behavior of a dataset. The change-cube can be physically
stored in different representations, allowing traditional op-
timization techniques, such as indexing, materialized views,
etc.

The remainder of this vision paper is organized along
the two major contributions (and challenges) of analyzing
change: modeling change and exploring change. Section 3
(Modeling) introduces our central data structure, the change-
cube, and shows how to populate it and quantify change.
Section 4 (Change Exploration Primitives) introduces the ex-
ploration primitives on top of the cube. Section 5 (Exploring)
shows exemplary uses of our technology for a variety of ini-
tial use cases. Finally, Section 6 concludes our work with
an outlook on the challenges to come. But first Section 2
discusses related work from various fields and in particular
establishes the differences of change exploration to tradi-
tional time series analysis.

2. RELATED WORK
Because data change is a fundamental concept of data-

bases, many research areas are related, though none come
close to covering what we envision. In our work we want to
explore not that data changes and how to react, but explore
how, when, and where it changes. We leave the remaining
traditional questions of who and why to future work.

Traditional DBMS. With the technology to support trans-
actions, triggers, versioning, logging, incremental view main-
tenance, etc., database systems include many methods to
react to change. The rate of change is an area that is of par-
ticular importance to database optimization, in particular
how they affect the statistics for query optimization [48,51].
Others have improved the when and how to rebuild the data-
base statistics after data changes have occurred [48]. Our
work aims far beyond these very specific statistics-based use
cases to a general exploration of data change, and also in-
cludes change analysis at schema level.

Temporal and sequence databases. Significant research
and development efforts went into the design of databases or
database extensions to support order-dependent queries [38]
and temporal or sequence data [47]. For instance, SEQ is
a system to support queries not over sets or multisets, but
ordered collections of records [46]. Many later projects aim
at further optimizing such queries and propose specialized
query languages.

At a finer grain, Dong et al. trace the value-history of in-
dividual entities by integrating multiple sources [22,23]. We
formulate the combination of this integration aspect with
our vision of exploring change for an entire, large dataset as
a challenge in our final section.

Lo et al. propose the “Sequence cuboid” which extends the
traditional data cube with the concept of ordering [39]. The
authors then extend SQL with sequence-specific operators,
allowing, e.g., grouping by temporal patterns. Our proposal
for modeling change (Section 3) is more general as it also
captures schema change and explicitly targets the capture
and analysis of change events rather than ordering a set of
records.

Our vision can certainly benefit from these previous ideas,
which are mostly conceived for relational databases, but also
exist, e.g., for graphs [35]. We plan to determine whether to
adapt the techniques and insights to our more generic model
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of changes or to “outsource” specific analytical queries to
such specialized systems.

Temporal profiling. The general idea of adding a tempo-
ral dimension to database constraints and other metadata is
not new. For instance, temporal association rules [6] are tra-
ditional association rules but defined over a (certain) time
interval of certain length, during which it has particularly
high support (or confidence). Jensen et al. formally define
the extension of traditional dependencies, such as FDs or
keys, to temporal databases [33]. We aim to provide a means
to discover and explore such dependencies, supporting for
instance web data cleaning [2].

Also, the Linked Data community has actively explored
methods for the temporal analysis of linked data to un-
derstand the processes that populate the data sources [21]
and to improve data services [50], or to explore ontological
change [27]. The authors of [45] distinguish simple and user-
defined complex changes in RDF datasets; our approach can
discover complex changes at both data and schema level.

Time series exploration. Exploration of time series data
has been looked at by countless researchers [26], for instance
to find similar time series [41,44]. These time series analysis
techniques provide solutions for important parts of change
exploration, such as obtaining stochastic models or identi-
fying temporal update patterns. However, to use such tech-
niques in our context, the research questions to be solved are
how the database changes can be translated meaningfully to
numerical time series and how the relevant time series for a
certain problem can be selected. In addition, time series ex-
ploration techniques and tools [52] can be used to visualize
and interpret change behavior.

Data stream mining. A large body of work has pro-
posed analytical methods on data streams [4]. The focus of
these methods is mainly on (i) numeric data, (ii) a single
dimension/attribute, and (iii) rapidly changing data. The
goal is typically a prediction of values, based on past behav-
ior, for instance to predict hardware failure or stock prices,
or outlier and pattern detection. In contrast, we want to
enable efficient ad-hoc exploration, we consider data, meta-
data, and time as equal dimensions, and do not constrain
ourselves with the limitations of a streaming environment.

Data and metadata exploration. With more and more
relevant data available, the need to interactively explore it
has been recognized. For instance, based on profiling re-
sults created by the Bellman tool [20], Dasu et al. have
explored how data and schema changes in a database can
be observed through a limited set of metadata [19]. That
work has focused on the case of only limited access to the
database. In contrast, we assume full access to the database
and its changes, and are thus able to focus on more fine-
grained change exploration. But also in general, we plan
to make use of the various recent visualization and interac-
tion frameworks [31], to enable not only static analysis but
interactive exploration of the nature of data change. Eich-
mann et al. go a step further and suggest an exploration
benchmark [24]. Under their classification, our vision for
an exploration system, as outlined in Section 5.2, would fall
into the Categories I (interactive visual analysis) and III
(recommendations).

