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Abstract
Many online discussion platforms use a content moderation process, where human moderators check user comments for offensive
language and other rule violations. It is the moderator’s decision which comments to remove from the platform because of violations
and which ones to keep. Research so far focused on automating this decision process in the form of supervised machine learning for a
classification task. However, even with machine-learned models achieving better classification accuracy than human experts in some
scenarios, there is still a reason why human moderators are preferred. In contrast to black-box models, such as neural networks, humans
can give explanations for their decision to remove a comment. For example, they can point out which phrase in the comment is offensive
or what subtype of offensiveness applies. In this paper, we analyze and compare four attribution-based explanation methods for different
offensive language classifiers: an interpretable machine learning model (naive Bayes), a model-agnostic explanation method (LIME),
a model-based explanation method (LRP), and a self-explanatory model (LSTM with an attention mechanism). We evaluate these ap-
proaches with regard to their explanatory power and their ability to point out which words are most relevant for a classifier’s decision. We
find that the more complex models achieve better classification accuracy while also providing better explanations than the simpler models.
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1. The Need for Explanations
Online news platforms (e.g., New York Times), question
answering platforms (e.g., Stack Overflow), collaborative
projects (e.g., Wikipedia), and social networks (e.g., Face-
book): all these social media platforms have one thing in
common. They provide a discussion space for users, where
content moderators are employed to keep a respectful tone,
and foster fruitful discussions. Moderators ensure that the
platform’s discussion rules are adhered to, including the
ban of offensive language. They enforce these rules by par-
tially or entirely removing a user comment.
Typically, a platform’s rules are listed in the form of guide-
lines, and they overlap considerably with the “netiquette”,
the basic rules about communication over the Internet.
However, that does not mean all users have these rules in
mind when they post comments. Moderators on online dis-
cussion platforms, therefore, explain why they intervene.
For example, they replace a removed comment with the fol-
lowing text: “Removed. Please refrain from insults.” or
“Removed. Please refrain from insinuations and personal
attacks.”. In case they ultimately close a comment section,
they post a final comment, for example, stating: “This com-
ment section has been closed due to (racist) generalizations,
baseless assumptions up to conspiracy theories and extreme
polemics.”. On the one hand, the idea behind these expla-
nations is transparency. On the other hand, they aim to ed-
ucate users to adhere to the discussion rules.
Research on comment classification focuses on supervised
machine learning approaches and often uses black-box
models. For example, there is research on detecting hate
speech (Gao and Huang, 2017), racism/sexism (Waseem
and Hovy, 2016) or offensive/aggressive/abusive lan-
guage (Struß et al., 2019; Kumar et al., 2018). However, to
support moderators, semi-automated comment moderation

in the form of a pre-classification of comments (Risch and
Krestel, 2018) is not enough. Black-box models lack the
ability to give explanations for their automated decisions.
Therefore, they cannot be properly applied to comment
moderation. Users and moderators are skeptical about an
incomprehensible automation. Explanations help to build
trust and increase the acceptance of machine-learned clas-
sifiers. Only then can a fair and transparent moderation pro-
cess be ensured.
There are two more reasons for explanations in general.
First, there are legal reasons to utilize machine-learned
classifiers only if they can give explanations for their deci-
sions. For example, under certain circumstances, the Gen-
eral Data Protection Regulation (GDPR) in the EU grants
users the right to “obtain an explanation of the decision
reached” if they are significantly affected by automated
decision-making, e.g., if a credit application is refused.1

A second reason is that explanations help to reveal the
strengths and weaknesses of a model. They could also ben-
efit the task of identifying a potential bias in a model’s deci-
sions. Researchers can then work on improving the models
based on these insights.

Contributions The main contribution of this paper is the
evaluation and comparison of attribution-based explanation
methods for offensive language detection. To this end,
we use a word deletion task to compare an interpretable
machine learning model (naive Bayes), a model-agnostic
explanation method (LIME), a model-based explanation
method (LRP), and a self-explanatory model (LSTM with
an attention mechanism). In a second experiment, we use
the explanatory power index (EPI) as a metric to evaluate
the approaches. Further, we take into account the classifi-

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
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cation accuracy of each approach and discuss strengths and
weaknesses in the application context of automated content
moderation. Based on this discussion, we give directions
for future work.

