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ABSTRACT 
We outline a call to action for promoting empiricism in 
data quality research. The action points result from an 
analysis of the landscape of data quality research. The 
landscape exhibits two dimensions of empiricism in 
data quality research relating to type of metrics and 
scope of method. Our study indicates the presence of a 
data continuum ranging from real to synthetic data, 
which has implications for how data quality methods 
are evaluated. The dimensions of empiricism and their 
inter-relationships provide a means of positioning data 
quality research, and help expose limitations, gaps and 
opportunities. 

 

1. INTRODUCTION 
Effectiveness and efficiency have been critical to the 
success of data management, data integration and data 
analytics technologies over the years. Effectiveness 
ensures that the result serves the purpose for which it 
was obtained, while efficiency ensures that the process 
of obtaining the result does not waste critical 
resources. Obviously, one without the other, while 
possible, is not desirable, especially in this age of Big 
Data, where critical decisions need to be made 
correctly and quickly. 

Empiricism postulates the fundamental role of 
experiments and measurements in the advancement of 
science [33]. Historically, it has been very important to 
improving the efficiency of data management 
technology. The TPC family of benchmarks (tpc.org) 
has contributed to measuring and continually 
improving the efficiency of data management 
technology over several decades. For example, the 
TPC-C and TPC-E benchmarks measure the 
performance of on-line transaction processing 
applications, and the TPC-H and TPC-DS benchmarks 
measure the performance of decision support systems. 
Although the focus has been mostly on relational or 
structured data, efficiency-oriented benchmarks exist 
for non-relational data models too. Recently, the TPC 
benchmarks have been expanded to consider the 
efficiency of data integration (TPC-DI) [39] and big 
data processing [9]. 

As long as one assumes that the input data are 
trustworthy and of high quality, and the 
transformations performed on the input to produce the 
result are well understood and match expectations, one 
can happily regard the result obtained as being of high 
quality as well. In the big data world, however, data 
sources are not always trustworthy, and complex, ill-
understood pipelines are used to transform the data. 
Consequently, the quality of the results should be 
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viewed with the appropriate level of skepticism. Being 
able to empirically evaluate the trustworthiness of the 
data sources and effectiveness of the data processing 
pipelines, and hence the quality of the obtained results, 
would go a long way towards ameliorating this 
undesirable situation. However, it is not immediately 
evident which aspects of the pipeline contribute more 
significantly to an authentic empirical evaluation.  

 In 2015, a group of global thought leaders from the 
database research community outlined several grand 
challenges in getting value from big data [3]. A key 
message was the need to develop the capacity to 
“understand how the quality of data affects the quality 
of the insight we derive from it”. The role of data 
quality is recognized as pivotal to the effectiveness of 
data pipelines.  

The notion of quality is highly contextual and tied 
deeply to fitness for use [25]. In determining the 

effectiveness of these pipelines, it therefore becomes 
critical to evaluate the fitness of the data for its 
intended use. Similar to how TPC benchmarks help 
measure efficiency in data management; empirical 
evaluations of data quality will help measure the 
effectiveness of data pipelines. However, balancing the 
purposefulness (depth) of data quality detection and 
cleaning methods with their capacity for wider 
applicability (scope) [17] remains a challenge.  

In this paper, we identify two inter-related dimensions 
of empiricism that help locate the sweet-spot for 
empiricism in advancing data quality research and 
practice. These are the type of metric, and the scope of 
method. We explain these dimensions of empiricism in 
the next section.  

While type of metric and scope of method have direct 
implications for the technology stack that implements a 
data processing pipeline (see Figure 1), a third aspect, 

Figure 1. Typical Data Processing Pipeline 
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namely, the nature of the data, exposes a data 
continuum that defines the setting in which the data 
quality metrics and methods can be evaluated. In 
Section 3 we outline the data continuum and discuss 
the properties of real data, synthetic data and 
everything in between.  