Müller et al. have proposed the notion of update distance,
i.e., “the minimal number of set-oriented insert, delete and
modification operations necessary to transform one database

into the other.” [40]. While the authors propose to use this
measure to compare drift among replicas, it could also be ap-
plied to compute the change rate of a database, for instance.
However, the proposed algorithms to (even approximately)
compute the update distance are tested only on toy exam-
ples and do not scale to real-world database sizes. Other
notions of database distance are from the areas of consis-
tent query answering [8] and minimal database repair [12],
but both assume some given constraints, while our work is
independent of any such constraints.

Throughout this work we assume to have knowledge of
the actual change of data in the given database, and want
to explore the nature of this change. If that assumption
does not hold, Inmon and Conklin point out three different
ways to obtain this information [32]: Have the application
explicitly report the change, parse the change from the log-
file, or compute the difference between two snapshots of the
database. Labio and Garcia-Molina tackled this last and
difficult snapshot differential problem for table data [36] and
Chawathe and Garcia-Molina for nested data [15].

Provenance / Lineage. Our vision certainly shares some
common goals or use cases with data provenance [29]. Any
information we have about the data provenance may cer-
tainly provide further input for our analysis and the prove-
nance itself may become the subject of our change analysis.
Despite this, we do not assume provenance information, but
accept the changes as given. Furthermore, it could be pos-
sible to infer provenance information based on the observed
changes. Just as change exploration can benefit from prove-
nance, provenance analysis can also benefit from our work
through a better understanding of source evolution.

In summary, most related work in this area is concerned
with capturing and managing data and database change,
and not so much in exploring/understanding this change,
leaving the following higher-level challenge open.

Challenge 2. How can we leverage prior research in all
areas that consider the temporal dimension of data to im-
prove the change exploration experience?

3. MODELING CHANGE
We introduce the change-cube as our central data struc-

ture to capture changes to both schema and data. First, we
formally define the cube, and then illustrate the challenges
of populating it from various types of data sources. Finally,
we propose a volatility measure to quantify the degree of
change to any element of the cube.

3.1 The Change-Cube
We propose a generic model to represent changes to a

dataset. It includes the following four dimensions to rep-
resent when (time) what (entity) changed where (property)
and how (new value):

Time A timestamp in the finest available granularity.

Entity The id of an entity represented in the dataset. An
entity could correspond to a row in a relational data-
base, a node in a graph, a subject of an RDF-triple,
a schema element, etc. Entities can be grouped or be-
long to a hierarchy, modeled separately. In this way,
we can recognize which rows belong to the same table,
which RDF-subjects are of the same class, etc.
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Property The property of the entity. Properties can be
entities themselves and correspond to columns in a ta-
ble, properties of a graph, predicates of an RDF-triple,
schema associations, etc. Properties can be hierarchi-
cally organized, for instance grouped by semantic do-
main, such as person name, address, etc., or by data-
type.

Value The new value introduced by the change (or the null-
value (⊥) to represent a deletion). Values can be
literals, which we denote in quotes, or ids of other en-
tities. Furthermore, values need not be atomic, they
can be sets or lists.

Without the time-dimension, the cube represents the tra-
ditional model-independent representation of facts as triples.
By including time we can define an individual change and
the change-cube as a set of changes:

Definition 1. A change c is a quadruple of the form
〈timestamp, id, property, value〉 or in brief 〈t, id, p, v〉. We call
a set of changes a change-cube C = {c1, . . . , cn}. Among
the changes, combinations of (t, id, p) are unique.

The semantics of a change is: At time timestamp the prop-
erty of the entity identified with id was created as or changed
to value. A change can be used to express changes in data or
in the schema. While we define the change-cube as a set,
in many situations we shall order the changes. A “natural”
ordering would be by timestamp, id, and property. This
ordering is useful both from an exploratory perspective to
orient users, and from an implementation perspective where
a given order can be used to speed up various operators on
the cube.

We require that (timestamp, id, property) is a key, i.e.,
we do not allow multiple changes to occur for a single id-
property combination simultaneously. Without this assump-
tion, a current state of the database would be ambiguous.
In case of unreliable timestamps or time intervals [1], which
can occur in practice, we assume a domain-dependent res-
olution of (order) conflicts. Further, we assume that id is
a stable identifier throughout the lifetime of the represen-
tation of the entity. Without this assumption, the notion
of “change” would be meaningless: each change-quadruple
could be referencing an entirely new entity.

Implicitly, a value of a change is valid from timestamp
until the closest succeeding timestamp of a quadruple with
same id and property but different value. Or it is valid until
“now”, when no succeeding quadruple exists.

To distinguish between changes to data and schema we use
namespaces as prefixes to entities. As an example, consider
the following change-cube:

〈01.01.2010, table:Persons, property:name, ’Person’〉
〈01.01.2010, London, property:area, ’1,572km2’〉

The namespace table in the id of the first change signals
that this change refers to a schema-element, whereas the
second change refers to a data element. Namespaces are
user-defined, but we have default suggestions, such as data,
table, property, and others. In this paper we use meaningful
names to denote properties and ids to increase readability.

