
WELDA: Enhancing Topic Models
by Incorporating Local Word Context
Stefan Bunk

Hasso Plattner Institute

Potsdam, Germany

stefan.bunk@student.hpi.uni-potsdam.de

Ralf Krestel

Hasso Plattner Institute

Potsdam, Germany

ralf.krestel@hpi.uni-potsdam.de

ABSTRACT

The distributional hypothesis states that similar words tend to have

similar contexts in which they occur. Word embedding models

exploit this hypothesis by learning word vectors based on the local

context of words. Probabilistic topic models on the other hand

utilize word co-occurrences across documents to identify topically

related words. Due to their complementary nature, these models

define different notions of word similarity, which, when combined,

can produce better topical representations.

In this paper we propose WELDA, a new type of topic model,

which combines word embeddings (WE) with latent Dirichlet allo-

cation (LDA) to improve topic quality.We achieve this by estimating

topic distributions in the word embedding space and exchanging

selected topic words via Gibbs sampling from this space. We present

an extensive evaluation showing that WELDA cuts runtime by at

least 30% while outperforming other combined approaches with

respect to topic coherence and for solving word intrusion tasks.

CCS CONCEPTS

• Information systems→Document topicmodels;Document

collection models; •Applied computing→ Document analysis;

KEYWORDS

topic models, word embeddings, document representations

ACM Reference format:

Stefan Bunk and Ralf Krestel. 2018. WELDA: Enhancing Topic Models by

Incorporating Local Word Context. In Proceedings of The 18th ACM/IEEE
Joint Conference on Digital Libraries, Fort Worth, TX, USA, June 3–7, 2018
(JCDL ’18), 10 pages.
https://doi.org/10.1145/3197026.3197043

1 INTRODUCTION

Many downstream NLP components benefit from a solid represen-

tation of documents and words, for example text categorization,

part-of-speech tagging, or machine translation. One popular con-

cept to quantify the meaning of a word is to look at the contexts in

which it appears. A famous quote by Firth says: “You shall know a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5178-2/18/06. . . $15.00

https://doi.org/10.1145/3197026.3197043

Figure 1: Illustration of an LDA topic in the word embed-

ding space. The gray isolines show the learned probability

distribution for the topic. Exchanging topic words having

low probability in the embedding space (red minuses) with

high probability words (green pluses), leads to a superior

LDA topic.

word by the company it keeps” [11]. In other words, if two words

occur in similar contexts, they are similar. This assumption, also

known as the distributional hypothesis, has driven the development

of many models for text representation.

Two of these models areword embeddings and topic models. Topic
modeling tries to reconstruct topics through a generative model

from a collection of documents. Each document can then be repre-

sented by the topics it covers and each topic can be represented by

a set of words. One of the first topic models was latent Dirichlet

allocation (LDA) [7]. It models topics as probability distributions

over words which makes the topics and the generative process

easily interpretable by humans.

The idea of word embeddings is to assign each word in a vocabu-

lary to a real vector in a high-dimensional vector space. This vector

representation of the word is called the embedding of the word.

Typically, this vector space contains 50 to 600 dimensions [18]. Al-

though the idea is quite old [5, 24], the method has recently gained

a lot of popularity in the research community [14, 15, 20]. Open-

source tools such as word2vec
1
allow training on billions of words

in a supervised manner. Word embeddings are a by-product, namely

the internal learned weights of a neural network. Given a text, the

neural network learns to predict for each word the sourrounding

words. During training, a sliding window runs over the text and for

1
https://code.google.com/archive/p/word2vec/

https://doi.org/10.1145/3197026.3197043
https://doi.org/10.1145/3197026.3197043
https://code.google.com/archive/p/word2vec/

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA Stefan Bunk and Ralf Krestel

each word the neural net adapts its weights to learn to predict its

surrounding words. In this way, the context of a word is encoded

in the learned weights of the network which then serve as vector

representations for the input words.

Word embeddings and topic modeling have different origins.

While the former have their roots in the neural network and deep

learning community, the latter stems from Bayesian statistics which

is why traditionally there is not much research combining the

two methods. In this paper, we aim to explore potential synergies

between these technologies. Combining the two methods seems

promising due to several reasons:

(1) the two models capture different notions of similarity: the

word-based embedding models focus on semantic simi-

larity, e.g., “lecturer” and “teacher”, while the document-

based topic models capture relatedness, e.g., “teacher” and

“school”.

(2) word embedding models can more efficiently be trained

on much larger corpora than standard topic models, such

as LDA, thereby allowing more semantic information to

be used during the topic model inference step.

(3) out-of-vocabulary (OOV) words are a problem for topic

models where unseen words in new documents are typ-

ically ignored. Word embedding models do not face the

same OOV problems since they are typically trained on

billions of words from all domains and can incorporate new

terms rather easily, while topic models are typically used

to analyse domain-specific, clearly defined collections.

(4) word embeddings lack human interpretability which is

where the probabilistic view of topic models can help and

facilitate interpretation.

In particular, it might be useful to investigate Baroni’s question

whether the errors of each model type are complementary [3].

In general, there are two ways of combining these two methods:

one can try to improve topic models or one can try to improve

word embeddings. We focus on the former and illustrate in Figure 1

how word embeddings can help to improve topic models in our

approach. The figure shows an area of a word embedding space

projected two dimensions via principal component analysis (PCA).

The words marked by black crosses and red minuses represent

the top ten words of a topic learned by LDA. The gray dots in the

background represent other words in the embedding space. When

we plot the learned probability distribution for the words in the

embedding space (gray isolines), we see that the words with the

lowest probabilities are also the words that fit the least into the topic

(the words “one”, “question”, “claim”, and “believe”). The topic could

be improved by picking words which are close in the embedding

space to the existing words in the topic. In the figure, we illustrated

this with the words “existence”, “faith”, “belief” and “life” which

form a stronger topic with the rest of the words.