In Section 4, we present the various ways in which the 
dimensions of empiricism can be positioned, thus 
providing a lens through which the role of empiricism 
in data quality research can be studied. In order to gain 
a deeper insight into each of these positions, we 
reached out to thought leaders in data quality research 
[44, 45] to help elaborate on the motivation and 
rationale, key approaches, and possible challenges 
against each position. The viewpoints presented are 
extracted from a series of interviews conducted with 
the experts and are supplemented with a review of 
relevant literature.  
Finally, in Section 5, we present a set of 
recommendations on promoting empiricism in data 
quality research and practice. These recommendations 
have been synthesized from the findings reported in 
this paper. 
 

2. DIMENSIONS OF EMPIRICISM 
Figure 1 presents a typical data processing pipeline 
from acquisition to analytics. The components of the 
pipeline have been extracted from [23], and include 
five steps of the data processing pipeline, namely, (i) 
Data Acquisition, (ii) Information Extraction and 
Cleaning, (iii) Data Integration, Aggregation and 
Representation, (iv) Modelling and Analysis, and (v) 
Interpretation.  
Data quality considerations are rooted throughout the 
pipeline, from the time data are acquired, through 
various transformations within the pipeline, to their 
eventual interpretation for a given application.  
Figure 1 presents four quadrants that represent four 
distinct positions where type of metric and scope of 
method influences the way in which the data 
processing tasks are handled. The background to these 
positions is introduced below and the positions are 
further detailed in Section 4.  
 

2.1 Type of metric  
Prior works have identified many metrics to measure 
specific data quality characteristics [54], such as 
completeness, timeliness, consistency, etc. Essentially, 
metrics can be intrinsic or extrinsic to the 
characteristics of the data [24].  

• Intrinsic metrics are application-independent, and 
can be declaratively defined and measured, such 

as the format-consistency of a date/time attribute. 
Intrinsic metrics are expected to be handled in 
Quadrants 1 and 2 in Figure 1.  

• Extrinsic metrics, on the other hand, are 
application-dependent, such as the fidelity of a 
specific analytical report. Thus, extrinsic metrics 
are exposed and managed in Quadrants 3 and 4 of 
Figure 1.  

Even though intrinsic metrics can typically be 
implemented without reliance on external reality, there 
are some caveats to the assumption. For example, 
timeliness of event data can be measured from the 
update logs, however the notion of timeliness 
(comparing to the time at which the event occurred in 
reality) relies on external reality. Similarly, 
completeness can have multiple interpretations. For 
example, null values for mandatory attributes can be 
counted without reference to an external source, but 
missing records require reference to a trusted external 
source, such as master data. Missing records can also 
be application-dependent, for example a public 
transport dataset may be complete for city planning but 
incomplete for scheduling [41, 42].  

Regardless of whether a metric is intrinsic or extrinsic, 
based on rules or statistical notions, it has to be tied to 
the underlying data to be relevant to measure data 
quality.  

Thus, whereas intrinsic metrics are focused on the 
properties of the data only and not on how applications 
use it, the aim of intrinsic metrics is indeed to 
eventually contribute to achieving an extrinsic metric. 
An extrinsic metric also has to be tied to the 
underlying intrinsic metrics of data quality, even if its 
measurement is application-dependent. The part-of (or 
aggregation) relationship between an intrinsic and 
extrinsic metric is thus rather nuanced. The value of 
the data (an extrinsic metric) may be composed of not 
only multiple intrinsic metrics, such as completeness, 
lack of duplicates, format consistency etc., but also the 
relative importance of each metric for the task at hand.  
For example, consider postal delivery services, 
wherein the completeness of customer address can be 
considered an intrinsic metric of customer data quality. 
At the same time, there can be an extrinsic metric on 
how well the data supports the business objective of 
priority deliveries to be completed within 72 hours. 
The two are clearly inter-related (i.e., incomplete 
customer addresses can result in delivery delays), but 
the relationship needs to be defined and measured in a 
precise way to demonstrate how the investment on 
making customer address data complete, impacts on 
the reduction in delayed or failed delivery attempts. 
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A data quality (detection or cleaning) method may be 
designed to optimize metrics of either intrinsic or 
extrinsic type. However, as shown in the examples 
above, in empirical evaluations of data quality systems, 
both intrinsic and extrinsic metrics need to be 
considered together, along with their possible 
dependencies.  

