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Abstract—Patent offices and other stakeholders in the patent
domain need to classify patent applications according to a
standardized classification scheme. To examine the novelty of
an application it can then be compared to previously granted
patents in the same class. Automatic classification would be
highly beneficial, because of the large volume of patents and
the domain-specific knowledge needed to accomplish this costly
manual task. However, a challenge for the automation is patent-
specific language use, such as special vocabulary and phrases. To
account for this language use, we present domain-specific pre-
trained word embeddings for the patent domain. We train our
model on a very large dataset of more than 5 million patents
and evaluate it at the task of patent classification. To this end,
we propose a deep learning approach based on gated recurrent
units for automatic patent classification built on the trained
word embeddings. Experiments on a standardized evaluation
dataset show that our approach increases average precision for
patent classification by 17 percent compared to state-of-the-art
approaches. In this paper, we further investigate the model’s
strengths and weaknesses. An extensive error analysis reveals that
the learned embeddings indeed mirror patent-specific language
use. The imbalanced training data and underrepresented classes
are the most difficult remaining challenge.

Index Terms—Document Classification, Deep Learning, Word
Embedding, Patents

I. INTRODUCTION

In 2018, 308,853 U.S. patents have been granted by the
U.S. Patent and Trademark Office, which is the second-largest
number of grants ever1. All granted U.S. patents since 1976
are publicly available as full text2. These large text collections
represent an extensive amount of human knowledge in an al-
most unstructured form. This makes mining information from
them challenging and automatic classification and retrieval a
hard problem.

Not only the number of documents but also the patent-
specific vocabulary makes the tasks more difficult. Because of
the underlying legal purpose of patent documents, they follow
a specific writing style. Patent applications need to define the
scope of an invention and need to delimit it from others whilst
covering as much variation as possible. As a consequence,
patent descriptions use vague language. For example, a patent
calls an invention “electronic still camera” and “electronic

1https://www.ificlaims.com/rankings-trends-2018.htm
2https://bulkdata.uspto.gov/

imaging apparatus”, whereas such a device is called “digital
camera” in colloquial speech (Fig. 1). A patent’s claims are a
controversial subject, because a patent grants rights and also
limits the rights of others. Patents grant a monopoly for a
limited time in exchange for the disclosure of the invention so
that others can license it.

Unstructured text sections, such as abstracts, descriptions,
and claims, make up the largest part of a patent. The claims
section is essential for defining the scope of an invention. It
describes the extent of the monopoly rights granted by the
patent. Court decisions of the past precisely define the meaning
of “patent speak”. An example are the slight differences
of “consist of” and “comprise”3: “consist of” implies an
exhaustive enumeration, whereas “comprise” commences an
enumeration that is not necessarily exhaustive. Classifying
patents is challenging because of patent-specific language use
— even for domain experts.

Another difficulty are special technical terms and long
lists of synonyms, such as light-sensitive, photosensitive, and
photoreceptive. Depending on the context these synonyms
actually might or might not have slightly different meaning.
Patent applicants might come up with a new term to describe
their invention to underline its novelty.

The International Patent Classification (IPC) is a hierarchi-
cal classification system for patents. It has been periodically
revised and adapted to the upcoming of new fields of invention.
The system considers 4 levels of hierarchy: sections, classes,
subclasses, and group. For example, the U.S. patent no.
4131919 with the IPC code H04N 1/21 is in group H04N
1/21, which is in the subclass H04N, the class H04, and
section H. The subparts of this code correspond to the sec-
tion “electricity”, class “electric communication technique”,
subclass “pictorial communication, e.g. television”, and group
“Intermediate information storage”. An excerpt of this patent is
depicted in Fig. 1 with the deprecated IPC code H04N 005/79.

This complicated classification system is applied at several
different steps in the patenting process. On the one hand,
patent applicants need to search for prior art, if they file a
patent. They need to retrieve patents about similar inventions

3https://www.epo.org/law-practice/legal-texts/html/guidelines/e/f iv 4 21.
htm



Fig. 1: Patent documents follow a standardized structure and
consist of several fields, such as title, abstract, and claims, but
also references. This example is an excerpt of U.S. patent no.
4131919.

although they might use different words for description. On
the other hand, patent examiners in a patent office need to
check a patent application for its “inventive step or non-
obviousness” and its “novelty”. A patent examiner specialized
in the field of the invention needs to be matched to the patent
application. Finally, patent courts and patent attorneys deal
with the infringement and validity of granted patents. All three
scenarios involve an information retrieval task, where patents
similar to a given patent need to be found. Based on their
similarity, similar patents mutually limit their scopes.