Further, our WELDA model can handle words that the topic

model has not seen during training (OOV words). As shown by

Hu et al. [12], being able to handle OOV words helps topic models

significantly for tasks such as document classification. In WELDA,

we can make use of the learned probability distribution for each

topic in the embedding space to assign topics to unseen words in

the following way: Let’s assume we encounter a word previously

unseen by our topic model. Instead of ignoring it — as is the default

for standard topic modeling — we assign a topic probability based

on the learned probability distributions in the embedding space.

2 COMPARING TOPIC MODELS ANDWORD

EMBEDDINGS

Topic models, as well as word embedding models, exploit the dis-

tributional hypothesis [11] which states that similar words tend

to occur together. However, both models use this hypothesis to

come to different conclusions. LDA works on the bag-of-words

assumption, i.e., it treats a document as a whole and ignores the

order of the words. When making a prediction for the next word,

LDA makes a global prediction based on the topic distribution in

the current document. Word embedding models, on the other hand,

learn a word representation based only on a small, local context
window around the word.

Both, LDA and word embeddings, can provide a vector represen-

tation for words. In LDA, this happens by taking the topic distribu-

tion for a word as the embedding in the topic space. However, this

representation is not good at keeping linear relationships [19, 20].

Also, it tends to yield sparse vectors as LDA tries to keep the number

of topics a word is associated with small.

The different nature of the models is also represented in the stan-

dard evaluation method for each. Word embeddings are typically

evaluated using word similarity tasks or word analogy reasoning

tasks. Topic models, on the contrary, are typically evaluated using

topic coherence, i.e., how well the top words from the topics belong

together and have a common, easily identifiable theme. When com-

bining topic models and word embeddings, as we propose in this

paper, the goal is to incorporate a priori semantic information about

words into the topic model to increase the coherence of the topics.

The assumption is that words which are close to each other in the

embedding space should have a higher probability of occurring

together in the same topic.

Baroni et al. [3] introduced a classification of count-based meth-

ods and prediction-based methods in distributional semantic mod-

els. Prediction-based methods try to set word vectors so that they

are able to predict the context words. Count-based methods are

based on counting the occurrence of words and co-occurrence with

other words. Popular count-based methods typically use pointwise

mutual information (PMI) and matrix transformation on the co-

occurrence matrix. While word embeddings are clearly a prediction-

based method, LDA constitutes a hybrid type in this classification.

LDA is based on word counts and co-occurrences and treats words

as discrete observations, however, the model parameters are chosen

to maximize its predictive power.

Another aspect is the interpretability of the model. LDA forces

the elements in a vector to sum up to one and all values must be

non-negative. Thus, the embedding of a word in the topic space is

easily interpretable by humans. With a word vector of [0 0 0.2 0.8]

and given the meanings of a topic, a word can be interpreted, for

example, as being used 20 % in sports and 80 % in politics. When

working with word embeddings, a vector such as [-2.4 0.3 1.3 -0.1]

is not interpretable. The arbitrary dimensions and values of a word

embedding vector cannot be directly mapped to meaning by hu-

mans.

WELDA: Enhancing Topic Models JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA

Regarding the performance, LDA operates much slower than

word embeddings when the training set size is equal. LDA becomes

expensive on large data sets, partially because the inference prob-

lem is NP-hard [25]. For training, the entire corpus and the topic

assignments have to fit in main memory for standard implemen-

tations. In addition, when the number of documents is increased,

the number of topics to represent the corpus usually needs to be

increased as well which further slows down the inference. Word

embeddings, on the other hand, have been successfully trained on

corpora with about 100 billion words [18], thus showing that they

scale to large data sets.

3 RELATEDWORK

The recent popularity of word embeddings has led to a re-evaluation

of topic models. There are two directions for research in this area.

One type of models aim to improve word embeddings by incorpo-

rating ideas from topic modeling [9, 17, 21, 26]. The other type of

models try to improve topic models by incorporating prior knowl-

edge via word embeddings. Since we focus on the latter, we discuss

related work in this area in more detail. Topic modeling for short

documents, e.g. for classification, can be improved by preprocessing

the short texts using word embeddings and then training a topic

model on the resulting less sparse space [12]. We aim at a more

general improvement of topics and therefore did a comparative eval-

uation with four recently proposed state-of-the-art topic models

that incorporate word embeddings in one way or the other.

Gaussian LDA.. In this approach, a topic is no longer a distri-

bution over words in the vocabulary, but a Gaussian distribution

in the word embedding space [10]. Further, words are no longer

atomic units but are represented by their corresponding pre-trained

word embeddings. Each topic k is associated with a mean vector

µk ∈ R
M

and a covariance matrix Σk ∈ R
M∗M

, with M being

the word embeddings dimensions. The prior distribution over the

means is a normal distribution and the prior distribution over the

covariances is an inverse Wishart distributionW−1
, a distribution

over symmetric positive-definite matrices. Even with some pro-

posed performance improvements, inference in Gaussian LDA is

slow and infeasible for high word embedding dimensions.

Latent Feature Topic Models (LFTM).. Nguyen et al. [22] use word

embeddings to sample words not only from the multinomial topic

distribution but also from the embedding space. Instead of directly

sampling a word from the topic-word distribution of the chosen

topic, they introduce a Bernoulli parameter s ∼ Ber (λ) to decide

whether the word is sampled as usual from the topic-word distri-

bution or from the latent feature vectors. When sampling in the

embedding space, the authors need to define a distribution over

all the words. This is achieved by introducing one topic vector τt
for all topics. This topic vector lies in the same space as the word

embeddings. Then, to sample in the embedding space, the model

samples from a softmax-normalized multinomial word distribution.

The optimization of the topic vector and the coupling between the

two components make the inference difficult. As Li et al. [16] state,

“the implementation is slow and infeasible when applied to a large

corpus”.

