
Scalable Peer-to-Peer-based RDF Management

Christoph Böhm
Hasso Plattner Institute

Potsdam, Germany
christoph.boehm@
hpi.uni-potsdam.de

Daniel Hefenbrock∗
Microsoft Corp.

Redmond, WA, USA
danielhe@microsoft.com

Felix Naumann
Hasso Plattner Institute

Potsdam, Germany
felix.naumann@

hpi.uni-potsdam.de

ABSTRACT
Handling web-scale RDF data requires sophisticated data
management that scales easily and integrates seamlessly into
existing analysis workflows. We present Hdrs– a scalable
storage infrastructure that enables online-analysis of very
large RDF data sets. Hdrs combines state-of-the-art data
management techniques to organize triples in indexes that
are sharded and stored in a peer-to-peer system. The store
is open source and integrates well with Hadoop MapReduce
or any other client application.

1. INTRODUCTION
We are witnessing an explosion in the amount of data

to be processed and stored. To handle web-scale data sets
new types of data management systems have been intro-
duced; the key goals now are scalability across many servers
and, due to frequent server failures, reliability. For instance,
BigTable is a large scale storage system for structured data,
in practice used as a replacement for relational systems [2].
To achieve scalability, typical relational properties, such as
consistency, are relaxed, and SQL support is neglected. For
analytical processing, MapReduce, a parallel data process-
ing paradigm, has been introduced.

We argue that these trends for general-purpose structured
data processing also apply to RDF: The Linked Open Data
(LOD) initiative encourages the release and integration of
RDF data into a large global data space. Triple stores, how-
ever, are currently limited in scaling out to truly web-scale
data sets. As a result, solutions have emerged that em-
ploy MapReduce for large-scale RDF processing [6]. Though
RDF data is highly structured, those solutions use low-level
storage systems, such as the Hadoop Distributed File System
Hdfs to feed data into MapReduce, which requires hand-
crafted optimizations for each algorithm. This approach has
several drawbacks: (1) Files in Hdfs cannot be modified,

(*) Work done as a master student at HPI, Potsdam.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
I-SEMANTICS 8th Int. Conf. on Semantic Systems, Sept. 5-7, 2012
Copyright 2012 ACM 978-1-4503-1112-0 ...$10.00.

only appended to. (2) There is no indexing, e.g., for filter-
ing the input data, which results in additional MapReduce
jobs to be chained for pre-processing. These shortcomings
have been addressed by using HBase as storage system for
RDF [4]. HBase runs on top of Hdfs and is able to capture
the structure of RDF while offering scalability. We show
that our system, which is tailored to analytical RDF pro-
cessing, outperforms HBase solutions.

We present a new scalable RDF storage infrastructure
called Hadoop Distributed RDF Store (Hdrs). Hdrs allows
seamless integration with the Hadoop MapReduce frame-
work and can also be used in other application scenarios.
Hdrs offers a simple client interface to read and write triples,
and thus hides its complexity as a distributed storage sys-
tem. Its key benefits compared to existing solutions for RDF
storage are:
• Superior scalability compared to non-distributed triple

stores: Hdrs scales vertically in storage capacity and
read / write throughput as nodes are added.
• Superior RDF data management capabilities compared

to Hdfs-based solutions: The system is a triple store
that indexes RDF data, and thus offers fast lookup and
in-order scanning. It can be read and written in any
order while Hdrs is on-line.
• Hdrs is available at http://code.google.com/p/

hdrs and is easy to setup and configure.
Related work includes (but is not limited to) high per-

formance triple storage systems, such as RDF-3X, Virtu-
oso, or Hexastore, usually work with indexed triple tables
to reduce the cost of self-joins, which are common when ex-
ecuting SPARQL queries [3, 5, 7]. BigData is a distributed
triple store that implements sorted indexes and dictionary
encoding in a master-slave setup [1]. Indexes and the term
dictionary are split into shards to be distributed. The lat-
ter, however, limits performance in cases where the term
dictionary does not fit into main memory.

In the following, we outline the architecture of our system
and then describe selected implementation details. Finally,
we exemplary show performance measurements.