 

2.2 Scope of method  
There have been significant contributions from 
research and practice towards developing methods that 
assist in various phases of data quality management, 
including methods for detection, assessment, and 
repair of data quality problems [46]. Further, a variety 
of approaches have been proposed towards the design 
of these methods, for example interactive [29], 
exploratory [14], and autonomous [1, 4, 10, 22, 43] 
approaches. The scope of these methods can range 
from being tailored for specific use-cases, to being 
generically applicable.  

There are two aspects that significantly influence the 
scope of the methods: (1) the type of data, for example 
structured, text, graph, etc., and (2) the application 
domain for which the data quality methods are being 
designed and developed.  

• Generic methods can be reused in a variety of 
application contexts or applied to a number of data 
types, for example detecting similarity through 
tokenization and set similarity measures can be 
applied to strings [51], records [16], and videos 
[32]. As such, generic methods target problems 
that emerge in Quadrants 1 and 3 of Figure 1. 

• Tailored methods, on the other hand, are specific 
for a particular data type or application domain, 
for example improving the usability of RDF data 
[2]. Tailored methods are developed to handle 
problems relating to Quadrants 2 and 4 of Figure 
1.  

The scope of a method will influence the design of 
evaluations and consequently the way in which the 
results of the method can be utilized. The scope of the 
method is independent of the type of metric. For 
example, a duplication detection method for relational 
data can be measured from both intrinsic and extrinsic 
perspectives.  

We observe further that tailored methods can be 
considered as a specialization of a respective generic 
method, that is, specialized for a certain application 
domain or data type. Whereas traditional methods have 
relied on well-defined constraints and design 
principles, e.g., functional dependencies and 
normalization process for relational data, in the big 

data scenario these constraints are largely unknown, 
and data of different types can be integrated and re-
purposed for different applications. This makes it 
difficult to navigate the spectrum of methods from 
applicable (generic) to purposeful (tailored), indicating 
a need to better understand how large collections of 
tailored methods (e.g., duplicate detection for specific 
data types) can be generalized for wider applicability. 

 

3. The Data Continuum 
Data quality research and practice have been 
empirically evaluated with both real and synthetic data. 
Synthetic data can be created through a perturbation of 
real data that represents ground truth [36]. 
Alternatively, synthetic data can be entirely created 
through a data generator that mimics real data 
properties and/or through the design of a generative 
model by learning parameters from real data [11, 47]. 

Both real and synthetic data can be of a variety of data 
types, such as structured or unstructured, streaming or 
historical etc. However, there are some key features 
that distinguish the two: 

• Real data are data created in the ‘wild’, where 
there is little or no influence on its generative 
process from the data quality method being 
studied. Real data provide both meaning and 
impact to data quality research. However, the 
overheads, technical and legal, in the acquisition 
of real data can sometimes be prohibitive. Further, 
in using real data to test the efficacy of a system, 
ground truth is not always available or may 
require considerable time investment to create.  

• Synthetic data, on the other hand, are created 
with specific schema and data characteristics in 
mind. More importantly, ground truth can be 
easily manufactured for synthetic data, whereas it 
is not readily available for real data.  

In general, the absence of ground truth for real data is 
considered an impediment in measuring the 
effectiveness of data quality methods. Thus, 
differentiating between the discovery of actual and 
spurious data characteristics [27] becomes difficult. 
Recent work on using crowd sourcing to establish 
ground truth for real data has helped alleviate this 
problem to some extent [53].  