Nonparametric Spherical Topic Model (NSTM).. Batmanghelich et

al. [4] build on top of Gaussian LDA, but argue that Gaussian distri-

butions do not capture the distribution of words in the embedding

space well. Instead, they propose the von Mises-Fisher distribution

to model topics in the embedding space. The von Mises-Fisher dis-

tribution is a distribution on the hypersphere with a mean direction

µ and a concentration parameter κ. The distribution is rotationally

symmetric around µ. Intuitively, the vonMises-Fisher distribution is

a good distribution choice because its distance function is based on

cosine similarity. However, semantic relatedness between words is

usually not measured by Euclidean distance in embedding models,

but rather by cosine distance [19]. The length of the word vec-

tors does not matter for the similarity. In contrast to the previous

models, this model is not based on LDA but rather on hierarchical

Dirichlet processes. These models allow the number of topics to be

determined automatically. The authors propose an efficient param-

eter estimation algorithm based on stochastic variational inference.

They use 50-dimensional word embeddings which they trained on

Wikipedia.

Generative Topic Embedding (TopicVec). The main idea compared

to LDA is to take the immediate context of a word into account

and not only the bag-of-words information [16]. While LDA picks

a word from one of the K multinomial topic distributions, Top-

icVec defines this distribution based on the context words, similar

to the word2vec skip-gram architecture. For that, they encode a

topic with a vector tk in the embedding space. The authors provide

a variational inference algorithm for TopicVec, which learns the

topic assignments and the topic embeddings simultaneously. As

the words are sampled from their context words, the architecture

allows learning topics for a single document. No word collocation

information over different documents is necessary. However, as no

other method offers this possibility, we will evaluate TopicVec with

one set of topics for all documents.

In this paper, we follow a different approach by building on top of

LDA and using the information of the embedding space to resample

individual topic words to incrementally improve the topics of the

topic model. While other approaches suffer from long runtimes and

handling large corpora, we show that combining topic models and

word embeddings can be done in an efficient way.

4 WELDA —WORD EMBEDDING LATENT

DIRICHLET ALLOCATION

The different definition of context in both models leads to different

notions of word similarity: in topic models, words are similar if

they have a high probability in the same topic; in word embedding

models, words are similar if they are in the vicinity of each other

in the embedding space.

4.1 Word Embeddings for Topic Modeling

We aim to combine the two methods to achieve better topic mod-

els. As word embeddings and LDA topic modeling are techniques

from different backgrounds and with no inherent relationship to

each other, we started with exploring how the results of one can

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA Stefan Bunk and Ralf Krestel

be interpreted in the other model. To this end, we ran initial ex-

periments on the Wikipedia corpus
2
, on which we trained both

a topic model and a skip-gram word embedding model with two

hundred dimensions. We then evaluated the similarities between

the words to understand the different strengths of both models.

For embedding models, we used the cosine similarity between the

two word vectors. For topic models, we built the topic distribution

of a word by retrieving the word’s probability in all topics in the

topic-word matrix. We then normalized this probability to sum to

one. To calculate the similarity between two words, we calculated

the Jensen–Shannon divergence (JSD) and use 1 − JSD (P | | Q) as
the similarity metric.

Even though both, word embeddings and topic models, exploit

the distributional hypothesis, the correlation of word similarities

is surprisingly low. We calculated the similarities of all word pairs

created from the top ten words of an LDA topic model trained

on Wikipedia. The similarities of word embeddings and the topic

model only correlate withRPearson = 0.30. The results were similar

when we used Hellinger distance or Bhattacharyya distance as the

similarity measure for probability distributions in the topic model.

When looking at example pairs of high/low similarity in both

models in Table 1
3
, we see that topic models are able to detect more

far-fetched, less obvious connections. This is a good property of

topic models, however it sometimes makes the main theme hard to

understand. Embedding models, on the other hand, assign high sim-

ilarity to immediately obvious word pairs, often direct replacements

or synonyms of each other.

We further evaluated both model types on a standard similarity

benchmark, theWordSim-353 [1] data set. This data set contains

353 word pairs, whose similarity was assessed by thirteen to sixteen

human annotators each. The subjects were asked to rate the pair

from zero (totally unrelated words) to ten (very much related or

identical words). The highest-rated pair was midday – noon (9.29)

and the lowest-rated pair was king – cabbage (0.23). We calculated

the correlation between the human ratings and the model’s ratings

for both the embedding and topic model using the above-mentioned

similarity metrics. Embedding models excel at this task, matching

the human ratings with rPearson = 0.66, while the topic model

only achieves rPearson = 0.49.

To summarize, syntactic variations and more direct connected-

ness play a bigger role in word embedding models, while topic

models often capture more loose relationships. Embedding models

are good at assessing similarity between words. These observations

make us believe that word embeddings can help create more co-

herent topic models. Our goal is to strengthen the topic themes

by augmenting the top topic words with similar words from the

word embedding space, but at the same time not disregarding the

bag-of-words collocation information in the documents completely.

In this way, we help the user understand the common theme in a

topic better while still creating an overview over the entire corpus

by looking at all topics.

Table 1: Examples for Different Notion of Word Similarity

Word Embedding Similarity

High Low

T
o
p
i
c
M
o
d
e
l
S
i
m
.