The IPC systematically classifies patents into topical sub-
classes. Thereby the retrieval of similar patents can be per-
formed by looking up patents in the same subclass. However,
manually classifying patents into such subclasses is costly in
terms of working power and needs domain-specific knowledge
due to the complexity of the IPC. The goal of automated patent
classification is to save these costs and associate a given patent
document with its correct subclasses automatically. Smith
summarizes the applications of automated patent classification
as (1) matching patent applications with a patent examiner who
is a domain expert for the field of invention, (2) classification
of external documents so that they can easily be retrieved
during the patent examination process, and reclassification of
older patents labeled with outdated classification schemes [1].
In practice, patents can be associated with multiple subclasses.
Therefore, patent classification is not a multi-class but a multi-
label classification task. In fact, our example patent in Fig. 1
is associated with 2 IPC subclasses. In total, the IPC knows
637 subclasses.

In this paper, we propose to improve automatic patent classi-
fication by leveraging recent deep learning techniques. In par-
ticular, we train fastText word embeddings on a large dataset
of more than 5 million patents. We use these embeddings
together with bi-directional Gated Recurrent Units (GRUs) to

classify patents. Experiments show that our approach is supe-
rior to state-of-the-art approaches in terms of three evaluation
measures. For example, we increase micro-average precision
at predicting a patent’s subclass by 17 percent. Further, we
find that domain-specific word embeddings trained on patent
documents outperform standard word embeddings trained on
Wikipedia pages by 9 percent when combined with a GRU-
based neural network.

Our contributions from previous work are the computation
of word embeddings on the second largest corpus ever used for
training and providing these word embeddings for download4.
Further, we propose a deep neural network architecture based
on bi-directional Gated Recurrent Units (GRUs) for patent
classification. In this paper, we further investigate the model’s
strengths and weaknesses. An extensive error analysis reveals
that the learned embeddings indeed mirror patent-specific lan-
guage use. The imbalanced training data and underrepresented
classes are the most difficult remaining challenge.

Section II summarizes related work in the field of automatic
patent classification and gives an overview of different word
embedding approaches. The three datasets used in this paper
are described in Section III and Section IV describes our
approach to capture semantics in patent language by domain-
specific word embeddings and automatically classify patents.
We evaluate our approach with three experiments in Section V
and conduct an error analysis in Section VI. We conclude in
Section VII.

II. RELATED WORK

Fall et al. established a collection of around 75,000 excerpts
of English-language patent applications as a de-facto standard
dataset for the evaluation of automatic patent classification [2].
The dataset is called WIPO-alpha5 and is provided by the
World Intellectual Property Office (WIPO). Fall et al. further
propose three evaluation measures that are tailored to the
patent classification task, where a patent is typically associated
with a main subclass, but also with several incidental sub-
classes. We apply the three measures in our experiments and
describe them in detail in Section V. In general, the micro-
precision of assigning the correct class to a given patent is
evaluated.

Table I gives an overview of related work in the field of
patent classification.

Seneviratne et al. propose to generate signatures from
patents instead of using the full vocabulary as features [3].
They evaluate their patent classification approach on IPC class
level (114 classes) and subclass level (451 subclasses) on
the WIPO-alpha dataset. While they improve classification
performance in comparison to Fall et al., they optimize also the
time required to index and search a patent collection. Other
results on the WIPO-alpha dataset have been published by
Nguyen (macro-f1: 0.452, micro-f1: 0.755) [4], Rousu et al.
(micro-f1: 0.767) [5], and Qiu et al. (macro-f1: 0.418) [6].

4https://hpi.de/naumann/projects/repeatability/text%2Dmining.html
5WIPO-en-alpha dataset, World Intellectual Property Office, Geneva,

Switzerland, 2002



TABLE I: Related Work Approaches use the Datasets WIPO-
alpha, USPTO-2M, and CLEF-IP for Evaluation.