2. DESIGN AND IMPLEMENTATION
We now introduce the distributed architecture of Hdrs.

Hdrs is a peer-to-peer system which is beneficial in terms
of scalability and robustness. These benefits are mostly due
to the absence of a master node, which could become a per-
formance bottle neck as well as being a single point of fail-
ure. The peer-to-peer design implies all functionality to be
implemented decentralized, presenting major challenges for

consistency across the system.
Figure 1 shows the architecture of Hdrs. The upper part

of the figure shows the logical perspective. The bottom part
depicts the physical architecture. Logically, an Hdrs in-
stance stores a multi-set of triples, organized into a number
of ordered indexes. Each index is self-contained, i.e., it is not
dictionary-encoded, and stores all triples in a specific colla-
tion order (i.e. the combination of a triple’s values). There
are six possible collation orders for subject-predicate-object
triples: SPO, SOP, PSO, POS, OSP, and OPS, i.e., a user
may choose desired collation orders to be stored depending
on the the use-case at hand: For instance , when planning
to use many S-O-joins, one should use SPO and OPS.

Physically, indexes are divided into segments in order to
be stored in a distributed manner. Each segment is assigned
a physical node on the network. Client applications can
query any node in the system to find out which node can
serve a particular triple or range of triples. Triples are then
accessed directly at the responsible node.

Network Cluster

HDRS Store

S1 S2 S3 S4

SPO Index POS Index

Indexes

S5 S6 S7 S8

Node 1 Node 2 Node 3

(1) An HDRS store
consists of 1 up to 6
indexes

(2) Each index
holds all triples in
a specific order

(3) Indexes are
divided into
segments

(4) Segments are
stored on nodes in
the network

Applications

(5) Client applications
read/write triples
directly from/to nodes

Logical
Architecture

Physical
Architecture

Figure 1: HDRS architecture overview.

Data Model and Operations. Instead of implement-
ing set-semantics, Hdrs stores a multi-set of triples from
which client applications can add or remove triples. Thus,
the store can keep track of triples that are added multiple
times when, for instance, being used in a LOD web-crawl
scenario where analysis takes place while writing into it si-
multaneously. Further, multi-set-semantics has several im-
plementation advantages, e.g., it allows for an efficient in-
dex update approach. Internally, triples are persisted in
up to six indexes. Each index enables fast lookups, in-
order scanning, and pattern matching. For example, the
pattern (Berlin, * , *) matches all triples having Berlin

as subject. Since each index only persists one specific col-
lation order, not every index can be used to match all pat-
terns efficiently. Storing fewer indexes results in better write
performance and less storage space, whereas more indexes
offer higher flexibility for more efficient pattern matching.
There are three operations supported on an index: ‘write’,
‘delete’, and ‘read’; we model ‘update’ operations using
‘delete’ and ‘write’. An index in Hdrs is a pair (c, T),
where c ∈ {SPO, SOP, PSO,POS,OSP,OPS} is a colla-
tion order and T is a list of triples (t1, . . . , tn) that is sorted
according to c. That is, ti ≤c ti+1 for i = 0, . . . , n− 1.

Given an Hdrs index I = (c, T), the multiplicity of a
triple t is the number of times t is present in T . As for the
index operations mentioned above, the multiplicity is mod-
ified as follows: Writing a triple t increases the multiplicity

of t by 1. Deleting a triple t decreases the multiplicity of t
by 1. Each triple t is stored in all indexes of a Hdrs store
– possibly located on different nodes. Thus, keeping the
multiplicity of t consistent across all nodes where t is stored
is a challenge. Consider Fig. 2 as an example: There are
two nodes N1 and N2; three writers w1, w2, and w3; and
one triple t. Here, N1 stores the SPO index and N2 stores
the POS index; t is stored on both nodes with a multiplicity
of 1. Now assume w1 additionally writes t while, at the same
time, w2 and w3 delete t. The overall outcome of this situa-
tion depends on the order in which the operations arrive at
both nodes. Table 1 shows the resulting multiplicities for all
operation orderings at both nodes. In four cases, the system
would be in an inconsistent state. For robustness Hdrs de-

N1: SPO
t (1)

N2: POS
t (1)

w2w1 w3

Add t
(+1)

Remove t
(‐1)

Remove t
(‐1)

Figure 2: Two nodes and multiple writers.