H
i
g
h

disease, diseases

professor, lecturer

poetry, prose

games, statistics

war, commander

rights, discriminated

L
o
w

catalan, galician

prestige, respectability

obscenity, sedition

[completely
unrelated words]

Table 2: Notation

Symbol Description

K Number of topics

D Number of documents

Wd Number of words in document d

Θd Topic distribution for document d ∼ Dirichlet (α)
Φk Word distribution for topic k ∼ Dirichlet (β)
Ωk Embedded topic distribution for topic k ∼ N (µk , Σk)
Ψd,i Coin toss ∼ Bernoulli (λ)
wd,i Word in documentd at position i ∼ Multinomial (Φzd,i)
w∗d,i Word in embedding space to replacewd,i ∼ N (µk , Σk)

zd,i Topic assignment for wordwd,i ∼ Multinomial (Θd)

Hyperparameters

α , β Dirichlet priors

λ Resample probability

µk , Σk Mean and variance for topic k in embedding space

4.2 Generative Model

Compared to standard LDA, WELDA incorporates knowledge from

pre-computed word embeddings to estimate the final topic distri-

butions. This ensures that words associated with a topic are also

topically coherent in the embedding space. With the used notation,

which is shown in Table 2, the generative view of the model is as

follows:

(1) Choose number of topics K in the document collection

(2) Choose word distributions Φk ∼ Dirichlet (β)
(3) Fit normal distributions Ωk to Φk for each topic k in the

embedding space

(4) Now, for each document d :
(a) Choose topic distribution Θd ∼ Dirichlet (α)
(b) For each position i in the document

(i) Choose topic zd,i ∼ Multinomial (Θd)
(ii) Choose wordw ∼ Multinomial (Φzd,i)
(iii) Toss a coin Ψd,i ∼ Bernoulli (λ)
(iv) if Ψd,i = 1

• Replace wordw by wordw∗ ∼ N (µk , Σk)

The crucial step is to replace words in the topic distributions by

words that are topically more similar based on the learned proba-

bility distributions in the embedding space. This is achieved by the

following process: in general, word embedding models are trained

2
Complete English Wikipedia dump from June 21st, 2016

3
High similarity indicates a similarity value in the upper quartile; low similarity in

the lower quartile.

WELDA: Enhancing Topic Models JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA

D

K

Wd

α Θd

zd,i

wd,i

Φkβ

(a) LDA

D

K

Wd

α Θd

zd,i

wd,i w∗d,i

Φk Ωkβ
µk

Σk

Ψd,i λ

(b) WELDA

Figure 2: Plate notation for LDA and WELDA

on predicting words at an exact position. That means, if we look at

similar words for a given word, the model predicts a word which

could have been at the same position.Wewant to exploit this knowl-

edge about similar words encoded in the word embedding space

by transferring probability mass from general words in the topic

model towards topically similar words from the embedding space.

We achieve this by sampling new words from the embedding space.

For this, we learn a multivariate continuous distribution in the em-

bedding space for each topic. We use Gaussian distributions for that,

but other distributions can be used as well.
4
We call each of these

distributions Ωk an embedded topic distribution. This embedded

topic distribution is estimated from the top words of each topic Φk
and their representation in the embedding space. While iterating

over the document collection during training of the model, we selec-

tively replace wordswd,i in the documents with wordsw∗d,i from

the embedded topic distribution. We achieve this by sampling a new

word in the innermost loop of the Gibbs sampling algorithm and

then proceed as if that newly sampled word appeared. These words

have a high similarity in the embedding space to the top words in

the topic and thus are excellent candidates to replace overly general

words within the topic model. Before running Gibbs sampling, we

load a pre-trained word embedding model, e.g. one learned on the

English Wikipedia, but any other pre-trained embedding model

would do
5
.

4.3 Inference

We use the standard LDA sampling equation for our collapsed Gibbs

sampler:

p (zd,i = k |z−(d,i) ,w) ∝
n(wi)
−i, j + β

n(·)
−i, j +Wβ

n(di)
−i, j + α

n(di)
−i, · + Kα

(1)

4
We also experimented with multivariate Gaussian mixture distributions and multi-

variate von Mises-Fisher distributions; see Section 5.2

5
We also investigated the use of word embedding models trained on the topic model

training data; see Section 5.3

wherew are all words in the corpus, n
(wi)
−i, j is the number of timeswi

has been assigned to topic j , and n
(di)
−i, j is the number of times a word

from document di has been assigned to topic j . After initializing our
model by running the standard LDA algorithm until convergence

to obtain stable topic assignments, we estimate Gaussian distribu-

tions in the embedding space based on the top Ntop words of each

topic. Then we run additional Gibbs sampling iterations using our

collapsed Gibbs sampler but exchanging some of the words in the

document based on a Bernoulli distribution. If this coin flip with

success probability λ succeeds, we sample a vector from the word

embedding space, based on the topic distribution of the new topic

of the current word. A nearest neighbour search in the embedding

space yields the nearest word w∗. Subsequently, we update the

counts in the document-topic matrix and in the topic-word matrix,

as if we had observed the sampled word w∗ and not the word w
that we actually observed in the document.

4.4 Out-of-Vocabulary Words

One of the big advantages of WELDA is its ability to cope with

unseen words. In contrast to standard LDA, where words that were

not observed during training are simply ignored, WELDA can han-

dle unseen words and assign topic probabilities to them. During an

inference step to assign topics to words of a new document, unseen

words during training are assigned a membership probability for

each topic according to the learned Gaussian distribution. Then

a particular topic can be sampled for the new word using Gibbs

sampling. Figure 3 (center and right) shows an example from the

20News corpus. We can identify two topics: “shipping&handling”

(green) and “computers” (blue) together with their computed Gauss-

ian distribution indicated by grey circles. If we now want to infer

the topic distribution of a new document and observe a previously

unseen word, e.g. “buy”, we can locate this word in the embedding

space and assign topic probabilities to this word. In our example,

“buy” would get a higher probability in the blue “computer”-topic

than in the green “shipping&handling”-topic and nearly no proba-

bility in the red topic.

4.5 Reducing Computational Complexity

In order to ensure fast learning of the model parameters we propose

some simplifications. For example, we limit the number of topic

words Ntop that we consider for the estimation of the Gaussian dis-

tributions in the embedding space. This can be done without much

harm, since the top 100 to 200 words of a topic are usually most

indicative. Further, we use principal component analysis (PCA) to

project the word vectors to a lower number of dimensions Npca to

speed-up the necessary nearest neighbour search. Finding the near-

est neighbour becomes necessary after we obtained a sample from

the embedded topic distribution and we want to find the closest

word to our sample in the embedding space. The naive algorithm

uses linear search and evaluates all words in the embedding space.