The model can record changes to the properties themselves,
even their displayed names:

〈01.01.2012, property:size, property:displayname, ’area’〉
〈01.01.2012, property:size, property:type, ’Double’〉
〈17.02.2016, property:size, property:displayname, ’AREA:’〉

For space-efficiency, change-cubes can be implemented in
a star-schema with a central fact-table containing only four
numeric ids and dimension tables for each of the four di-
mensions. In some use cases, the value itself is not needed,
only the fact that a change occurred. In such cases, fur-
ther simplification/efficiency can be achieved by removing
the value dimension or reducing it to the type of change or
the severity of change that the value resembles. Further,
in many real-world situations, additional data is available,
such as the identity of the person or system that performed
the change or a comment about the change. Such additions
can be modeled within the change-cube if needed, but are
not considered further here.

The change-cube is different from the traditional data
cube in three ways: First, instead of allowing a separate di-
mension for each property/attribute of the data, we gather
them all into a single dimension, because we will be ask-
ing the same kind of questions for each attribute (namely
change-related questions and not necessarily questions about
the actual values). So for instance, instead of asking about
an average value, we are asking about how often it changed
over time or how often it appeared over time. In addition,
we want to be explorative and easily add new properties to
the model. For our Wikipedia infobox example, we can rep-
resent all 6,534 properties in this single dimension, instead
of a sparse table of that width.

Second, entities of various tables or classes are gathered
into one cube; thus an attribute with a same name that is
used across multiple tables (e.g., “address”) can have values
at various sources but its changes can be explored summar-
ily. Third, the domains of all properties are gathered into a
(potentially very large) value-dimension. In this way, a value
that appears in multiple locations across attributes (and ta-
bles) can be recognized as such. Thus, schema changes that
were not explicitly captured, such as renaming attributes or
tables, can be recognized.

3.2 Populating the change-cube
While all subsequent steps will profit by the unified change-

cube model, it entails the upfront overhead of transforming
the changes into the change-cube. The obvious problem is
that there are many different ways of how the changes are
stored in the real-world, which implies a high variety of dif-
ferent input formats. Think of the extremes: the most fine-
granular input are individual transactions each with a pre-
cise timestamp. On the other side, we can also face the un-
fortunate case that only monthly (or even irregular) dumps
of the entire database are available. In that case we must
assume that all changes happened at once (at time of dump)
and have to find a way to calculate the difference between
two consecutive dumps, a problem highly dependent on the
data model. Of course we can also imagine many different
formats in between those extremes, such as timed database
differences (patch files) or data logs, and each of these vari-
ants must be consistently transformed into the change-cube
representation.
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Dealing with timestamps. Timestamps can have differ-
ent granularities. For data that is inherently temporal, such
as event data, we distinguish two kinds of “times” [47]:

• Transaction time is the time when the change entered
the database, optionally marked with a timestamp.

• Valid time is the time recorded for a record and stored
in the database. An example is the release date of an
album.

Sometimes the two coincide or are close to one another. In
any given database, any combination of transaction time
and valid time might be observable: Transaction time is
often not recorded, because it may not be deemed impor-
tant for the originally intended application. In some cases,
transaction time can be recreated through transaction logs,
through active monitoring of the database and storing ob-
servations on the side, or approximated using information
about the order in which data entered the database (auto-
incrementing keys).

During user interaction we have the choice of either type
of time to be the assumed semantics of the timestamp di-
mension. The system should make every effort to record
valid time as the timestamp. In its absence, the transaction
time needs to suffice.

In cases where a transaction id is present, we want to use
it to populate or refine the timestamp dimension. To be
able to distinguish transactions that have the same times-
tamp, there are several choices. We could suffix the times-
tamp with a transaction-id, with the disadvantage that we
lose the timestamp datatype. Another option is to increase
the timestamp granularity and divide up the transactions to
multiple timestamps. This option has the disadvantage of
creating fresh timestamps. In general, we are not able to
know the true order of the change operations.

Modeling decisions. For transforming input data to the
change-cube there are two basic decisions to be made: what
is the entity (id) and what is the property? These two de-
cisions determine the value dimension. In general, entities
need to be chosen fine enough to have preferably atomic
properties, and coarse enough for it to exist long enough
to observe its change. Properties should also be as per-
sistent as possible, so long histories can be observed. The
choice of what is an entity and what is a property is in gen-
eral domain-dependent and also depends on the data for-
mat. However, there is a large corpus of literature on how
to transform different data models into RDF, which faces
the same basic problem. This literature also shows that our
model is rich enough to express changes in any of those data
formats. Database systems do offer further input to analyze
and understand change, such as triggers, logs, and other
constraints. However, we do not want to assume their pres-
ence and thus chose a more data-oriented approach. Based
on new insights gained during the exploration, for instance
after recognizing a previously unknown schema change, the
user can introduce new views on the change-cube that cap-
ture the newly discovered knowledge.

For relational data, a common assumption is that the en-
tity is defined through the primary key of a table. If the
key consists of multiple columns, we suggest to concatenate
the values of these columns and separate them by a spe-
cial character. The values of all other columns in a table
correspond to the values of the properties, the property ids
and names are given by the schema. In contrast to related

work on transformation to RDF however, we face the ad-
ditional problem that our data and also the schema is not
static. For example, if a schema change deletes one of the
columns that were part of the key, this will appear in the
change-cube as if all entities were deleted and new entities
were inserted. Instead, we want to recognize such cases and
map the same entity always to the same key, although its
key in the database can take different values over time.