Synthetic data can provide fertile ground to study 
specific problems of data quality relating to accuracy 
(availability of ground truth) as well as performance 
(large volume). However, synthetic data may not 
adequately capture the characteristics of the problem 
domain the data are supposed to represent.  
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Table 1. Contrasting Positions  

 Generic Tailored 

Intrinsic IG IT 

Extrinsic EG ET 

 

Hence, the authenticity of the results obtained on 
synthetic data may be questioned. Note that one may 
argue that real data can also suffer from similar 
shortcomings attributed to design decisions made at the 
time of real data collection.  

We note that synthetic data are an abstraction of real 
data with certain well-defined properties that help to 
remove unnecessary complexities and provide a 
controlled environment for the study of specific data 
quality problems. Whereas real or wild data start off as 
being rather opaque, through various transformations, 
annotations, and/or creation of ground truth, they start 
to become more transparent.  

The process of acquiring metadata whether by 
profiling, or talking to experts, or augmenting with 
other data sources, also enhances the understanding of 
the data and moves the data toward the transparent end 
of the scale.  

The process of tackling the problem of opaqueness of 
data, especially in the absence of ground truth, is 
challenging and currently under-studied. There is a 
need to understand the implications of these 
abstractions of real or wild data towards the creation of 
curated real data or generated synthetic data, and how 
these abstractions impact the overall authenticity of the 
data pipeline.  

 

4. CONTRASTING POSITIONS 
A number of contrasting positions emerge from the 
dimensions discussed above. Table 1 presents a 
summary of these positions relating to type of metric 
(I: Intrinsic and E: Extrinsic) and scope of method (G: 
Generic, T: Tailored), corresponding to the respective 
quadrant of the data processing pipeline shown in 
Figure 1. 

Note that the four positions are designed as an aid for 
discussing properties of data quality methods and their 
evaluations. It is possible, and indeed desirable, to 
conduct an empirical evaluation that considers both 
intrinsic and extrinsic metrics, considering the use of 
the method in both a tailored and in a more generic 
setting or scope, and using the data continuum from 
real to synthetic data.  

Table 2. Relevant Papers  
Position Papers 
IG Discovering Meaningful Certain Keys 

from Incomplete and Inconsistent 
Relations [28] 
Data Anamnesis: Admitting Raw Data 
into an Organization [30] 
Knowledge-Based Trust: Estimating the 
Trustworthiness of Web Sources [15] 

IT Quality-Aware Entity-Level Semantic 
Representations for Short Texts [20] 
Data Quality for Temporal Streams [13] 

EG Effective Data Cleaning with Continuous 
Evaluation [21] 
Benchmarking Data Curation Systems [6] 

ET Exploring What not to Clean in Urban 
Data: A Study Using New York City Taxi 
Trips [18] 

 
Nonetheless, these positions and their inter-
relationships present a means of interrogating the body 
of knowledge on data quality and allow us to expose 
the role of empiricism in data quality research and 
practice.  
In Table 2, we present a list of papers published in a 
recent special issue of the Data Engineering Bulletin 
[45] that focused on empirical research in data quality 
management. The list is not meant to be exhaustive, 
but an exemplification of the positions discussed 
below.  
 

4.1 IG: Intrinsic and Generic 
Generic methods for intrinsic metrics are positioned 
within Quadrant 1 of Figure 1. Several intrinsic 
characteristics of data, such as duplicates [37] and 
anomalies [7, 12], are generalizable across many uses 
of the data. In fact, any numerically representable 
profile of the data [8] can be generically understood 
and reasoned with. Thus, generic methods can handle 
data quality management for various data processing 
tasks such as extraction, integration, and aggregation 
(see Figure 1). 
Often more sophisticated or tailored metrics use these 
generic methods as building blocks [48]. Re-use of 
such generically applicable methods prevents re-
invention and more importantly provides a uniform 
way to compare extensions in tailored methods. 
Promoting the re-use of generic methods based on 
intrinsic metrics leads to knowledge sharing, limits 
unnecessary re-invention, and should be encouraged.  
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The exposition of intrinsic generic metrics when 
applied to real data can get buried in the contextual 
details of real data, making the results difficult to share 
and re-use. Whereas there are no obvious 
distinguishing aspects of using synthetic data for 
evaluating intrinsic generic metrics, the separation of 
the scope of the method from the nature of data may 
indeed present improved mechanisms for comparative 
studies, knowledge sharing and real progress rather 
than re-invention. It can be argued that evaluations on 
both real and synthetic data should be equally valued. 
Example: Generic methods for intrinsic metrics 
include the discovery of certain keys, functional 
dependencies and other meta-data from real data, e.g., 
Gene Ontology [27], and/or from synthetic data, e.g., 
fd-reduced-30 [38]. 
 