Approach WIPO USPTO CLEF
Fall et al. [2] x - -

Seneviratne et al. [3] x - -
Nguyen [4] x - -

Rousu et al. [5] x - -
Qiu et al. [6] x - -

Derieux et al. [7] - - x
Verberne and Dhondt [8] - - x

Li et al. [9] - x x
Risch and Krestel [10] x x -

Several researchers conducted their experiments on other
datasets, which makes a direct comparison with their results
impossible. An ensemble of different classifiers slightly im-
proves micro-F1 score on a refined version of the WIPO-alpha
dataset according to Mathiassen and Ortiz-Arroyo [11]. They
report a micro-f1 of 0.867. Instead of IPC, Tran and Kavuluru
use the Cooperative Patent Classification (CPC) system, which
replaces the earlier the U.S. Patent Classification (USPC)
system [12]. They report a micro-f1 of 0.700 on a dataset
of patents with 654 subclasses. Dhondt et al. report a micro-
f1 0.751 and a micro-precision of 0.800 on a subset of
532,264 English abstracts from the so called CLEF-IP 2010
corpus [13].

The CLEF-IP 2010 corpus from the Conference and Labs of
the Evaluation Forum’s track for retrieval experiments in the
intellectual property domain (CLEF-IP) considered two tasks:
(1) recommending patents as prior art for another patent and
(2) patent classification according to the International Patent
Classification system (IPC). As its predecessor, the CLEF-IP
track of 2011 [14] provided datasets and tasks for a large
number of publications concerning retrieval in the intellectual
property domain.

D’hondt et al. find that bigrams are important phrasal
features to capture multi-word terms, which are frequent in
patents [15]. However, their work considers only the class
level (120) classes and not the more diverse and thus more
difficult subclass level. Verberne and D’Hondt investigate
the usefulness of different text sections of patents, such as
title, abstract, claims, and description in context of CLEF-IP
2010 patent retrieval and re-ranking tasks [16]. Abstract and
description achieve best precision and recall at the retrieval
task and significantly outperform title and claims [8], [16].
With regard to the usefulness of metadata, such as applicants,
inventors, and address, they conclude that it does not improve
classification [8]. This result contradicts Beney, who finds
that applicant and address improves classification [17]. They
argue that names and addresses identify companies, which
work in restricted domains. Derieux et al., find that results are
language specific, classification on English patents is at least
10% better than on German and French patents [7]. Guyot
et al. aim at building a single patent classifier for German,
French, and English patents [18]. They avoid sophisticated
preprocessing steps to be as language-independent as possible.

The observation that language has a strong influence on the
classification motivates further investigation of patent-specific
language use. In this paper, we consider to model this language
use with patent-specific word embeddings. To this end, we
summarize work in the field of word embeddings.

The upcoming of word embeddings or, more general speak-
ing, dense vector representations to capture the semantic mean-
ing of words influences many natural language processing
tasks. With Word2Vec, Mikolov et al. propose an efficient
way to train word embeddings [19]. As a consequence, they
are able to train embeddings on large datasets with billions
of words. A similar approach, termed global vectors (GloVe),
trains word embeddings on global word-word co-occurrence
counts rather than on context windows of limited size [20].
A disadvantage of both Word2Vec and GloVe is the inherent
out-of-vocabulary problem: a word that occurs only in the test
data but not in the training data has no vector representation
in the word embedding space. To overcome this problem,
Bojanowski et al. introduce another context-window-based
approach, which they call fastText [21]. fastText word em-
beddings incorporate information about character n-grams as
subparts of a word. As a consequence, they overcome the out-
of-vocabulary problem of other word embedding approaches
by falling back to embeddings of character n-grams if a word
is unknown.

Recently, deep learning approaches for patent classifica-
tion have been proposed. Xia et al. outline a general deep
learning approach for patent classification based on sparse
auto-encoders and deep belief networks [22]. However, their
proposal is limited to a theoretical approach and lacks prac-
tical experiments. Grawe et al. automatically classify patents
based on word embeddings and long-short term memory units
(LSTMs) in a neural network [23]. Their approach is similar
to ours but has several limitations: (1) it considers only 50
different classes, (2) it achieves only 63% accuracy, and (3)
as opposed to our approach it suffers from out-of-vocabulary
problems, which is inherent to the applied Word2Vec model.
Li et al. proposed a convolutional neural network for patent
classification [9]. The first 100 words of each patent’s ti-
tle and abstract are represented with 200-dimensional word
embeddings. Convolutions with filter size 3, 4, and 5 are
used in combination with a max-pooling layer. Their approach
achieves only slightly better precision and recall as a random
forest baseline. The applied word embedding technique suffers
from out-of-vocabulary problems, which we overcome with
our approach. However, the comparison of convolutional neu-
ral networks and recurrent neural networks at the task of patent
classification remains an open task for future research.