A complete lack of a key, e.g., in web tables, poses a sim-
ilar problem and sometimes even multiple solutions make
sense and a modeling decision needs to be made by the user.
For example, consider a table of music charts: intuitively ev-
ery album is represented by an entity that possesses a prop-
erty chart-position. However, it is equally valid to model
chart positions as entities with a property called album. For
our model both approaches are valid, but it is clear that
such decisions impact the results of subsequent analysis.

Hierarchical data formats, such as JSON or XML, pose
greater challenges than relational formats. Again, the user
should make decisions on which representation makes most
sense for further analysis. Generic transformations are also
available, but these formats can contain collections, such as
lists or arrays – and the position in a list is often a seman-
tically uninformative and unstable choice for stable identifi-
cation of entities. Consider the example of a book that has
a list of authors. If the first two authors switch places, a
trivial solution might assume that all details for both au-
thors changed and fail to realize that only a property of the
book (order of authors) has changed. But for other cases
this might be the correct interpretation and once more, the
answer depends on the use case.

Because schema changes are also subject of our explo-
ration, a transformation into the change-cube must not com-
pletely hide schema changes, so that schema change records
also appear in the change-cube. It is not necessary to de-
velop a transformation for each schema (which can vary over
time within the same dataset), but rather to find a solution
at the level of data models.

Challenge 3. How can we leverage research and tooling
in the area of ETL to support users in creating semanti-
cally meaningful transformations beyond generic initial ap-
proaches?

3.3 A Measure for Volatility
Having modeled a dataset’s change in a change-cube, we

now propose a very first measure to quantify change: Vola-
tility measures the amount or degree of change of an object.
In our context we want to assess the volatility of data at all
levels by first counting the number of changes within a given
time interval for (i) an entity-property combination, e.g., a
field in a table, (ii) an entity across its properties, and (iii) a
property across its entities, and then normalizing the count.

To formally define a volatility measure, we must define
precisely what we are counting and by which value we nor-
malize. Counting the number of changes of the value of
a particular field is trivial. But at any higher aggregation
level (e.g., entity or property) we need to decide how to
count changes in fields that no longer exist in the current
version. To count the number of changes to a particular
entity, we need to aggregate the number of changes to all
values of its current properties, but also of all properties for
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exampleVolatility

Page 1

Settlement area_code coordinates image_caption image_flag image_map name population_as_of postal_code website Sum
Berlin 19 7 103 18 18 383 19 20 251 838

Cape Town 56 2 100 89 50 55 78 57 63 550
Chicago 235 5 290 475 472 275 517 47 459 2775
Istanbul 100 3 294 6 4 162 163 101 107 940
London 116 1 554 51 439 620 397 384 390 2952

Potsdam 5 1 24 3 4 31 4 5 22 99
Rome 245 32 141 324 324 272 347 250 344 2279

Stockholm 20 1 46 10 12 32 99 58 56 334
Tokyo 135 15 166 156 156 754 149 135 503 2169

Sum 931 67 1718 1132 1479 2584 1773 1057 2195 12936

Figure 3: A heatmap for changes on selected Wikipedia settlement entities and selected infobox properties,
color-coded relative to the absolute number of changes.

which it had values in the past. The same is true when mea-
suring the volatility of a column: We need to consider all
current entities that have that property, but also any entity
that ever had that property (within the time interval under
consideration).

For ease of exposition, assume that data is represented as
a relation with each tuple representing an entity and each
attribute representing a property. The set of entities is the
union of all entities that have been represented in a tuple
in the table at some point. The set of properties is the
union of all properties that have been defined for this table
as an attribute. Let the pair 〈i, j〉 represent one field of this
expanded relation where i designates the tuple and j the
attribute.

Definition 2 (Volatility). For each field 〈i, j〉 let cij
denote the number of changes that it has experienced within
the time interval under consideration. Let C =

∑
ij cij be

the overall number of changes. We define the following vo-
latility measures:

• Field-volatility: v(〈i, j〉) =
cij
C

• Entity-volatility: v(ei) =
∑

j cij

C

• Property-volatility: v(pj) =
∑

i cij
C

Figure 3 shows an exemplary use of volatility measures for
a selection of cities and properties from their respective Wi-
kipedia infoboxes (from the initial creation of the respective
infobox until July 2017). The values correspond to the num-
ber of changes that each particular field experienced since
the creation of the particular infobox. The colors are coded
based on the respective volatilities. Already this small ex-
ample shows several insights: As expected the coordinates

of a city rarely change. But surprisingly, the names of the
cities undergo frequent changes. For instance, the name of
“Tokyo” has also been Tokio, Tokyo (Godzilla Central),
∅ and many offensive terms. Another observation is that
the frequencies for the changes of flag- and map-images are
almost always the same or very similar. And indeed, we
can check that they are commonly changed together. Fi-
nally, and again as expected a smaller and less famous city
like Potsdam experiences fewer value changes than larger or
more well-known cities.

The concept of volatility could be applied to various other
elements in our change scenario. Examples include the vo-
latility of a time interval in relation to (all) other time inter-
vals, the volatility of an entire cube in relation to (all) other
cubes, or (a bit more unusual) the volatility of a particular

value. For the latter case, for instance, we have observed the
value Episode #1.1 to be particularly volatile in the IMDB
dataset as the value of the title property. We assume that it
represents a placeholder for TV-series before the final title
is published.

Changes could also be weighted by their severity before
entering the count. For instance, a correction from the string
Barak Obama to Barack Obama is less severe than one to
Donald Trump. For numeric values, severity could be deter-
mined by a normalized difference, etc. Users are of course
free to use custom volatility-measures.