4.2 IT: Intrinsic and Tailored 
Even when intrinsic characteristics of data are 
generalizable across many data types, they often need 
to be refined in a type-specific way to get the most out 
of the data [47]. Tailored methods for intrinsic metrics 
are positioned within Quadrant 2 of Figure 1. For 
example, although the notion of near-duplicates is 
meaningful across many data types (strings, images, 
videos), the specifics of the data type would dictate 
what is considered a near-duplicate; while an edit-
distance based distance measure is meaningful for 
strings and short text [20], allowing for differences in 
resolution is important for videos. Care should be 
taken to avoid unnecessary proliferation of metrics that 
are data type specific, although sometimes they may be 
unavoidable or even desirable. 
While many generic and tailored methods can be 
applied on synthetic data, such data sets are often 
generated for specific purposes, and may not share all 
the characteristics of real data, so only a subset of the 
methods may be meaningful for a specific synthetic 
data set. Indeed, use of synthetic data for any purposes 
other than evaluation needs to be carefully considered. 
The specificity of the synthetic data also raises the 
need for a clear separation between the generative 
models, data quality methods, and persons responsible 
for the injection and the subsequent detection of errors.  
Example: Tailored methods for intrinsic metrics 
include the method of [13] for anomaly detection that 
was tailored for temporal streams and applied to real 
NYSE data.  It is worth noting that conducting robust 
scalability evaluations of such methods will need 
carefully crafted synthetic data with tunable 
parameters. 
 

4.3 EG: Extrinsic and Generic 
Data acquires value only when it is successfully used, 
whether by applications or by humans. Hence it is 
essential to provide extrinsic metrics that quantify the 
impact of poor data quality on the tasks that make use 
of the data, such as modeling, analysis and 
interpretation as depicted in Quadrant 3 of Figure 1.  
Quantification of how well a data quality method 
succeeds in delivering data of value is an important 
externally focused metric, but is, in general, difficult to 
study for real data due to its contextual distinctions and 
complexity. Externally focused metrics, such as 
putting a monetary cost on the process of data cleaning 
that makes the data “fit for use” for the given tasks, 
can play a unifying role towards making it easier to 
understand and measure the impact of poor data 
quality. 
Synthetic data, in combination with generic methods, 
presents a controlled and simplified setting through 
which both internally and externally focused metrics 
can be studied. Further synthetic data can facilitate 
comparative studies in terms of the quality of the 
output from the method as well as its performance on 
larger scale [48]. It can also assist in the development 
of community agreed benchmarks for extrinsic metrics.  
For example, data curation tools [35] can assist in 
automating the curation process and reducing the 
human effort cost (an extrinsic metric). However, 
quantifying the cost of automating curation against the 
reduction of human effort for real data can carry an un-
manageable complexity [34], and thus may need robust 
evaluations based on synthetic data.  
Example: A method for evaluating the quality of a data 
exchange system against required user-effort using 
synthetic data with community agreed parameters such 
as schema and relation size [6].  
 