Instead of content-based approaches, which consider only
a patent’s text sections, Li et al. propose a citation-based ap-
proach [24]. They exploit co-citation relations among patents.
Further, they leverage the fact that patents reference other
patents in the same field to explain the novelty of their ideas.
These references are not limited to patents, but also include
scientific papers. Cross-collection topic models can be used to
recommend references across these different document collec-



tions [25]. While these approaches can help to retrieve similar
patents and can therefore be of help in the patenting process,
we solely focus on content-based classification of patents in
this paper. Similar to the IPC system in the patent domain is
the Medical Subject Headings (MeSH) ontology in the medical
domain. Eisinger et al. compare automatic document classifi-
cation for the two classification schemes [26]. They leverage
class co-occurrence frequencies to enrich labeled classes and
propose a guided search as an application. In contrast to most
other work, Chen et al. do not classify on the level of sub-
classes but on the level of subgroups [27]. Subgroups are the
lowest level in the patent classification hierarchy. While there
are 648 subclasses, there are approximately 72,000 subgroups.
Benzineb and Guyot describe current challenges of automated
patent classification and also its historical background [28].
Two examples are classification consistency issues arising
because of rapidly growing number of human examiners or
the so-called “horizontal nature” of patents, which refers to
multiple correct labels per patent.

In our previous work, we proposed domain-specific word
embeddings for the patent domain and showed that these
embeddings outperform common word embeddings trained on
Wikipedia [10]. In this work, we conduct more experiments
with regard to two different aspects. First, we investigate
the process to obtain domain-specific word embeddings for
the patent domain. With a new experiment we investigate
on the influence of the number of training samples on the
model’s performance. Furthermore, we conduct an error anal-
ysis, where we investigate at which level of the classification
hierarchy mis-classification happens.

III. DATASET

In this paper, we consider three different datasets of patent
documents. Tab. II gives an overview of the datasets, their
number of documents, and their number of tokens. The first
dataset is the WIPO-alpha dataset established by Fall et al.,
which is a de-facto standard for the evaluation of automated
patent classification and has been widely used [2]–[6]. The
dataset contains more than 75,000 patents with title, abstract,
claims, and full description. Further, each patent is associated
with a main subclass and incidental subclasses.

The second dataset is much larger and contains 5.4 million
patents granted by the United States Patent and Trademark
Office (USPTO). The USPTO keeps records of all U.S. patent
activity since 1790. On their website6, they provide free bulk
downloads of full text patent publications from 1976 to 2016.
We use this full dataset and refer to it as USPTO-5M.

Each patent contains bibliographic data, such as title, in-
ventor, owner, filing date, and granting date. Furthermore,
author information, patent type classification, claims, abstract,
links to other patents or papers, and a detailed description
of the invention are provided. For our experiments, we focus
on textual data and leave out figures and their captions. In

6https://www.uspto.gov/learning%2Dand%2Dresources/electronic%
2Dbulk%2Ddata%2Dproducts
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Fig. 2: Number of granted patents in the USPTO-2M dataset
per year and per section of the IPC system.

TABLE II: A Comparison of the Three Patent Datasets

Dataset # Documents # Tokens
WIPO-alpha 75,250 561 million
USPTO-2M 2 million 235 million
USPTO-5M 5 million 38 billion

comparison to WIPO-alpha, USPTO-5M is 70 times larger in
terms of number of documents and also number of tokens.

The third dataset is called USPTO-2M, contains 2 mil-
lion patents, and goes back to Li et al. [9]. It is publicly
available online7 in a pre-processed JSON format so that
other researchers can use it easily. The dataset is split into
a training set with 1.95 million documents and a test set with
the remaining 50,000 documents. Further, it is limited to titles,
abstracts, document identifiers, and subclasses. In total, there
are 637 subclasses. In contrast to WIPO-alpha, USPTO-2M
does not distinguish between main subclass and incidental
subclasses. Figure 2 shows the number of granted patents in
the USPTO-2M dataset per year and per section of the IPC
system. For all classes this number is almost constant until
2009 and linearly increases year by year starting from 2010.