Challenge 4. How can we design and develop measures
to flexibly encompass all aspects of change, such as change
severity, datatype, time-intervals, change-origin, regularity,
value-frequency, etc.? And how can we efficiently support
the calculation of these measures?

4. CHANGE EXPLORATION PRIMITIVES
This section defines a set of operations on the change-cube

that enable its fine-grained exploration. Our main contribu-
tion is to support human exploration of change. To mimic
useful exploratory interactions of a user with change-cubes,
we promote the cubes to be first class citizens and define
a closed set of operators on sets of these cubes: sort to
arrange the changes within a change-cube according to spe-
cific criteria, slice to specify subcubes, i.e., selected parts of
an input change-cube; split, to create a set of change-cubes
from an input change-cube; the union of two change-cubes
to a single larger change-cube; and rank as well as prune
to focus on change-cubes of interest, e.g., those with a high
change-rate.

4.1 Sort
While we earlier asserted a natural ordering of changes

by timestamp, id, and property, it is of course possible to re-
order the changes in other ways. We use square brackets to
distinguish an explicitly ordered list from an unordered set.

Definition 3 (sort). Given a change-cube C = {c1,
. . . , cn} and a function s : 〈t, id, p, v〉 7→ z that maps a change
to an atomic comparable value z, the ascending sort operator
is defined as:

sort↑s(C) := [ci1 , . . . , cin ] where ij ≤ ik if s(cij ) ≤ s(cik )

The descending sort operator sort↓s(C) is defined analo-
gously.
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To allow a fast and convenient exploration, we predefine
four convenient functions that map changes to the value of
each of the dimensions respectively:

t : 〈t, id, p, v〉 7→ t, id : 〈t, id, p, v〉 7→ id,

p : 〈t, id, p, v〉 7→ p, v : 〈t, id, p, v〉 7→ v

These functions allow the user to write for example sort↑id
to sort the changes by id. Still, more complex sorting, such
as by the number of ‘a’s in a given property, is possible.

4.2 Slice
Each dimension of a cube can be the target of a selection

operation, to reduce the change records to a list with a fixed
value for one (or more) dimensions.

Definition 4 (slice). Given a change-cube C and a
predicate q = 〈t, id, p, v〉 7→ {true, false}. The slice operator
is defined as:

sliceq(C) := {x ∈ C | q(x) = true}

For a set of change-cubes C = {C1, . . . , Cn} we define
sliceq(C) := {sliceq(C1), . . . , sliceq(Cn)}.

The most common form of predicates is q(x) = s(x) θ z,
where θ is a built-in predicate, s : 〈t, id, p, v〉 7→ z is a func-
tion that maps each change to an atomic, comparable value,
and z is a constant of the same domain. For example the
user could slice for all changes to the property population

using the operator slicep=‘population’. For slices on multiple
predicates or in more than one dimension we apply succes-
sive slices. Thus in this simple case, each of these slices
corresponds to a user clicking on an existing value of some
change, and turning this value into a predicate. Slicing an-
swers different questions in each dimension: What else hap-
pened with this entity? Which other entities and values
of this property were changed? Where was this value also
inserted? What else happened during this time?

The predicates could also address a higher level of ab-
straction. For instance, one can specify a slice for a spe-
cific class of entities or a class of properties (or a type of
value). The predicates need to rely on built-in operators,
but could for example use a notion of similarity. A similarity
in time is already present through the order. For instance,
value-similarity could be based on edit-distance, property-
similarity on data-type or domain, and entity-similarity based
on class or high-level similarity measures from the research
area of entity-resolution.

4.3 Split and union
Given a change-cube, a split partitions/groups the changes

into multiple sublists, according to the specified split condi-
tion. Again, each dimension can serve as a split-condition:

• Split by id: Creates one list for each id (i.e., potentially
millions of lists if done on an entire, unsliced cube), for
instance to explore and compare how each entity of the
dataset changes over time.

• Split by property: Creates one list for each property
(i.e., potentially thousands of lists) for instance to ex-
plore and compare the change of usage of properties
and attributes over time.

• Split by value: Creates one list for each value (i.e.,
potentially billions of lists), for instance to explore and
compare the longevity of specific values.

• Split by time: Creates one list for each specified time-
interval (e.g., one list per year), for instance to discover
regularly repeating change events.

In the most simple, exploratory form, the user simply
specifies one of the four dimensions along which to split.
The split then creates a change-cube for each distinct value
present in that dimension of the input cube:

Definition 5 (split). Given a change-cube C and any
split function s : 〈t, id, p, v〉 7→ z that maps each change
record to an atomic value z. Then

splits(C) := {slices(·)=x(C) | x ∈ range(s)}

For a set of change-cubes C = {C1, . . . , Cn} the split by a
split function s is the union of each cube’s split:

splits(C) :=
⋃
C∈C

splits(C)

This definition includes simple splits by any dimension,
e.g., by property through the already defined split function
s : 〈t, id, p, v〉 7→ p. But higher-level splits are also possible,
e.g., a split by id-class, creates one cube per class or table
(i.e., potentially hundreds of lists). Through a function such
as s(〈t, id, p, v〉) := year(t), where year extracts the calendar-
year of a given timestamp, a split by year creates one cube
per year.