Outline In the following, we summarize related work on
explanation methods in Section 2 and describe which of
these methods and what classifiers we implement for offen-
sive language detection in Section 3. Section 4 evaluates
the methods with the help of a word deletion task and the
explanatory power index (EPI), while Section 5 discusses
the results. We conclude with a summary of the contribu-
tions and an outlook on future work in Section 6.

2. Related Work
There is plenty of research on offensive language detection,
and the classification accuracy for this task drastically in-
creased in recent years — not least due to deep learning
approaches for natural language processing. However, one
aspect of this classification task has gone mostly unnoticed:
the need for explaining classification results.
More precisely, research on explanation methods distin-
guishes explainability from interpretability. The former
refers to locally comprehending individual decisions, while
the latter refers to globally comprehending the decision
function (Došilović et al., 2018; Monroe, 2018; Montavon
et al., 2017). Unfortunately, there is no universal definition
of these two terms. The definition used in this paper is:

• A decision function f is called explainable if the deci-
sion f(x) for each single input x ∈ X (in domain X)
can be explained in understandable terms to humans.

• A decision function f is called interpretable if the
whole function f (for the whole domain X) can be
explained in understandable terms to humans.

In the field of image classification, CNN-based explanation
methods are prominent. For example, DeConvNet (Zeiler
and Fergus, 2014) inverts the convolutional operations
to gain explanations and an approach by Simonyan et
al. (2014) applies sensitivity analysis to achieve similar re-
sults. There have been several follow-up papers that com-
pare these two approaches and propose combinations (Kin-
dermans et al., 2018; Springenberg et al., 2015).
Explanation methods for text classification are rarely stud-
ied. For example, Nguyen (2018) compares human eval-
uation and automatic evaluation for explanation methods.
The comparison uses the twenty newsgroups dataset and a
dataset of movie reviews. To the best of our knowledge,
the only publication on explanation methods in the field of
offensive language detection is by Carton et al. (2018). The
authors use an attention mechanism to generate explana-
tions for the detection of personal attacks.
An empirical study by Chakrabarty et al. (2019) shows
the importance of contextual or self-attention for abusive
language detection. Whether attention weights can also
be used as explanations is under discussion (Wiegreffe
and Pinter, 2019; Jain and Wallace, 2019). In this pa-
per, we consider a long short-term memory (LSTM) neural
network (Hochreiter and Schmidhuber, 1997; Gers et al.,
1999) with an attention mechanism (Yang et al., 2016) as an

example of a self-explanatory model. The inherent atten-
tion weights provide attribution-based explanations. Fur-
ther, we consider a naive Bayes classifier, which is an exam-
ple of an interpretable model. A classification result (and
the entire model) can be understood with the help of the
discrete conditional probabilities in the classifier. The rel-
evance of a word w is the probability that the class c is
predicted given w:

P (c|w) = P (c) · P (w|c)
P (w)

The attention-based LSTM and the naive Bayes classifier
are two a priori explainable models. We also consider
two post-hoc explanation methods in our paper: layer-
wise relevance propagation (LRP) and local interpretable
model-agnostic explanations (LIME). We describe these
two methods in the following. The idea behind LRP (Bach
et al., 2015) is to backpropagate the relevance scores from
the output layer to the input layer of a neural network. To
this end, the relevance of each input value (feature) is de-
rived from the neuron activations in the output layer. This
procedure makes LRP a model-based explanation method.
The idea behind LIME (Ribeiro et al., 2016) is to use a lo-
cal approximation of the classifier f at a point x and its
neighborhood. This local approximation needs to be an
interpretable classifier and a good approximation of f in
the local neighborhood of point x. The authors evaluate
their model-agnostic explanation method with text and im-
age classification tasks.