IV. DEEP LEARNING FOR PATENT CLASSIFICATION

Our goal is to automatically classify patents into their
assigned subclasses. The large amount of available patents
and their full text plus the recent success of deep learning
for natural language processing motivate to investigate deep
learning for patent classification. To this end, we propose to
use word embeddings to capture the semantics of the specific
language that is used in patents. Further, we propose a neural
network architecture to automatically classify patents based on
the inferred word embeddings.

A. Domain-Specific Word Embeddings

Word embeddings are a basic ingredient for a variety of
tasks in natural language processing. They represent words as
dense vectors in a vector space. Pre-trained on a large number
of tokens, relations of these representations in a vector space
can mirror semantic relations of words [19].

7http://mleg.cse.sc.edu/DeepPatent/



We propose to train fastText word embeddings based on
the method by Bojanowski et al. [21] with 100, 200, and
300 dimensions. We transform all characters to lowercase and
discard all words that occur less than ten times. The used
context window size is 5.

We train the embeddings on our dataset USPTO-5M, which
contains 38 billion tokens and publish the resulting word
embeddings online8. To the best of our knowledge, this is
the second largest number of tokens ever used to train word
embeddings. It contains more than twice the number of tokens
of the English Wikipedia (16 billion) and is only exceeded
by the Common Crawl dataset, which consists of 600 billion
tokens. We assume that the embeddings are helpful not only
for patent classification but also for other tasks in the patent
domain and hope that other researchers can build on our
results.

B. Neural Network Architecture

Given a patent document, our goal is to infer its main
subclass and also potential incidental subclasses. We investi-
gate how domain-specific word embeddings can help to solve
this classification problem. Therefore, we extract a patent
document’s title and abstract and consider only the sequence of
the first 300 words. We choose this limitation to be comparable
to related work in our evaluation [2], [3]. Longer sequences
linearly increase runtime and memory need.

Fig. 3 visualizes the network architecture. For each word in
the input sequence, we calculate its word embedding based on
our pre-trained, domain-specific fastText model. This sequence
of word embeddings is processed by a spatial dropout, which
randomly masks 10% of the input words to make the neural
network more robust. The remaining 90% of the sequence
serve as input to the next layer in the neural network. In
particular, we propose a deep neural network architecture
based on gated recurrent units (GRUs). We decided to use
GRUs instead of long short-term memory units (LSTMs),
because they have a smaller number of trainable parameters
and are thus less likely to overfit on the training data. GRUs
and LSTMs are superior to simple recurrent units, because they
leverage gates to overcome the vanishing gradient problem. We
use bi-directional GRUs so that the input sequence is processed
in two directions: correct order and reverse order of the words.
The outputs of these two processing steps are averaged and
followed by a dropout of 10%, again to make the network
more robust.

In Section I, we pointed out that patent classification is not a
multi-class but a multi-label classification task. A typical final
layer of our neural network would therefore be a dense layer
with as many units as subclasses and a sigmoid activation.
Instead, we use a dense layer with as many units as subclasses
and a softmax activation. Thereby, we train the model for
the multi-class classification task only and aim to predict a
patent’s main subclass. For training the neural network, the
softmax activation together with a categorical loss function

8https://hpi.de/naumann/projects/repeatability/text%2Dmining.html

Input
input (None,	300)
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SpatialDropout1D
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output (None,	300,	300)

Bidirectional	(CuDNNGRU)
input (None,	300,	300)
output (None,	300,	256)

Dropout
input (None,	256)
output (None,	256)

Dense
input (None,	256)
output (None,	633)

Word	Embedding
input (None,	300,	300)
output (None,	300,	300)

Fig. 3: The neural network uses pre-trained word embeddings,
spatial dropout, GRUs, dropout, and a dense layer with soft-
max activation.

considers only a single subclass as correct. If our model
predicts any other subclass, such as any incidental subclasses,
the prediction is considered wrong during training.

However, during testing, we consider the probabilities out-
put by the softmax activation for all subclasses. We consider
the top three subclasses with the highest probabilities as
our final prediction. Although the neural network is trained
to predict only the main subclass and not the incidental
subclasses, our experiments in Section V show that the model
achieves competitive results for both tasks.