When handling multiple change-cubes, it is useful to be
able to combine them again into a larger change-cube. For
instance, after a split the user might want to focus on analyz-
ing all changes in a selected (e.g., top-K) subset of change-
cubes.

Definition 6. Given a set C of change-cubes, we define

union(C) :=
⋃
C∈C

C

4.4 Rank and prune
Splits often lead to a high number of change-cubes and

therefore it is useful to give users a means to prioritize fur-
ther investigation. One such tool is the ordering of change-
cubes, which can be based on various criteria: the size of
the change-cube, its volatility, recency of the last change,
the timespan between first and last change, etc. In ad-
dition, any user-defined rankings for custom definitions of
interestingness are possible.

Rankings are defined through an aggregate function o :
C 7→ z, which maps each change-cube C to an atomic, com-
parable value z. A simple example would be o(C) := |C|
to rank cubes by their size or o(C) := max(Πtimestamp(C))−
min(Πtimestamp(C)) to rank cubes by their covered time range.

Definition 7 (rank). Given a set of change-cubes C =
{C1, . . . , Cm} and an aggregate function o, the rank operator
is defined as:

ranko(C) := [Ci1 , . . . , Cin ] where ij ≤ ik if o(Cij ) ≤ o(Cik )

Ascending or descending order can be implemented by ap-
propriate definitions of o().

Again, we use square brackets to distinguish an ordered
list from an unordered set. To reduce the number of lists,
a pruning based on the same aggregate functions is pos-
sible. For instance, a user may be interested only in the
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top-k change-cubes according to some ordering, or only in
change-cubes such that the aggregate function complies with
a threshold.

Definition 8 (prune). Given a descendingly ordered
list of change-cubes C = [C1, . . . , Cn], the aggregate function
o, and a threshold θ, we define the prune operator as the
ordered list of change-cubes whose aggregate value is at least:

pruneo,θ(C) := [C1, . . . , Ck] where o(Ck) ≥ θ ∧ o(Ck+1) < θ

For ascendingly ordered lists, the definition is analogous.

Definition 9 (top). Given an ordered list of change-
cubes C = [C1, . . . , Cn] and an integer K ≤ n, we define the
top operator as the list of the first K change-cubes:

topK(C) := [C1, . . . , CK ]

4.5 Composing operators and beyond
Because the operators defined above are closed, we can

compose them and thus allow a fine-grained and iterative
exploration of changes. A typical composition for a change-
cube containing changes of a table of persons (CP) might be
slicep=‘address’ ◦ splitid ◦ rank↓|·| ◦prune|·|,2(CP).

In the example, we are interested only in changes that
affect the address property. We subsequently split by id,
thus creating one address-change-slice per person. These
slices are sorted by size, showing the persons with the most
address changes first. We are then interested in persons
with at least two address changes and could then analyze
how close in time or space they are.

For some uses-cases, considering only the information from
a single change is insufficient. Assume a user wants to se-
lect all changes to any property with the displayname ‘Age’
at the time of the change. To enable the user to perform
such elaborate operations on the change-cube, we introduce
the notation p.displayname = ’name’ to access properties
of referenced entities (in this case the property p) at the
time of the change. In this case the input to the predi-
cate is of course the whole change-cube, not just a single
change. Still, a user might have a need for more complex
explorations tasks that are difficult to answer with the pro-
posed exploration primitives. For example, it is not obvious
how to define a change-cube that contains all changes that
were reverted or overwritten within five minutes.

In general, change exploration can and should make use
of existing analytical systems and methods. These need to
be tailored to the change cube format and be made change-
aware, i.e., be able to make use of the implied associations
of different versions of a value. This brings us to the next
challenge:

Challenge 5. How can we make a change exploration
system extensible, to enable and seamlessly integrate external
analytic capabilities into its core exploration capabilities?

Furthermore, change exploration tools can track and store
user-performed actions throughout the exploration process.
Formally, what the user sees at every moment can be rep-
resented as a sequence of operators. Thus, an entire ex-
ploration process is a sequence of such operator sequences.
Additionally, each operator sequence can be annotated with
metadata, such as timestamp or system response time. This
creates new, meta-level artifacts that we call exploration
logs. Given such exploration logs and inspired by the no-
tion of process mining, we can now make user actions the
subject of analysis, serving various use cases.

5. EXPLORING CHANGE
After our proposals for modeling change and change ex-

ploration primitives, this chapter substantiates our vision by
(i) pointing out publicly available datasets from which many
years of changes can be extracted, (ii) presenting an initial
change exploration system and tool and (iii) explaining sev-
eral concrete results achieved by analyzing the change-cube.

5.1 Datasets
Change exploration requires access not only to a dataset,

but also to its history. First, nearly all modern databases
store some sort of log file or are able to back up snapshots.
In addition, a surprising number of major public-domain
datasets contain data that reflect their change over time as
well:

Wikipedia The precise edit-history of Wikipedia infoboxes
of over 16 years can be extracted from the correspond-
ing page histories [7]. We have improved the refer-
enced extraction procedure and have amassed 122 mil-
lion change records for 99,000 infoboxes.

DBLP provides monthly releases of their references dataset
at http://dblp.dagstuhl.de/xml/release/. In addition,
DBLP has an entire edit-history [30] of over 7 million
revisions for around 5.5 million entities, which results
in about 50 million change records. In addition to
appends, this dataset also contains corrections, such
as name disambiguations or updated links to websites.