This is expensive, especially because it happens in the innermost

loop of Gibbs sampling and is therefore executed very often, ap-

proximately λ×Niter ×Nwords times, where Nwords is the number

of words in the entire training corpus, Niter the number of Gibbs

sampling iterations and λ the resampling probability. However,

there are methods with a better runtime: we use either k-d trees

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA Stefan Bunk and Ralf Krestel

Figure 3: Illustration of three LDA topics in the word em-

bedding space together with the grey isolines of the learned

probability distributions. On the left you see two stop words

assigned to the red topic. On the right you see two topics

close together in the embedding space and a newword “buy”,

which was not in the training data.

Figure 4: Performance comparison of LSH and k-d tree for

the nearest neighbour word search based on the number of

PCA-dimensions Npca

or locality-sensitive hashing depending on the number of dimen-

sions k of the embedding space. k-d trees by Bentley [6] arrange

the points in a tree structure which allows retrieving the nearest

neighbour in O (logk) on average. k-d trees are guaranteed to find

the nearest neighbour. However, for high dimensions, the search

degenerates to the linear search due to the curse of dimensionality.

Thus we use locality-sensitive hashing (LSH) by Indyk et al. [13]

for higher dimensions. LSH is an approximate method, i.e., it is not

guaranteed that the nearest neighbour is found. LSH uses a hash-

function based on random hyperplanes in the space to bucketize all

vectors. Then, for a new vector, the same hash function is applied

and only the bucket with the corresponding hash value must be

checked. LSH has the opposite property, i.e., the lower the number

of dimensions the longer it takes.

We therefore evaluated the runtime of the two approaches during

a WELDA run. Figure 4 shows the ratio of the runtime of the k-d
tree and LSH. Note the logarithmic y-axis, so the ratio actually

increases almost exponentially. We see that up to five dimensions

Table 3: TopWords of Background Topic for 20NewsCorpus

would one writes like article think get know time people

even good much well way make see really want apr right

also going still say sure since first something back thing

never take many better may things

including the k-d tree is faster for looking up the nearest neighbour.
For six or more dimensions, LSH is preferred. We therefore switch

the algorithm depending on the number of pca-dimensions Npca
we use in our experiments.

4.6 Background Topic for

Corpus-Specific Stop Words

To speed up the topic improvement process, we include a corpus-

specific stop word topic to capture not only more general English-

language stop words but also corpus-specific ones. We detect these

stop words automatically during the initial LDA Gibbs sampling.

Instead of using a symmetric Dirichlet α prior for all topics, we

multiply the α0 prior by a factor αboost
0

. By increasing the value

of α0 we force the first topic to appear in almost all documents.

This forces LDA to put words in this topic, which occur in many

documents and are rather generic. We call this first topic the back-
ground topic because it occurs in many documents as the generic

word background for the more informative topics.

We experimented with different values of αboost
0

. Good results

were obtained for αboost
0

= 15 which led to the background topic

occurring in more than 90% of all documents. Indeed, if we look at

the top words from the background topic in Table 3, we find many

corpus-specific stop words, such as “article” and “people”.

In addition, the top-50 words in the background topic get a spe-

cial treatment. Whenever one of these words occurs, we always

resample the word, even if the coin toss in the WELDA algorithm

failed. Note that we keep this list fixed during theWELDA iterations.

The background topic changes quickly due to this approach and

a robust topic emerges after a few iterations. Due to this adapted

sampling technique, we differentiate between λ and λact in experi-

ments. The former is the λ the algorithm was configured with. The

latter represents the actual percentage of replacements when we

also replace corpus-specific stop words. Therefore λact is always
higher than λ.

This procedure helps replacing generic words from all topics,

thus making the topics better. We hypothesize that WELDA has

this property automatically, even without dedicated background

topic replacement. This is because, by the nature of sampling, these

words are more likely to be replaced as they occur more often in

the documents. Also, these words are usually far away from the

means of the embedded topic distributions. Thus, these words disap-

pear from the topics during our modified Gibbs sampling. Figure 3

shows original LDA topics in the embedding space. The red topic

on the left clearly contains two outliers: corpus-specific stop words

(“writes” and “article”). In WELDA these words would get replaced

eventually during sampling yielding more robust and stable topics.

Using a dedicated background topic and always resample its words

accelerates this process, since WELDA is not initialized with LDA

WELDA: Enhancing Topic Models JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA

(a) With 20News embeddings (b) With Wikipedia embeddings (c) With Nips embeddings (d) With Wikipedia embeddings

Figure 5: Topic coherence for the first 200 iterations for the 20news-corpus (left) and Nips-corpus (right)

Table 4: Corpora Used for Evaluation

20News Nips

Documents 11,295 1,740

Words 1,395,973 2,497,017

Classes 20 no classes
Vocabulary Size 51,951 35,171

Words per Document 124 1,435

topics that are cluttered with stop words. In Section 5.2 we show

experimental results for the usage of a background topic.

5 EVALUATION

We evaluated and compared our model on two different datasets:

20News and Nips. While these datasets are rather small, most

current approaches combining word embeddings and topic models

have already problems processing them. To test and compare the

various models, we used two different tasks: topic coherence and
word intrusion.

5.1 Datasets

Some statistics of the 20News
6
and Nips

7
datasets are listed in

Table 4. 20News is a collection of newsgroup posts from the early

1990s. The data was downloaded from twenty different newsgroups

and the name of the newsgroup is taken as the class label. The Nips

corpus is a collection of scientific papers from the proceedings of

the Neural Information Processing Systems conference. The papers

focus on neural computation, learning theory, algorithms and ar-

chitectures, cognitive science, information theory, neuroscience,

vision, speech, control and diverse applications.