4.4 ET: Extrinsic and Tailored 
Since the value of data is in its successful use by 
external tasks, one might argue that it is the task that 
should drive the metrics [18]. Thus, task-specific, 
externally focused metrics demand evaluation 
experiments to be based on real data. This would 
naturally lead to tailored methods that depend on the 
type of data and its use. Tailored methods for extrinsic 
metrics are positioned within Quadrant 4 of Figure 1.  
For example, the needs of a network engineer may be 
significantly different from that of a market analyst; 
the same data set may meet the needs of one but not 
the other, necessitating tailored methods and user 
involvement. A new wave of methods and tools are 
emerging that endorse human-in-the-loop thinking. 
The ability to maintain provenance in such iterative 
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and interactive data curation methods thus becomes 
particularly important [19], as it improves both the 
explainability as well as refinement of the method. The 
resulting Assess-Clean-Evaluate cycle [21] has been 
adopted by current commercial data cleaning and 
curation platforms such as [49, 50].  
Although real data are necessary to study task specific, 
externally focused metrics, there is little evidence of 
large scale sharing of real scenarios (applications, 
metrics and data) due to the proprietary nature and 
privacy concerns. The specificity of the real scenarios 
can also be a prohibiting factor in engaging researchers 
due to the infeasibility of investing significant effort to 
evaluate just one use-case [40]. Community approved 
synthetic but realistic data, meta-data and quality 
metrics can help overcome this problem and facilitate 
the development of publicly available benchmarks 
(like the open source iBench [5, 31]). However, the 
transparency of the data and meta-data generators is 
imperative to ensure the integrity and repeatability of 
the evaluation processes.  
Example: Exploratory methods to guide data cleaning 
in spatio-temporal urban data, e.g., NYC taxi data, 
towards meeting analytical needs of end users [18].  
 

5. WHAT NEXT? 
We have presented two dimensions of empiricism that 
provide a lens to study data quality research, namely 
type of metrics, and scope of method, along with the 
data continuum based on the nature of data.  
The dimensions and their inter-relationships provide a 
means of positioning data quality research, and help to 
expose limitations, gaps and opportunities. We assert 
that the classification serves both academics and 
practitioners in evaluating their contributions.  
Academics and researchers can use this classification 
to reflect on the role of empiricism in their research, 
and identify gaps in their work towards a more 
comprehensive and impactful research agenda. 
Especially researchers who have focused on intrinsic 
metrics might consider expanding their evaluation to 
extrinsic metrics in order to study the impact on 
business or a respective application area. Similarly, 
practitioners can use the classification to identify 
opportunities to steer data quality practices into new 
directions and/or to achieve robust outcomes. In 
particular, practitioners, who primarily work with real 
data towards development of tailored solutions, may 
consider the role and benefits of carefully designed, 
community accepted synthetic data to convey the 
broader applicability of their data quality methods.  
Based on our investigations, we propose a call to 
action to promote empiricism in data quality research. 

Below we outline three immediate and specific actions 
that can and should be taken:  
Share. Enable empirical research by sharing data, 
metadata, code, application scenarios, and benchmarks. 
Such sharing is not absent, but can be further promoted 
by recognizing contributions of data products and 
benchmarks as high value. We note the recent addition 
in the PVLDB experiments and analysis paper track 
[52], and encourage other publication venues to also 
consider ways to recognize similar contributions from 
the research community.  
Guide. Synthetic data can facilitate rigorous and 
reproducible evaluations. However, it is necessary to 
ensure the transparency of results drawn from synthetic 
or heavily curated real data. The data quality research 
community needs to develop guidelines for 
experimental design that stipulate clear separation 
between error creation and measurement. Such 
guidelines are well accepted in other disciplines where 
the stipulations on experimental design are widely 
accepted, e.g., [26].  
Expand. In spite of several decades of data quality 
research and a large number of outstanding 
contributions, data quality remains one of the biggest 
challenges in data management, and has been further 
exaggerated in the age of big data. A shift towards 
embracing the spectrum of positions outlined above is 
needed, which presents a step change from current 
approaches that tend to be focused on specific extreme 
positions. Thus, the continuum from real to synthetic 
data is necessary for robust evaluations; both intrinsic 
and extrinsic metrics are needed to fully capture a data 
quality problem; and both generic and tailored methods 
are needed to balance purpose and applicability.  
We invite the community to use, challenge, and refine 
the classification presented in this paper, and work 
with us to further promote empiricism in data quality 
research.  
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