IMDB The Internet Movie Database (IMDB) provides diff-
files at a weekly resolution until 2017 at ftp://ftp.

fu-berlin.de/pub/misc/movies/database/frozendata/.
In all, we have extracted 85 million change records
from these files. Since 2018, IMDB provides daily
dumps at https://datasets.imdbws.com/, which we are
currently crawling to extract the daily changes.

MusicBrainz records edits into its publicly available
database and provides a dump of these changes at
https://musicbrainz.org/doc/MusicBrainz_Database/

Schema#edit_table_.26_the_edit_.2A_tables.

While this is already quite a number of public datasets
that provide change history, we are sure that there are more
datasets to discover. Still, as all of these datasets are mostly
crowd-sourced public databases that might behave quite dif-
ferent to, e.g., internal datasets, we are left with the follow-
ing (not just technical) challenge:

Challenge 6. How can we overcome the traditional im-
pediments, such as performance-drop and space-requirements,
that prevent data managers from maintaining and making
database histories and logs accessible?

To some degree this is a chicken-and-egg problem: without
a proof of useful applications, change histories are less likely
to be stored, but without the histories it is hard to prove
the value of change exploration. For a more general under-
standing of database changes it is necessary to get a grip
on a large variety of datasets that are generated in different
contexts, different domains and by different users. In this
regard, the history of organization-internal datasets are of
particular interest, because in contrast to the open datasets,
only a very limited set of adept users can edit that data.
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Figure 4: A screenshot of our DBChEx tool to ex-
plore changes.

We are also currently gathering a dataset on changes in
web-tables. These web-tables are subject to much less struc-
ture and designed to be human-readable. Still, our change-
cube model is able to capture the changes in those web-
tables, which proves its versatility. Transforming the changes
into the change-cube is however a interesting challenge since
the tables and cells lack stable identifiers.

5.2 Tooling
We have implemented the change-cube and its set of op-

erations as a web-based system. In the main view, each line
represents a change-cube with some basic metadata about
its size, its top entities, properties, and values, etc. Users can
interactively apply operators, either by manually specifying
them or by clicking on e.g., a property and thus implicitly
slicing the cube further. In any situation the system can
display the actual changes that constitute the cube and in
the case of Wikipedia data open the corresponding revision
page. Figure 4 shows a screenshot of the DBChEx tool [10]
after a series of operations on the Wikipedia changes.
Short demo-videos are available at https://hpi.de/naumann/

projects/data-profiling-and-analytics/dbchex.html.
The tool implements the basic principles of exploration:

the ability to prioritize through ranking and visualization.
To help the user keep track we introduce two features that
are inspired by web browsers: a history of previously exe-
cuted operator sequences and the possibility to bookmark
certain operator sequences that user considers interesting
enough to save for future investigation. For now, a large
portion of the exploration is due to serendipity. In the future
however, the path to interesting findings could be paved by
the tool recommending next exploration steps, so that the
exploration becomes a joint human-machine effort. This be-
comes manifest in the following challenge:

Challenge 7. How can we effectively expose users to the
new change-dimension of data analytics, i.e., incorporate the
potentially long and complex change history of any data or
schema object?

5.3 Exploration examples
Our initial research into the topic of change exploration

has already yielded two concrete and interesting results. The
first addresses a preparation step for exploration, namely
an unsupervised clustering of changes. The second is a tool
intended for end-users, allowing them to explore the history
of a web table using a browser plugin.

Change clustering. We developed a clustering frame-
work that transforms a change-cube into a set of time series,

Figure 5: A browser plugin that displays the history
of Wikipedia tables.

which are subsequently partitioned into clusters using user-
determined clustering algorithms [13]. Applying clustering
algorithms to a change-cube serves two main purposes. In-
formation can be reduced to high-level behavioral patterns.
This is especially helpful for exploration purposes as the
clusters summarize the search space and thus can help the
user decide which parts of the data he or she wants to explore
in more detail. Additionally, clustering allows to detect in-
teresting patterns in the data. We have used the framework
to categorize voting patterns of IMDB users and to detect
schema changes in Wikipedia infobox templates.

Wikipedia table history. Many Wikipedia tables have
a long and eventful edit history. We developed a browser
plugin that makes such histories accessible and explorable
by the users. Until now users could only explore and under-
stand the history of Wikipedia tables by manually browsing
through the past revisions of a Wikipedia article. However,
this is a cumbersome process as it is not obvious, which of
the numerous revisions contain changes to a particular table.

By tracking the history of tables and also their cells, we
can enrich each table in a Wikipedia article by a timeline
that displays revisions that contain changes to this partic-
ular table (see Figure 5). The user can examine the table
in any of these revisions by simply clicking on that revision
in the timeline. Furthermore, the history of individual cells
allows us to draw a heat map that reflects certain cell meta-
data, such as the volatility of a cell or the age of the current
value. The past values of a cell can be explored by hovering
over a cell. These means allow users to gain insights on how
the table developed over time, which can influence the trust
in its content or give inspirations for future edits.