We chose these two data sets because they represent two different

type of corpora. The 20News corpus is a general corpus with a

wide range of topics. The Nips corpus has a narrow focus with

many technical terms and a lot of topical overlap. We preprocessed

the corpora conducting tokenization, lowercasing, and stop word

removal using a list of 150 general words from Python’s nltk.

5.2 Parameter Settings

There are several configurable parameters in the algorithm that we

will detail in the following.

6
http://qwone.com/~jason/20Newsgroups/

7
http://cs.nyu.edu/~roweis/data.html

Figure 6: Influence of number of words to consider for dis-

tribution estimation Ntop and number of dimensions for di-

mensionality reduction Npca on topic coherence

Choice of embedded topic distribution: We tested different distri-

butions: the performance of the multivariate Gaussian distribution
and the multivariate von Mises-Fisher distribution were similar. The

Gaussian mixture model performed well only if the initial number

of topics was chosen too small, i.e. the topics generated by the orig-

inal topic model were mixtures of multiple topics. With a sufficient

number of topics, using mixtures of Gaussians was not necessary.

In princliple, WELDA can be used with any kind of multivariate

distribution. Since using multivariate Gaussians allows faster train-

ing of the model with equal or exceeding quality of resulting topics,

we only report results using Gaussians here.

Resampling probability λ: The parameter λ decides, how often a

word is resampled from the topic distributions. Thus, the parameter

λ governs how much extra information from the word embeddings

is leaked into the topic model. Running WELDA with λ = 0.0

corresponds to standard, unmodified LDA and will not have any

effect on the model because we already start with a converged topic

model. With λ = 1.0, no single word is taken from the documents,

rather all words are sampled from the embedding space. Experi-

ments showed that less then 100 iterations were necessary for the

model to converge. Figure 5 displays topic coherence for the two

datasets with embeddings trained on different corpora. Best topic

coherence scores where achieved for 0.4 ≤ λ ≤ 0.6. Currently we

do not optimize this hyperparamter.

Number of top words for distribution estimation Ntop : We are

using the top words of each topic to estimate the embedded topic

http://qwone.com/~jason/20Newsgroups/
http://cs.nyu.edu/~roweis/data.html

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA Stefan Bunk and Ralf Krestel

Figure 7: Comparison of WELDA with and without back-

ground topic. Background topic resampling converges

faster, but not better.

distributions. Usually only the first words of a topic share a common

theme.

Number of dimensions for dimensionality reduction Npca : Before
estimating the multivariate distribution in the embedding space,

we project the high-dimensional embedding space to a lower space.

There is a trade-off between the Npca parameter and the Ntop
parameter. The lower the final dimension number, the fewer words

we need for estimating the distribution. Fewer words are better

because in this case we can use the really good top words at the

start of a topic, and not the less probable ones further down the list.

On the other hand, by projecting the space to a lower dimension,

we throw away semantic information in the embedding space and

the similarity between words becomes less reliable. In general,

we expect a higher dimensionality to perform better. Best topic

coherence was achieved for Npca = 50 and Ntop = 200. Figure 6

shows the influence of Ntop and Npca . Note that the regression

lines added to the plot indicate that Ntop has nearly no influence

on the topic coherence measure.

Background topic: We include a dedicated background topic to

capture corpus-specific stop words. This has no influence on the

topic quality but on the runtime until convergence. Figure 7 shows

the convergence behavior on the 20News corpus with Wikipedia

embeddings.WhileWELDA convergeswith a dedicated background

topic after 200 iterations, at least 500 iterations are needed without.

Standard LDA parameters: As in standard LDA, the Dirichlet

hyperparameters must be chosen. We use the same parameters

in WELDA that we also use for the initial LDA iterations (α =
β = 0.02). We run LDA for 1, 500 iterations [22], to ensure that the

log-likelihood converges.

5.3 Topic Coherence

Topic coherence is a standard measure to evaluate topic models

and measures how well the top-words in a topic fit to each other.

We use the CV metric from Röder et al. [23] which had the high-

est correlation with human annotators (rPearson = 0.731) in their

experiments. We fixed the number of top words to consider for eval-

uation to N = 10 which is a common choice in the literature [2, 23].

All experiments were run with K = 50 topics. We tested on the

Table 5: Topic Coherence on the 20News and Nips Corpus

with Wikipedia and Corpus-Specific Embeddings

Corpus: 20News Nips

Embeddings: Wikipedia 20News Wikipedia Nips

LDA —— 41.9 —— —— 40.6 ——

Gauss. LDA 38.5 40.3 39.2 39.5

LFTM 43.9 45.6 41.6 42.8

NSTM — — 37.5 36.8

TopicVec 48.1 46.2 43.4 43.6

WELDA 48.6 47.4 44.2 42.9

Figure 8:Word intrusion study results formodel with 50 top-

ics and 20 topics

20News and on the Nips corpus. We optimized the parameters

for all models on both corpora. We run WELDA for 200 iterations

with Gaussian distributions and λ = 0.4. An overview of the re-

sults can be seen in Table 5. Using word embeddings learned on

Wikipedia yields better results than using embeddings learned on

20News or Nips. One explanation for that is the size of the corpora,

with Wikipedia having millions of documents instead of thousands.

Due to the nature of the topic coherence measure (which uses

Wikipedia word co-occurrence) it is also no surprise that results

for the 20News corpus are better. The Nips corpus is too domain-

specific to be captured by many Wikipedia articles. For NSTM, the

20News corpus was to large and no results could be obtained. On

both corpora (using Wikipedia embeddings), WELDA outperforms

the other approaches as well as vanilla LDA significantly.