3. Explanation Methods
For our comparative study, we implement a variety of clas-
sifiers for offensive language detection and suitable expla-
nation methods. To train the classifiers, we use a dataset of
toxic comments published by Google Jigsaw in the context
of a Kaggle challenge.2 The Python code for all classi-
fiers, a web application to visualize the explanations, and
the training and evaluation procedures are published on-
line.3

3.1. Classifiers
There are four different classifiers that we implement and
pair with different attribution-based explanation methods.
First, there is a multinomial naive Bayes classifier, which
serves as a baseline. It is interpretable by default and pro-
vides explanations in the form of conditional probabilities.
Further, we implement a support vector machine (SVM)
and a long short-term memory (LSTM) neural network.
The input to the SVM is a TF-IDF vector representation
of the unigrams in the comment text. GloVe word embed-
dings (Pennington et al., 2014) serve as the input to the
neural network.
Both the SVM and the LSTM network are paired with the
two explanation methods LRP and LIME. To this end, we
adapt the LRP implementation by Arras et al.4 and the

2https://www.kaggle.com/c/
jigsawtoxic-comment-classification-challenge

3https://hpi.de/naumann/projects/
repeatability/text-mining.html

4https://github.com/ArrasL/LRP_for_LSTM/

https://www.kaggle.com/c/jigsawtoxic-comment-classification-challenge
https://www.kaggle.com/c/jigsawtoxic-comment-classification-challenge
https://hpi.de/naumann/projects/repeatability/text-mining.html
https://hpi.de/naumann/projects/repeatability/text-mining.html
https://github.com/ArrasL/LRP_for_LSTM/


Table 1: Absolute and relative frequency of the six class
labels in the training dataset and test dataset. The class dis-
tribution is highly imbalanced.

Class Training Set Test Set

Toxic 19,235 9.56% 2,149 9.61%
Severe Toxic 1,757 0.87% 205 0.92%
Obscene 10,922 5.43% 1,218 5.45%
Threat 617 0.31% 72 0.32%
Insult 10,178 5.06% 1,126 5.04%
Identity Hate 1,906 0.95% 211 0.94%

LIME implementation by Ribeiro et al.5. To generate ex-
planations for SVM and LSTM with the model-agnostic
method LIME, we first sample perturbations of the input
text by randomly deleting words. For each sample, we cal-
culate the class probabilities with the SVM and the LSTM
by applying a softmax function as the final calculation step.
The default ridge regression algorithm is used to train an
interpretable linear model. This model learns the word rel-
evance scores bases on the classified samples.
Last but not least, we implement an LSTM network with
an attention mechanism, which is an example of a self-
explanatory model. It uses attention weights on the word
level (not on the sentence level) and implements the archi-
tecture by Yang et al. (2016).

3.2. Dataset
The toxic comments dataset contains about 220,000 com-
ments, each labeled with regard to six non-exclusive
classes: toxic, severe toxic, insult, threat, obscene, and
identity hate. Table 1 shows the class distribution in the
training set and test set. Note that a comment is always
labeled as toxic if one of the other labels applies. Even if
none of the other labels apply, it can still be labeled as toxic.

3.3. Training Procedure
The GloVe word embeddings are trained from scratch on
the training and test set. We restrict the input length of
the basic LSTM network and the LSTM network with an
attention mechanism to a maximum of 250 words. Further,
we use 50 LSTM units, which means the output of this layer
is 50-dimensional. The training of the networks runs for
five, respectively, three epochs with the Adam optimizer
until the validation loss increases.
The task on our dataset is a multi-label classification task.
Our network architecture addresses this multi-label task by
sharing the same LSTM layer across all class labels. How-
ever, for each label, an independent fully-connected layer
follows after the output of the last LSTM unit. The attention
mechanism is also trained for each label individually and
fits in between the LSTM output and the following fully-
connected layer.
SVM and naive Bayes use stemming to reduce the vocabu-
lary size. They are trained according to a one-against-all
scheme to conform to the multi-label classification task.
The trained models therefore can be seen as six independent

5https://github.com/marcotcr/lime
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Figure 1: This heatmap visualizes positive (red) and neg-
ative (blue) word relevance scores generated by combina-
tions of different classifiers and explanation methods.

binary naive Bayes classifiers, respectively, six independent
binary SVMs. The SVM uses a linear kernel. There is only
one hyperparameter to choose, which is the regularization
term c. We set C = 0.6 and thereby relax the penalty for
misclassifications.