5.4 Mining the exploration process
In Section 4.5 we introduced the concept of exploration

logs, which record user actions throughout the exploration
process. Besides the previously mentioned applications that
immediately benefit the current user, these logs can also be
used to enhance the experience of other users:

Documentation and Communication. By document-
ing each step undertaken by the user, communication among
teams can be improved. The exploring users can even en-
hance this documentation by adding annotations for indi-
vidual steps to explain their reasons for particular decisions
along the exploration path. Another team member can then
comment on their decisions and suggest other routes. Even
if a user does not collaborate in the exploration process, a
comprehensive documentation can be a good aid to memory.

Recommendation. By analyzing a large number of ex-
ploration trees and generalizing the gained insights, it is
possible to provide automatic recommendations for possible
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next steps throughout future explorations. It is especially
interesting to see whether these insights can be transferred
to different datasets, and which exploration metadata are
important for relevant recommendations.

Tool Feedback. Finally, the insights of these meta-level
analyses can bring a return to the exploration tools. For
example, it is possible to support the user by providing
shortcuts for frequent exploration steps. If certain frequent
actions take unexpectedly long, this analysis can also help
to systematically improve performance by for example con-
structing adequate indexes.

Challenge 8. How can we learn from the observed ex-
plorations to improve the exploration process and experience
across multiple users, datasets and use cases.

6. CONCLUSION AND OUTLOOK
With the ever-growing volume and increasing importance

of data, we as a society have come to realize that the data it-
self can be attributed a cultural role that is worthy of preser-
vation. Consequently, the history of data should become
history, treated as heritage and therefore subject to inquiry.

We propose a novel view of databases, by regarding their
change over time in their data and metadata. The proposed
change-cube is a simple enough, but also sufficiently expres-
sive, model for changes. To enable exploration of data in
this new model, we define a first set of exploration primi-
tives. We have implemented a change exploration system
and have executed several simple use cases. But our vision
reaches far beyond this initial step – we want to enable a
true understanding of dataset changes, as expressed in var-
ious challenges to the community.

Research and development towards these goals will have
succeeded, when (i) we and the larger database community
have successfully tackled the technical challenges laid out in
this paper, (ii) have built systems and tools to apply the
research results to real-world datasets, and ultimately when
(iii) data consumers have understood the value of explor-
ing and analyzing change and have successfully applied the
technology to support their research, their data manage-
ment, and their decision making. We hope and expect that
the employment of change exploration ideas and technology
shall yield insights into the technical and semantic processes
in which data are created, updated, and managed.

As is the nature of such an open-ended and novel research
area, there remain many open issues, challenges, and ques-
tions. Apart from those formulated as concrete challenges
throughout the paper, we mention a few specific ones, which
reflect our concrete next steps in achieving the vision of
change exploration in our project “J Janus”.

Web table matching. To explore changes of any kind
of object, it is necessary to identify the same object across
revisions. While for traditional database systems such a
stable identifier is usually given (table name, row id), for
other forms of data, such as web data, it cannot be taken
for granted. One example for such objects without a stable
identifier are tables on the web, for example on Wikipedia
pages, for which the complete edit history is available. A
table on a page could be the revision of a table on the pre-
vious version of that page, but it could also be a completely
new table while the old one was deleted.

Through a matching of similar objects over time, it is
possible to infer which tables are different versions of the

same table, rather than tables of different meaning. This
matching process is also a prerequisite for the exploration
mentioned in Section 5.3, for which we use a simple solution
for now. We plan to improve this solution and also track
changes on the more fine-grained resolution of individual
cells.

Change classification. Changes to data can be catego-
rized in many ways. While there are simple categories that
can be immediately recognized from the data, such as dis-
tinguishing updates, inserts, or deletes, classifying certain
changes as spam, vandalism or erroneous changes is more
challenging. Even more challenging is the classification of
change sets (cubes). Use cases are the detection of schema
changes, bulk inserts, format changes, etc., as mentioned in
Table 1.

A concrete task that we are presently looking into is prop-
erty classification. Depending on the data at hand, proper-
ties can belong to a number of classes that are very bene-
ficial to predict. For example, in Wikipedia one would ex-
pect the founding year of a settlement to be static, whereas
the chart position of an album is expected to be highly dy-
namic. Automatically determining the expected volatility
of a property could allow Wikipedia administrators to lock
static properties to prevent vandalism. Preventing vandal-
ism can increase the trust users have in the information.
Furthermore, it might be beneficial to build classification
models that judge how trustworthy the current value even
of a dynamic property is.

Multi-source change exploration. For many use cases
and in many situations, more than one data source is avail-
able for the information need at hand. Except for the work
by Dong et al. [22] and Pal et al. [43], research on informa-
tion integration has largely ignored that fact that data has
a history. Extending the full scope of change exploration
by the additional dimension of multiple sources can reveal
change dependencies among sources, allow comparisons of
volatility, and provide a more complete picture of when and
how changes happen within an organization. This last open
issue warrants a final challenge, which should be addressed
as a larger effort of the research community.

Challenge 9. How can we model, query, and explore
change in the presence of multiple, possibly differing repre-
sentations of the data under consideration? That is, can we
combine data integration and fusion technology with change
exploration?

With this vision we have placed “variability” of data into
focus. The remaining big data dimensions are relevant to
change exploration: by adding the change dimension, the
volume of data increases and we need to develop efficient
and scalable methods for exploration; the velocity in which
changes occur affects the types of use cases one can address;
our Challenge 9 addresses the possible variety of changing
data; finally, we are exploring how to judge the veracity of
data by regarding the change history of it and its context.
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