5.4 Word Intrusion

So far we evaluated the quality of our topics using the topic co-

herence measure [23] to assess model quality. While the latter is

cheap and many models can be evaluated, the correlation with

human ratings is not perfect (rPearson = 0.731). Also, it is based on

WELDA: Enhancing Topic Models JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA

Table 6: Topic Evolution from LDA to WELDA after 200 Iterations (Crossed-Out Words were Replaced by Bold Ones)

20News

water power use air high system light used heat time nuclear cooling temperature cycle plants

year players baseball article good writes lopez jewish league average hit braves season hitter

information list mail may internet send anonymous faq email use system available privacy

israel israeli jews arab arabs writes article peace would lebanese lebanon land israelis

team hockey season nhl players games league game teams year cup play

Nips

bayesian gaussian distribution prior posterior data using evidence mean sampling monte carlos covariance

kernel algorithm vector support loss margin set function linear examples gerneralization svm problem

speech recognition speaker gamma acoustic phoneme time vowel information speakers generalization segmentation

spike firing neurons time information neuron rate spikes stimulus neural spiking trains

state learning reinforcement policy action value optimal states actions time reward

co-occurrence statistics from the English Wikipedia under the as-

sumption that this corpus contains a large number of topics and can

therefore be used as a reference corpus. In the case of the 20News

corpus with its wide range of general topics, this assumption holds

indeed. However, it is questionable for the Nips corpus which cov-

ers a very technical, focused domain. For this reasons, we decided

to conduct a manual study on the Nips corpus in addition. We

evaluated the quality of topics by the word intrusion task defined

by Chang et al. [8]. In this task, a subject is presented a list of six

words. Five of these six words belong to the top words of one topic

of the topic model. The sixth word, called the intruder, was chosen
randomly from another topic. The idea of this word intrusion study

is the following: if the five words form a clear and coherent topic it

should be simple to detect the intruder.

In our study, we picked the four best models based on topic

coherence, i.e., LDA, LFTM, TopicVec and WELDA (Gaussian LDA

and NSTM didn’t make the cut). We tested two different scenarios:

one with K = 50 topics and one with K = 20 topics. Our subject

group consisted of computer science students and computer scien-

tists familiar with the topics of the Nips corpus. To avoid biased

results, subjects were not presented with the information, whether

their selection was correct [8]. Further, the underlying topic model

was not displayed and we randomized the order of the samples.

We present the results for models with K = 50 topics and K = 20

topics in Figure 8. For the plots, we calculated the accuracy of

each person on each topic model. Each model was evaluated by at

least five persons (seven at most), resulting in at least five accuracy

values. For both, K = 20 and K = 50, WELDA achieves the highest

accuracy (around 70%), outperforming the other approaches and

LDA significantly.

5.5 Topic Quality

Besides the quantitative evaluation results in the previous sections,

we also want to report qualitative results to demonstrate the func-

tioning of our model. Table 6 presents the top ten words of three

random topics of the 20News (top) and Nips (bottom) corpora.

The examples clearly show WELDA’s capability to add specific,

meaningful words among the top words, while at the same time

downgrading overly general words.

Table 7: Runtime comparisson: 20News+Nips

Method Runtime

Gaussian LDA 4283 min

LFTM, λ = 0.6 3753 min

NSTM DNF

TopicVec 294 min

WELDA, λ = 0.5 206 min

Figure 9: Runtime ofWELDA on the 20News corpus depend-

ing on the resampling Parameter λ with Wikipedia embed-

dings and Npca = 10

5.6 Runtime

Our Experiments were conducted on a 32-core, Intel Xeon CPU E7-

8837 @ 2.67GHz machine with 256 GB main memory. While some

techniques have parallelized implementations available, others have

not. Therefore, to ensure comparability, we ran all approaches with

only a single core. We tested on 20News with 200-dimensional

embeddings (50-dimensional for Gaussian LDA) and on Nips with

50-dimensional corpus-specific embeddings, both with K = 50 top-

ics. We present the runtimes of the different approaches in Table 7.

On both corpora, WELDA is the fastest, in total 30% faster than

the second fastest approach (TopicVec) and an order of magnitude

faster than Gaussian LDA and LFTM. LFTM and Gaussian LDA are

very slow with 200-dimensional embeddings, making them infeasi-

ble to run on larger corpora, while NSTM did not finish at all since

the 20News corpus was too large to process for NSTM.

JCDL ’18, June 3–7, 2018, Fort Worth, TX, USA Stefan Bunk and Ralf Krestel

Note that WELDA’s performance largely depends on the resam-

pling probability λ. The higher λ the more new words are sampled

which leads to more nearest-neighbour searches which dominate

the runtime (see Figure 9). Still, even with λ = 1.0 the runtime of

WELDA on 20News is with 164 min still faster than the next-fastest:

TopicVec (178 min).

6 CONCLUSIONS

In this paper, we have shown that word embeddings can be used to

improve topic models. We started from the distributional hypothe-

sis and analyzed its different realization in topic models and in word

embedding models. Based on this analysis, we proposed WELDA,

a new type of topic model aiming to utilize the strengths of both

model families. WELDA learns topic distributions for all topics in

the word embedding space. These topic distributions capture and

generalize the positions of the words in the embedding space. By

learning an entire distribution and not only a single topic vector,

we are also capturing the covariance of the word positions in the

embedding space. We exchange document words by resampling

words from this distribution during Gibbs sampling inference. We

shift probability mass from general, low-informative words to spe-

cific, more salient words that strengthen the main theme of each

topic.

Our evaluation showed improved results over state-of-the-art

combined topic models on the task of detecting word intrusion

and with respect to topic coherence. We could further confirm

the assumption that higher dimensionality of the word embed-

dings leads to better performance, as more semantic regularities

can be encoded in the embedding space. We experimented with

using corpus-specific embeddings instead of pre-trained embed-

dings from Wikipedia which gave slightly worse results. Albeit

lacking quality when evaluated on their own, the corpus-specific

embeddings can still help to improve topic coherence, because they

are learned on the same domain as the topic model. While other

state-of-the-art combinations of word embeddings and topic mod-

eling (except TopicVec) can only handle very small corpora in a

reasonable amount of time, our approach is by far the fastest.