Training of the neural network until conversion takes 13
epochs with a batch size of 256. With a larger batch size,
more subclasses are covered in a particular epoch. The more
diverse set of subclasses potentially prevents the model from
optimizing for a small subset of all subclasses per epoch only.
However, we find no significant difference in classification
performance if we train the model with a batch size of
32 until convergence for 5 epochs. We assume that smaller
batches, which cover less subclasses, have no negative effect
on classification performance at our task, but we did not
conduct experiments to further investigate this matter.

V. EXPERIMENTS

For our experiments, we use three evaluation measures
as proposed by Fall et al. [2]. Fig. 4 visualizes the three
evaluation measures and how they differ in comparing the
ranked, top three predicted subclasses with the ground truth
main subclass (MC) and incidental subclasses (IC). These
measures are tailored to the practical application of patent
classification. The measure “top prediction” compares only the
top-ranked prediction to the main subclass. The measure “three
guesses” compares not only the top-ranked but the three top-
ranked ranked predictions to the main subclass. The prediction
is successful if one of the top three predictions matches the
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Fig. 4: Three evaluation measures for the task of patent
classification. The predicted, ranked subclasses are compared
to the ground truth main subclass (MC) and the incidental
subclasses (IC). (adapted from Fall et al. [2])

TABLE III: A Comparison of Micro-Average Precision for
Different Numbers of Word Embedding Dimensions on the
WIPO-alpha dataset.

Evaluation Word Embedding Dimensions
Measure 100-patent 200-patent 300-patent 300-wiki

Top-Prediction 45% 48% 49% 42%
Three-Guesses 70% 72% 72% 67%
All-Categories 54% 56% 57% 50%

ground truth main subclass. Both measures, “top prediction”
and “three guesses” evaluate only a multi-class classification
task. In contrast, the measure “all categories” considers also
the incidental subclasses as ground truth information and thus
evaluates based on a multi-label ground truth. The measure
checks whether the top prediction is included in the set of the
main subclass and all incidental subclasses. In theory, this set
could contain more than three subclasses. However, in practice
the set contains less than two subclasses on average.

We run three experiments to show that our domain-specific
word embeddings are beneficial for the task of patent clas-
sification. A fourth experiment evaluates how the model’s
performance is effected by altering the size of the training
data. In the first experiment, we compare the classification
performance of four different approaches. Three of them use
our pre-trained, patent-specific word embeddings and differ
only in the number of word embedding dimensions (either
100, 200, or 300). The fourth approach uses generic 300-
dimensional word embeddings trained on Wikipedia pages. All
four approaches have the same neural network architecture as
described in Section IV-B. We use the WIPO-alpha dataset and
apply the three evaluation measures: “top prediction”, “three
guesses”, and “all categories”.

Tab. III lists the results of our first experiment. The
patent-specific word embeddings, which we trained on 38
billion tokens, outperform word embeddings trained on En-
glish Wikipedia pages. This superiority holds if we use 300-
dimensional word embeddings for both approaches. How-
ever, if we train domain-specific word embeddings with
only 100-dimensional vectors, 300-dimensional word embed-
dings trained on Wikipedia are almost as good as domain-
specific word embeddings. The performances of 200- and
300-dimensional domain-specific word embeddings differ only

slightly.
The second experiment compares our best model to state-

of-the-art approaches for patent classification to show that our
approach achieves competitive results. To this end, we use
the same experiment setup as Fall et al., again on the WIPO-
alpha dataset and are thereby able to compare with results
reported in related work [2], [3]. Tab. IV lists the results of
our second experiment. Our best model with domain-specific
word embeddings outperforms the best other approach by up
to 17 percent (42 percent compared to 49 percent precision).

The third experiment evaluates our approach on a more
recent and larger dataset than WIPO-alpha, called USPTO-
2M. Unfortunately, this dataset does not distinguish between
main subclasses and incidental subclasses. For training our
approach, we consider the first listed subclass of each patent
as its main subclass. For the majority of patents only one
subclass is listed anyways.

The measure “all categories” is not influenced by the fact
that the dataset does not explicitly list main subclasses. Both
other measures, “top prediction” and “three guesses”, can only
be approximated, because we can only guess the ground truth
main subclass out of the set of all listed subclasses. Another
limitation of the dataset is that it does not contain patents’ full
texts but only their abstracts and titles. However, the WIPO-
alpha and the USPTO-2M dataset are still quite similar and we
assume that the task of patent classification is equally difficult
on both datasets. We use the patents of the years 2006 to 2013
as training data and the patents of the year 2014 as test data.