3.4. Heatmap Visualization
To give an example of the explanations, Figure 1 and Fig-
ure 2 visualize the word relevance scores generated by the
different explanation methods for two toxic comments. The
conditional probabilities of the naive Bayes approach and
the attention weights of the attention-based LSTM define
positive word relevance scores between 0 and 1. In contrast
to that, LIME and LRP define unbound relevance scores,
which can also be negative. A negative word relevance
score means that the respective word indicates the absence
of a particular class rather than its presence. Because the
attention weights are class-independent, these weights can
only explain the predicted class. All other methods can also
be used to explain a class that was not predicted by the clas-
sifier. This property can be used to analyze which words
speak in favor of a not predicted class.
In Figure 1, the naive Bayes classifier marks the words
killed and fool as most relevant for the decision to clas-
sify this comment as toxic. Similarly, the SVM classifier
with LRP and LIME mark these two words. In contrast
to that, the word killed is less relevant for the LSTM classi-
fiers (with and without attention). Only the naive Bayes and
the SVM classifiers use stemming but not the LSTM clas-
sifiers. The stemming collapses killed to kill. Therefore,
our naive Bayes and SVM classifiers cannot distinguish the
active form of the verb from other words with the same
stem. In this particular context, the non-stemmed word is
not toxic. The stemming misleads the classifiers to wrongly
explain the toxicity of the comment with this word.
The attention mechanism highlights the words ignorant and
fool. The word killed is marked as slightly relevant and all

https://github.com/marcotcr/lime
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Figure 2: This heatmap visualizes positive (red) and neg-
ative (blue) word relevance scores generated by combina-
tions of different classifiers and explanation methods.

other words as irrelevant. This explanation aligns with an
explanation a human would give. In general, we find that
the attention mechanism gives meaningful explanations for
toxic comments. For non-toxic comments, however, its ex-
planations can be misleading. The attention mechanism
distributes a relevance score of one among the words —
even if there is nothing toxic in the comment. To our sur-
prise, the attention mechanism often marks punctuation as
relevant in non-toxic comments.
The basic LSTM approach marks only a few words as rel-
evant, and most words have relevance close to zero. These
sparse explanations are suitable for our dataset, as there is
typically a small set of toxic words, which explains the tox-
icity of the entire comment. In Figure 1c to 1f, LIME and
LRP assign negative relevance scores to the word Please.
This negative relevance score means that this word speaks
against the toxicity of the comment.
The heatmaps in Figure 2 visualize the word relevance
scores of another comment. Only the basic LSTM clas-
sifies this short comment correctly. It contains no swear
words, but it is still offensive. The negatively connoted as-
sociation of a person with an animal falls into the category
of dehumanizing language. Without the full context, none
of the single words explains the toxicity of the comment.
Therefore, it is difficult to provide an attribution-based ex-
planation.

4. Evaluation
The following evaluation is three-fold. First, we compare
the different classification approaches (naive Bayes, SVM,
LSTM, and LSTM with attention mechanism) with regard
to their classification performance on the toxic comments
dataset. Second, we pair the approaches with attribution-
based explanation methods and evaluate the generated ex-
planations based on a word deletion task. The third part of
the evaluation uses the explanatory power index (EPI) by
Arras et al. (2017).

4.1. Classification Performance
To evaluate the classification performance of the different
classifiers, we use a multi-label classification task on the
toxic comments dataset. Due to the imbalanced class dis-
tribution of this dataset, we refrain from using accuracy
as the evaluation metric and instead use precision, recall,
and F1-score. Table 2 lists the results on the test set and

Table 2: Precision (P), Recall (R) and F1-score of the clas-
sifiers on the toxic comments dataset (in percent). Bold font
indicates best F1-score per class.

Class Metric NB SVM LSTM ATT

Toxic
P 69.87 83.22 81.66 84.54
R 63.89 65.98 68.36 69.74
F1 66.75 73.60 74.42 76.43

Severe
Toxic

P 14.45 52.11 56.96 58.33
R 92.20 18.05 21.95 07.69
F1 24.98 26.81 31.69 13.59

Obscene
P 51.89 85.64 81.09 86.15
R 75.70 67.57 71.84 67.13
F1 61.57 75.54 76.19 75.46

Threat
P 03.95 72.41 31.43 89.29
R 59.72 29.17 15.28 35.21
F1 07.41 41.58 20.56 50.51

Insult
P 48.41 78.43 72.67 77.64
R 75.75 57.82 69.18 59.56
F1 59.07 66.56 70.88 67.40

Identity
Hate

P 11.72 64.47 55.36 65.77
R 73.46 23.22 29.38 49.75
F1 20.21 34.15 38.39 56.64

shows that the naive Bayes baseline is weakest, followed
by the SVM approach. The basic LSTM network and the
LSTM network with attention mechanism overall achieve
similar F1-score with larger differences in the less popu-
lated classes severe toxic, threat, and identity hate. For the
following evaluation of explanation methods, we consider a
binary classification task based on the toxic class label only.
All classifiers achieve their best performance for this most
frequent label.