Table 1: Combinations of write orders at nodes N1

and N2 and resulting multiplicities for triple t.
N2:W D D N2:D W D N2:D D W

N1: W D D 0/0 0/0 0/1
N1: D W D 0/0 0/0 0/1
N1: D D W 1/0 1/0 1/1

liberately does not have a master node enforcing operation
orders. Instead, it assumes that all operations are commu-
tative, i.e., the outcome of a set of operations is always the
same, regardless of their order. This strategy allows each
node to define its own ordering while guaranteeing consis-
tency across nodes. To achieve commutativity, Hdrs allows
the multiplicity of a triple to be negative. Then, deleting a
triple with multiplicity 0 does have an effect: It becomes −1.
Thus the outcome in the previous scenario is always 0/0.

A multiplicity of ≤ 0 for a triple t is interpreted as t not
being present in the store. We are aware of the drawback
that it can lead to unexpected behavior, say when writing
a triple expected to have a multiplicity of 0 while actually
having a negative multiplicity. Nonetheless, we deliberately
trade off semantics and scalability to achieve consistency
without costly global ordering coordination.

Distributed Index Storage. In the following we elabo-
rate on how an index is stored in a distributed manner on
distinct nodes in the system: Each index is split into disjoint
parts called segments. Each segment covers a successive
triple range and is assigned to one node. This strategy is
known for its scalability; it is also referred to as sharding
or shared-nothing. Given an index I = (c, T), a segment
S = (I, T ′, R) is a tuple, where I is the corresponding index
of S, and T ′ ⊆ T is a list of triples (tn, . . . , tm) contained
in S. R is the range [tn, tm+1) of S, with tn being the first
triple of S, and tm+1 being smallest triple (according to

c) of the next segment of I. T ′ is sorted according to the
collation order c. The range of segments is important for
determining the appropriate segment for a triple. Hdrs
uses hashing for assigning segments to nodes. Specifically,
the first triple (subject, predicate and object) of a segment
is hashed to determine the responsible node. This strategy
does not allow adjusting the load-balance by offloading
triples when the system is online. Achieving good balance
relies on a hash function that distributes segments evenly
across all nodes. To further maintain the load-balance,
segments are split into two parts once they grow beyond
a specified limit, by default 64MB. Figure 3 illustrates a
segment split of a segment with four triples. S1 stays at
the same node since its first triple t1 is also the first triple
of the parent segment S. Child segment S2, however, is
likely to be assigned to another node as its first triple is t3.

!"#$!% !&#!'

!"#$!%#$!&#$!'!"#

!"#$ % !"#$ &

'% '&

()*(+!", ()*(+!#,

!"#$!%#$!&#$!'

!"#$ % !"#$ &

'

()*(+!",

!"#$!%#$!&#$!'!"#

$%&'%(!)$*+,!
!"#$!% !&#!'

!"#$!%#$!&#$!'!"#

!"#$ % !"#$ &

'% '&

()*(+!", ()*(+!#,

!"#$!%#$!&#$!'

!"#$ % !"#$ &

'

()*(+!",

!"#$!%#$!&#$!'!"#

$%&'%(!)$*+,! !"#$!% !&#!'

!"#$!%#$!&#$!'!"#

!"#$ % !"#$ &

'% '&

()*(+!", ()*(+!#,

!"#$!%#$!&#$!'

!"#$ % !"#$ &

'

()*(+!",

!"#$!%#$!&#$!'!"#

$%&'%(!)$*+,!

Figure 3: Segment split into segments S1 and S2.