Because of the size of the dataset and memory constraints
during training, we can only process the first 30 words of
each patent (instead of the first 300 words as in our other
experiments). For the same reason, we can use only 100-
dimensional and no 300-dimensional word embeddings. Tab. V
lists the results of our third experiment. Surprisingly, the
classification results are even better on the USPTO-2M dataset
with the limited approach than on the WIPO-alpha dataset with
our more complex approach. The USPTO-2M dataset contains
25 times more training samples than the WIPO-alpha dataset.
We assume that the larger number of training samples is the
main reason for the model’s strong performance.

Together, the three experiments show that domain-specific
word embeddings together and a GRU-based neural network
achieve competitive results at the task of patent classification.
In particular, patent-specific word embeddings outperform
generic word embeddings trained on Wikipedia pages. How-
ever, memory constraints during training limit our approach
for the USPTO-2M dataset.

Figure 5 shows a 2-dimensional projection of the word
embedding space. For reasons of simplification the visualiza-
tion includes only the 10,000 most frequent words. We apply
the t-SNE algorithm [29] for dimensionality reduction from
300 to 2 dimensions. To this end, we use 500 iterations, a
learning rate of 10, and a perplexity of 25. This visualization
can be explored interactively (search for words and display
their closest neighbors) in a web browser. We have prepared
a 10,000-word subset of our dataset and made it available



TABLE IV: A Comparison of Micro-Average Precision for State-of-the-Art Approaches [2], [3] and our Neural Network with
Wikipedia Word Embeddings (RNN-wiki) and Patent Word Embeddings (RNN-patent) on the WIPO-alpha dataset.

Evaluation Measure Naive Bayes [2] k-NN [2] SVM [2] SNoW [2] k-NN [3] RNN-wiki RNN-patent
Top-Prediction 33% 39% 41% 36% 42% 45% 49%
Three-Guesses 53% 62% 59% 56% 67% 69% 72%
All-Categories 41% 46% 48% 43% 50% 53% 57%

TABLE V: Micro-Average Precision for our Neural Network
with Patent Word Embeddings (RNN-patent) with 100 dimen-
sions (limited to the first 30 words of each Patent) on the
USPTO-2M dataset.

Evaluation Measure RNN-patent
Top-Prediction 53%
Three-Guesses 75%
All-Categories 64%

Fig. 5: 2-dimensional projection of the word embedding space
with a zoom on the word “prism” and its neighborhood.

online9. This subset can be visualized online with the help
of tensorflow’s projector10. The focus of Figure 5 is on the
word “prism”. Note that the distance between words in the
2-dimensional projection might slightly differ compared to
the distance in the original, 300-dimensional space. Nearest
neighbors of the word “prism” in the original space are (from
closest to furthest): prisms, dichroic, polarizer, reflecting, lens,
reflection, and diffractive. Another example is the word “light-
sensitive”, which has the words “photosensitive”, “image-
forming”, “photoconductive”, and “photoreceptor” as closest
neighbors. The trained word embedding space is correctly
taking up the high semantic similarity of these words and
represents them with similar embedding vectors.

Our fourth experiment evaluates how the model’s perfor-
mance is effected by altering the size of the training data.
In total there are more than 1.7 million training samples and
we speculate that even more data would help performance.
To this end we systematically train models with an increasing
percentage of the full USPTO-2M training dataset, from 10%,
25%, 50%, and 75% to 100%. Again, we use the patents of the
years 2006 to 2013 as training data and sample a subset of each

9https://projector.tensorflow.org/
10https://hpi.de/naumann/projects/repeatability/text-mining.html
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Fig. 6: The micro-average precision at all three evaluated tasks
improves with an increasing amount of training data on the
USPTO-2M dataset.

year’s patents. Thereby, the smaller samples of the training
data cover still the same time span. The test set remains
unchanged and contains the patents of the year 2014. Figure 6
shows that more training samples improve the predictive power
of the model, however the rate of improvement slows down
after training on approximately 25 percent of the training data
(400,000 samples). Still the experiment suggests that a slightly
better performance is possible with more training data.