4.2. Word Deletion Task
We consider a word deletion task to evaluate whether ex-
planation methods correctly identify which input words are
most relevant for the classifier’s output. It is based on an
idea by Arras et al. (2017). The task evaluates whether the
words that the explanation points out to be relevant for the
classification indeed have a strong influence on it. Each ex-
planation method, therefore, needs to calculate a relevance
score for each input word. The word with the highest rel-
evance is deleted, and it is checked whether the model’s
classification result changes with the perturbed input.
Given the set of true positives (toxic comments that are cor-
rectly identified as toxic), we use each explanation method
to calculate word relevance scores for each comment. For
each method, we then delete the most relevant words from
each comment. If the word is indeed relevant for the clas-
sifier’s decision, the classification most likely changes for
the perturbed comment. Step-by-step, we delete more and
more words with decreasing relevance scores. An explana-
tion method is considered to provide good relevance scores
if the classification changes for a large number of com-
ments after deleting only a few words.
Figure 3 shows how the accuracy quickly drops as more and
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Figure 3: Correct classifications into the toxic class change
to non-toxic if the most relevant input words are deleted.
This result shows that the word relevance scores success-
fully mirror a word’s influence on the classification result.

more words are deleted. By deleting four words, more than
80% of the comments that were previously correctly clas-
sified as toxic (true positives) are classified as non-toxic.
This result confirms that the classifiers detect those words
that often constitute the toxicity of a comment (e.g., swear
words).
Further, Figure 3 suggests that SVMs provide better expla-
nations than LSTMs. This suggestion is misleading and re-
veals one limitation of the experiment. Each method starts
with its own set of true positives. Therefore each line in the
plot corresponds not only to a different explanation method
but also to a slightly different dataset. While the overlap of
the sets is relatively large, the LSTM network’s set of true
positives is slightly larger (almost a superset). It also con-
tains some of the more difficult samples of toxic comments,
which are correctly classified by the LSTM but misclassi-
fied by the naive Bayes approach. One idea to get rid of
this problem is to use the intersection of all sets of true pos-
itives. The resulting comments are unanimously correctly
classified. However, when we further explored this idea, we
found that this set is rather small and, more importantly, it
contains only the most simple comments — the comments
that all classifiers detect correctly as toxic.
Still, for those comments that it classifies correctly, the
SVM classifier definitely provides the best explanations ac-
cording to the word deletion experiment. However, the true
positives of the LSTM approach also contain comments
whose toxicity can only be detected with context. A com-
ment that contains a single swear word is easier to perturb
to be classified as non-toxic than a comment that is toxic in
its entirety.

4.3. Explanatory Power Index
Arras et al. (2017) propose a three-step approach to quan-
tify the explanatory power of a text classifier with their ex-
planatory power index (EPI). We follow this approach and
first calculate one document summary vector per comment

Table 3: Explanatory Power Index (EPI) for classifiers and
explanation methods. Hyperparameter k denotes the num-
ber of nearest neighbors that maximizes the EPI.