Segment Implementation. Segments form the basic
triple storage containers in Hdrs. Their implementation is
inspired by tablets in Bigtable [2]: They consist of a number
of sorted triple files and a triple buffer. The latter collects
segment modifications and flushes to disk, i.e., it creates a
new triple file when reaching a predefined size. Index files are
merged when a predefined number of files has been reached.
To read a segment, the (sorted) files and the (sorted) buffer
are combined. Files are divided into compressed blocks and
a block index. The multiplicity of triples allows immutable
triple files and sequential disk I/O. That is, for triple dele-
tions, Hdrs adds a triple with multiplicity −1 and simply
sums up multiplicity values when merging segment contents.

When requesting a triple, Hdrs needs to determine
the segment in which it resides: Each node maintains
an index segment map that is kept up-to-date using a
weakly-consistent anti-entropy protocol. A client can thus
be forwarded to the node where the segment with the
requested triple resides. When writing triples, each triple
must be written to all of its indexes. Hdrs implements the
Two-Phase Commit Protocol to achieve atomic writes across
nodes. The client library provided with Hdrs contains the
transaction manager which buffers transactions and issues
them in batches.

Hadoop Integration. Hdrs can be run on a Hadoop
MapReduce cluster, side-by-side with Hdfs. When serv-
ing a MapReduce job, segments are treated as input splits
that are read by the mappers in parallel. Since the range of
each segment is known prior to reading and since triples are
sorted, segments can be grouped into logical splits. Thus
Hdrs can guarantee that subjects are not scattered across
multiple Hadoop input splits.

3. EVALUATION
For performance measurements we used a cluster of 10

old commodity machines and the Billion Triple Challenge
2010 data (BTC), which contains roughly 3.2 billion triples
of web-crawled data1.

To demonstrate horizontal scalability, we measured the
write-throughput for clusters of N = 1, 2, 6, and 10 nodes
by loading up to one billion triples without interruption. For
each size N × 100 million triples were loaded. We compared
our throughput to HBase (v. 0.90.3, configured equally and
fair) running on the same cluster, plus one HBase master
and Hdfs Namenode. In HBase, triples are stored in a sin-
gle table with one column family. For each subject, there is a
row containing one column qualifier per predicate. Objects
are stored as values; multi-values are modeled using the ver-
sioning feature of HBase. Our Hdrs was configured to store
only the SPO index. We measured the read-throughput by
running a simple MapReduce job that counts all triples in
the store by scanning through them (Hadoop v. 0.20.2). We
expect our throughput measurements to behave similarly for
more then one index, since in both cases, HBase and HDRS,
resources would have to be shared for maintaining the dif-
ferent index segment files on disk.

For Hdrs, it takes 14−36min to load 1−10 nodes. A full
scan of the content requires less then 5min in all cases. Fig-
ure 4 compares load- and scan-throughputs for both setups.
Table 2 breaks down the load-throughput results for Hdrs
in particular. The Hdrs batch-write-throughput increases
from 25 MB/s (1 node) to 100 MB/s (10 nodes). HBase
achieves 6 to 24 MB/s. For Hdrs, this amounts to approxi-
mately 465,000 triples per second that can be loaded on our
10-node cluster. However, both systems reached a speedup
of 4 in write-throughput for 10 nodes (taking 1 node as
baseline). Scanning scales almost perfectly in Hdrs, from
73 MB/s to 719 MB/s aggregated throughput, which is a
speedup of 10. HBase achieves 173 MB/s with 10 nodes.

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9 10 11

A
g
g
re
g
a
te
 T
h
ro
u
g
h
p
u
t
in
 M

B
/s

Number of nodes

HBase Scan HDRS Scan HBase Batch Write HDRS Batch Write

Figure 4: HDRS and HBase throughput results.