VI. ERROR ANALYSIS

We analyze the mis-classifications of our model on different
hierarchy levels. Figure 7 visualizes precision scores of the
top prediction on the hierarchy level of sections, classes, and
subclasses. The performance on the section level is homoge-
neous and ranges between 0.72 and 0.82, which is visualized
by the first column in Figure 7. Although there are many
more training samples for section B (10,790 samples) than
for section D (1352 samples) or E (2172 samples), the model
manages to learn the characteristics of all the different sections
with almost equal precision. The second column in Figure 7
reveals that precision on the class level is more heterogeneous.
For example, while the model achieves a precision of 0.76 for
class A63, the precision for class A62 is only 0.34. One reason
is the amount of training samples per class. While there are
565 samples of class A63, there are only 150 samples for
class A62. There is also an outlier in section D, where the
model achieves a precision of only 0.2 for class D02. This
low performance is connected to a small number of training
samples for class D02 (29 samples) in contrast to the total
number of training samples for section D (1352 samples). The
third column in Figure 7 shows the precision for each subclass.
Sorting by precision reveals a staircase-shaped sequence of



bars in the bar chart. On the subclass D06L the model achieves
its worst precision of only 0.06, which we assume is due
to the small number of training samples for subclass D06L
(20 samples). The classification accuracy on this particular
underrepresented subclass (and others, such as A47H, B61B
or C21C) could only be improved with more training samples.

As examples for a correct classification and for a
wrong classification, we use the patent applications
WO/2000/035682/A1 “Tabbed divider and pocket
construction” and WO/1999/004984/A1 “Index Pocket
and Method for Manufacturing the Same” from the WIPO-
alpha dataset. Both of these patents are in section B
“PERFORMING OPERATIONS; TRANSPORTING”, class
B42 “BOOKBINDING; ALBUMS; FILES; SPECIAL
PRINTED MATTER”, and subclass B42F “SHEETS
TEMPORARILY ATTACHED TOGETHER; FILING
APPLIANCES; FILE CARDS; INDEXING”. While our
model classifies the patent “Index Pocket and Method for
Manufacturing the Same” correctly into this subclass, the other
patent, “Tabbed divider and pocket construction” is wrongly
classified into subclass B42D “BOOKS; BOOK COVERS;
LOOSE LEAVES; PRINTED MATTER CHARACTERISED
BY...”.

The classification is solely based on the first 30 words of
title and abstract of the patents. Both titles contain indicator
words for subclass B42F and indexing in particular: “tabbed
divider” and “index pocket”. So the misclassification cannot
be explained with the title. However, the abstract of the two
patents differs significantly. The correctly classified patent is
described: “The present invention provides an index pocket for
easy identifying an index means formed not only on the first
page pocket but...”. This description is about the purpose of
the invention. In contrast to that, the description of the mis-
classified patent explains not the purpose of the invention but
how the invention can be constructed from a plain sheet of
paper: “A foldable paper sheet is formed having a sheet body
portion, a sheet lower side flap extending out from a lower
edge of the sheet...”. We assume that this difference in the
abstract of the two patents complicates the classification task
and causes the mis-classification in this exemplary case.

VII. CONCLUSIONS

In this paper, we studied the task of automatic patent classi-
fication. We proposed to apply domain-specific fastText word
embeddings, which we trained on a large dataset of full texts of
more than 5 million patents. Based on these word embeddings
that capture the special characteristics of patent speak, we
trained a deep neural network with GRUs. Our model is trained
with a softmax activation for the task of multi-class classi-
fication but is applicable also for multi-label classification.
We evaluate our approach with three standard measures in
three experiments and improve micro-average precision by
17 percent compared to the state-of-the-art. Further, we find
that domain-specific word embeddings, trained specifically
on patent documents, outperform generic word embeddings
trained in Wikipedia pages. We publish our trained word

embeddings and hope that other researchers can profit from
the improved semantic representation of patent language. With
an error analysis, we find that mis-classification is often due to
low amounts of training data for particular underrepresented
subclasses. However, we find that an increasing amount of
training data increases overall performance only slightly. The
imbalanced training data remains the most difficult challenge.
A path for future work is the application of deep learning
approaches to other tasks that involve natural language pro-
cessing in the patent domain, such as classic patent retrieval
or reference recommendation. These approaches can surely
benefit from pre-trained, domain-specific word embeddings
that capture patent speak. Further, an investigation of new
neural network architectures tailored to the needs of the patent
domain and its hierarchical classification system is promising.
The same holds for a comparison of convolutional neural
networks and recurrent neural networks at the task of patent
classification.
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Fig. 7: Precision of the top prediction for section, class, and subclass level.
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