Classifier Explanation Method EPI k

Naive Bayes Conditional Probability 82.29 3

SVM
TF-IDF 87.59 25
LRP 93.38 19
LIME 93.14 19

LSTM
GloVe 84.74 15
LRP 99.67 3
LIME 99.48 9

ATT LSTM Attention Mechanism 92.04 11

in the test set based on each combination of a classifier and
an explanation method. The document summary vector is
either calculated as a weighted average of the comment’s
GloVe word embeddings or as the comment’s weighted TF-
IDF vector representation. We compare a variety of ap-
proaches for weighting the words based on word relevance
scores.
In the second step, we perform a k-nearest neighbor (kNN)
classification on these document summary vectors based on
each classifier’s predictions. This step is repeated ten times
on different random splits of the data and with different val-
ues of k. The classification accuracy of the KNN classifier
is averaged for each k over the ten runs. The EPI is defined
as the maximum achieved classification accuracy. We limit
the dataset to all toxic comments and a random sample of
non-toxic comments of the same size. This downsampling
reduces the data to a balanced set of 4, 300 comments and
allows to properly use accuracy as the evaluation metric.
Intuitively speaking, the EPI mirrors how good the docu-
ment summary vectors capture the semantic similarity of
documents of the same class by clustering them closer to
each other in the high-dimensional vector space.
Table 3 lists the EPI for the different classifiers paired with
the respective explanation methods. The results show that
weighting a document’s bag-of-words vector representation
with conditional probabilities from the naive Bayes base-
line has the weakest explanatory power. Its performance
is followed by the other two baselines: the SVM approach
with TF-IDF weights and the basic LSTM approach with
averaged GloVe vectors to obtain document summary vec-
tors. The explanatory power of the basic LSTM classifier
combined either with LIME or LRP is superior to all other
methods. Although the LSTM with attention mechanism
achieves slightly better classification results (F1-score of
76.4% vs. 74.4%), the attention weights are not as suited
for explanations as word relevance scores generated with
LIME or LRP for the basic LSTM network.

5. Discussion
LIME and LRP achieve similar results in our experiments.
However, they strongly differ in their computational costs.
The runtime to generate explanations with LIME is about
40 times higher than with LRP. This difference is because



LRP needs only one backpropagation run to propagate the
relevance scores from the output layer to the input (word)
layer. In contrast to that, LIME requires perturbing a large
set of samples. These samples need to come from the local
neighborhood of the comment to be explained. Fore exam-
ple, they need to have many words in common. The more
samples are used, the more stable are the explanations.
In the word deletion experiment, LIME has an unfair advan-
tage over the other explainability methods due to the way it
is trained. The perturbation in its training process is simi-
lar to the perturbation in the word deletion task. Therefore,
LIME is tailored to this task.
A downside of the attention mechanism is that it can-
not provide class-specific word relevance scores. Strictly
speaking, the attention weights — and thus also the derived
relevance scores — do not refer to the word level. The
weights instead refer to the hidden states in the sequence
of LSTM units. The attention mechanism explains which
states are most relevant for the network’s final output. The
activation of a hidden state is the result of processing a sub-
sequence of the input word sequence — regardless of the
actual classification output (toxic/non-toxic). The heatmap
visualizations in Figure 1b and Figure 2b show that the at-
tention mechanism distributes the relevance only among a
few words, more precisely, hidden states. One reason for
that is that a single hidden state actually captures informa-
tion gained from a sequence of input words.
A limitation of attribution-based explanations for offensive
language detection seems to be a focus on words that are
toxic regardless of the context. This limitation might ren-
der them inappropriate for the detection of implicit offen-
sive language. The latter defines offensiveness that is not
directly expressed but only arises from the context, uses
irony or sarcasm, or can be inferred from metaphors, com-
parisons, or ascribed properties (Struß et al., 2019).
In the application scenario of content moderation on an on-
line platform, a classifier that achieves slightly worse accu-
racy might be preferable if it provides explanations. The
reason for this trade-off is not only the importance of trans-
parency of the moderation process and acceptance by the
user community. Explanations also facilitate the mainte-
nance of a trained classification model. As the topics of
online news articles and the corresponding user discussions
change daily, adaptation is necessary — also adaptation of
machine-learned models.
For example, on one day, an offensive comment might be
removed from the platform. However, on the next day, the
same comment might be the legitimate center of the dis-
cussion because it is a quotation by a well-known politi-
cian. In industry applications in general, explanations can
support software developers and maintainers to understand
machine-learned models and the associated software better.

6. Conclusions
Besides the need for automated offensive language detec-
tion, there is also a need for understanding these automated
decisions. To this end, we studied explanation methods
and compared four different approaches to make offensive
language detection explainable: an interpretable machine
learning algorithm (naive Bayes), a model-agnostic expla-

nation method (LIME), a model-based explanation method
(LRP), and a self-explanatory model (LSTM network with
an attention mechanism).
In future work, we plan to generate explanations for users
on online discussion platforms. The goal there is to make
content moderation more comprehensible by using a fine-
grained classifier (insult, threat, profanity, etc.) together
with highlighting the most relevant input words as expla-
nations. We also envision either selecting pre-defined text
blocks or generating text as explanations and plan to com-
pare these approaches to the explanations that a human
moderator would provide. Last but not least, we are work-
ing on a journal article as an extended version of this pa-
per (Risch et al., 2020).
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