REFERENCES

[1] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pas, and

Aitor Soroa. 2009. A Study on Similarity and Relatedness Using Distributional

and WordNet-based Approaches. In Proceedings of the Conference of the North
American Chapter of the ACL (NAACL). ACL, 19–27.

[2] Nikolaos Aletras and Mark Stevenson. 2013. Evaluating Topic Coherence Us-

ing Distributional Semantics. In Proceedings of Conference on Computational
Semantics (IWCS). ACL, 13–22.

[3] Marco Baroni, Georgiana Dinu, and German Kruszewski. 2014. Don’t count,

predict! A systematic comparison of context-counting vs. context-predicting se-

mantic vectors. In Proceedings of the Meeting of the Association for Computational
Linguistics (ACL). ACL, 238–247.

[4] Kayhan Batmanghelich, Ardavan Saeedi, Karthik Narasimhan, and Sam Gersh-

man. 2016. Nonparametric Spherical Topic Modeling with Word Embeddings. In

Proceedings of the Meeting of the Association for Computational Linguistics (ACL).
ACL.

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A

Neural Probabilistic Language Model. The Journal of Machine Learning Research
3 (2003), 1137–1155.

[6] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Asso-

ciative Searching. Commun. ACM 18, 9 (1975), 509–517.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet

Allocation. The Journal of Machine Learning Research 3 (2003), 993–1022.

[8] Jonathan Chang, Sean Gerrish, Chong Wang, J. L. Boyd-graber, and David M Blei.

2009. Reading Tea Leaves: How Humans Interpret Topic Models. In Advances in
Neural Information Processing Systems (NIPS). Curran Associates, Inc., 288–296.

[9] Jianpeng Cheng, ZhongyuanWang, Ji-RongWen, Jun Yan, and Zheng Chen. 2015.

Contextual Text Understanding in Distributional Semantic Space. In Proceedings
of the Conference on Information and Knowledge Management (CIKM). ACM,

133–142.

[10] Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015. Gaussian LDA for Topic

Models with Word Embeddings. In Proceedings of the Meeting of the Association
for Computational Linguistics (ACL). ACL, 795–804.

[11] John Rupert Firth. 1957. Papers in linguistics, 1934-1951. Oxford University Press.
[12] Weihua Hu and Jun’ichi Tsujii. 2016. A Latent Concept Topic Model for Robust

Topic Inference Using Word Embeddings. In Proceedings of the Meeting of the
Association for Computational Linguistics (ACL). ACL, 380–386.

[13] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors : Towards

Removing the Curse of Dimensionality. In Proceedings of the Symposium on
Theory of Computing (STOC). ACM, 604–613.

[14] Omer Levy and Yoav Goldberg. 2014. Dependency-Based Word Embeddings. In

Proceedings of the Meeting of the Association for Computational Linguistics (ACL).
ACL, 302–308.

[15] Omer Levy and Yoav Goldberg. 2014. Linguistic regularities in sparse and explicit

word representations. In Proceedings of the Conference on Natural Language
Learning (CoNLL). ACL, 171–180.

[16] Shaohua Li, Tat-Seng Chua, Jun Zhu, and Chunyan Miao. 2016. Generative Topic

Embedding: a Continuous Representation of Documents. In Proceedings of the
Meeting of the Association for Computational Linguistics (ACL). ACL, 666–675.

[17] Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. 2015. Topical Word

Embeddings. In Proceedings of the Conference on Artificial Intelligence (AAAI).
AAAI Press, 2418–2424.

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed

Representations ofWords and Phrases and their Compositionality. InAdvances in
Neural Information Processing Systems (NIPS). Curran Associates, Inc., 3111–3119.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. CoRR abs/1301.3781 (2013).

[20] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic regularities

in continuous space word representations. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL),
Vol. 13. ACL, 746–751.

[21] Christopher E. Moody. 2016. Mixing Dirichlet Topic Models and Word Embed-

dings to Make lda2vec. CoRR abs/1605.02019 (2016).

[22] Dat Quoc Nguyen, Richard Billingsley, Lan Du, and Mark Johnson. 2015. Im-

proving topic models with latent feature word representations. Transactions of
the Association for Computational Linguistics (TACL) 3 (2015), 299–313.

[23] Michael Röder, Andreas Both, and Alexander Hinneburg. 2015. Exploring the

Space of Topic Coherence Measures. In Proceedings of the Conference on Web
Search and Data Mining (WSDM). ACM, 399–408.

[24] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning

representations by back-propagating errors. Nature 323 (Oct. 1986), 533–536.
[25] David Sontag and Daniel Roy. 2011. Complexity of Inference in Latent Dirichlet

Allocation. In Advances in Neural Information Processing Systems (NIPS). Curran
Associates, Inc., 1008–1016.

[26] Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. 2015. LearningWord

Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations. In

Proceedings of the Meeting of the Association for Computational Linguistics (ACL).
ACL, 136–145.

	Abstract
	1 Introduction
	2 Comparing Topic Models and Word Embeddings
	3 Related Work
	4 WELDA — Word Embedding Latent Dirichlet Allocation
	4.1 Word Embeddings for Topic Modeling
	4.2 Generative Model
	4.3 Inference
	4.4 Out-of-Vocabulary Words
	4.5 Reducing Computational Complexity
	4.6 Background Topic for Corpus-Specific Stop Words

	5 Evaluation
	5.1 Datasets
	5.2 Parameter Settings
	5.3 Topic Coherence
	5.4 Word Intrusion
	5.5 Topic Quality
	5.6 Runtime

	6 Conclusions
	References