We further evaluated how index segmentation influ-
ences the performance, as the distribution of segments across
multiple nodes in the cluster is our approach to achieve hor-
izontal scalability. Given the number n of nodes in the clus-
ter, the probability of a child segment transfer is (n− 1)/n,
because the hashing of the first triple may result in any of the
nodes (out of which n− 1 are not the one where the parent

1http://challenge.semanticweb.org

#nodes triples total time throughput triples/sec

1 100 M 14:03 min 25.43 MB/s 118,694
2 200 M 19:50 min 35.99 MB/s 167,997
6 600 M 27:30 min 77.82 MB/s 363,543
10 1000 M 35:53 min 99.61 MB/s 464,494

Table 2: HDRS throughput for batch-loading the
BTC data set.

segment resides). We found that this estimate holds in prac-
tice, which implies a segment transfer for each segment split
for large clusters. Figure 5 depicts the required transfer time
for segment splits per respective segment sizes when loading
three billion triples (N × 300 million triples). The figure
shows two clusters: The first contains transfers of segments
smaller than 60MB, which can typically be moved over the
network in less than two seconds. These small segments re-
sult from a scatter phase that we introduced to populate the
nodes on the network with initial data when starting with
an empty store. This scatter phase ensure a quick distribu-
tion of the load across the nodes in the cluster. Without the
scatter phase (effectively a lower maximum segment size)
the system would first load individual nodes up to the ac-
tual limit before distributing the data. The second cluster in
comprises segments that are mostly around 260MB. These
result from a maximum segment size of 512MB and have a
transfer time varying around 15 seconds.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500

T
ra
n
sf
e
r
T
im

e
 i
n
 s

Segment Size in MB

Figure 5: Segment size and transfer time of seg-
ment transfers for loading three billion triples into
an HDRS store with 10 nodes.

Segment transfers lower the write-throughput, because
transfers can block all write operations, as writes are per-
formed in large batches of triples (performed by the transac-
tion manager in the client library). A batch write can only
succeed if all segments involved can be written – as required
by the transactional design of Hdrs.

To determine this overhead, we measured the time the
client application was blocked during the batch-write in the
previous experiment with three billion triples. Figure 6 de-
picts the time required for segment transfers as well as the
time the system was blocked due to these transfers. The
accumulated increase in the batch-load time (the topmost
graph in the figure) is the total overhead required for dis-
tributing the segments across the nodes. In theory, if there
was no overhead, this number would be 0 since the amount

of data loaded is proportional to the number of nodes in
the experiment. Apparently, roughly 50% of the total over-
head is caused by the client application being stalled during
segment transfers. The figure also shows that the client ap-
plication is stalled longer than the actual segment transfer
time. This further delay is because the routing mechanism
first needs to learn about the new segment location before it
can continue the batch. Of course, this overhead of ≈50min
(out of ≈110min) for loading 3 billion triples into a cluster
of ten nodes cannot be neglected. However, Hdrs scales al-
most perfectly for reading triples which clearly supports our
system design decisions.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
 i
n
 s

Number of nodes

Increase in Load Time compared to 1 Node

Write Stalls on Client Side

Time of Segment Transfes

Figure 6: Overhead of segment transfers by stall
and transfer time as well as accumulated load time
increase (topmost graph).

4. CONCLUSION
We presented Hdrs – a new scalable storage infrastruc-

ture for very large RDF data sets. The peer-to-peer ar-
chitecture of Hdrs stores a set of sorted indexes that are
eventually consistent. Scalability is achieved through its de-
centralized design. We plan to extend Hdrs with reliabil-
ity features, such as replication, to minimize the probabil-
ity of data loss. We also plan to add triple context sup-
port (quads). The community is welcome to contribute at
http://code.google.com/p/hdrs.

5. REFERENCES
[1] Bigdata architecture whitepaper. Technical report, SYSTAP,

http://www.bigdata.com, 2009.
[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. In OSDI, 2006.

[3] O. Erling and I. Mikhailov. RDF support in the Virtuoso
DBMS. In Conf. on Social Semantic Web, 2007.

[4] C. Franke, S. Morin, A. Chebotko, J. Abraham, and
P. Brazier. Distributed semantic web data management in
HBase and MySQL cluster. CoRR, 2011.

[5] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. VLDB J, 19, 2010.

[6] J. Urbani, S. Kotoulas, E. Oren, and F. Harmelen. Scalable
distributed reasoning using mapreduce. In ISWC, 2009.

[7] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple
indexing for semantic web data management. VLDB, 1,
2008.

