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Abstract

Machine learning approaches have proven to be on or even above human-level accuracy
for the task of offensive language detection. In contrast to human experts, however,
they often lack the capability of giving explanations for their decisions. This article
compares four different approaches to make offensive language detection explainable:
an interpretable machine learning model (naive Bayes), a model-agnostic explainability
method (LIME), a model-based explainability method (LRP), and a self-explanatory
model (LSTM with an attention mechanism). Three different classification methods:
SVM, naive Bayes, and LSTM are paired with appropriate explanation methods. To this
end, we investigate the trade-off between classification performance and explainability of
the respective classifiers. We conclude that, with the appropriate explanation methods,
the superior classification performance of more complex models is worth the initial lack
of explainability.

1 Explainability and Interpretability

Automatic classification of text happens in many different application scenarios. One
area where explanations are particularly important is in the context of online discussion
moderation since the users who participate in a discussion usually want to know why
a certain post was not published or deleted. On the one hand, comment platforms
need to consider automatic methods due to the large volume of comments they process
every day. On the other hand, these platforms do not want to lose comment readers
and writers by seemingly censoring opinions. If humans moderate online discussions,
it is desirable to get an explanation of why they classify a user comment as offensive
and decide to remove it from the platform. Thereby, to some extent, moderators can
be held accountable for their decisions. They cannot randomly remove comments but
need to give reasons — otherwise, users would not comprehend the platform’s rules
and could not act by them.
Machine learning approaches have proven to be on or even above human-level

accuracy for the task of offensive language detection (Wulczyn et al., 2017). A variety
of shared tasks fosters further improvements of this classification accuracy, e.g., with
focuses on hate speech against immigrants and women (Basile et al., 2019), offensive
language (Zampieri et al., 2019; Struß et al., 2019), and aggression (Bhattacharya et
al., 2020). As automated text classification applications find their way into our society
and their decisions affect our lives (Risch & Krestel, 2018), it also becomes crucial
that we can trust those systems in the same way that we can trust other humans.
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Machine-learned models, such as models that detect offensive language, should therefore
be comprehensible. The field of Explainable AI (XAI) emerged to address this problem
by making models interpretable and/or explainable.

Explainable AI is a young and multidisciplinary research area, ranging from machine
learning, data visualization, and human-computer interaction to psychology. Researchers
distinguish between interpretability and explainability (Lipton, 2018). Interpretability
means to convey a mental model of the algorithm to humans. In other words, if a model
is interpretable, humans can grasp how its internals work. In contrast, explainability
means to explain individual predictions of a model, rather than the full model itself.
With an explainable model, humans can comprehend the calculation steps that lead
from a particular input to a particular output. On the other hand, interpretability
enables developers to understand a model’s weaknesses and to improve on them.

Some machine learning algorithms, such as decision trees, logistic regression, and naive
Bayes, are interpretable by default. However, with an increasing number of features
and sophisticated preprocessing, even these simple models lose their interpretability.
More complex, non-linear models, such as neural networks and support vector machines
(SVMs) with kernels, achieve better accuracy in some tasks but are not interpretable by
default. So it might seem that there is a trade-off between accuracy and interpretability.

Explainability is easier to achieve as it is sufficient to explain only single predictions of
a model rather than the model itself. There are explainability methods that are specific
to machine learning algorithms (model-based) and methods that can be applied to any
model (model-agnostic, post-hoc). With many explained predictions of a black-box
model, a human’s mental model of the algorithm improves. Thereby, explainability can
lead to interpretability.
Recently, there is research that is contrary to post-hoc explanation methods. For

example, Rudin (2019) states that the focus should be on creating inherently inter-
pretable models rather than retrospectively explaining black-box models. With the
General Data Protection Regulation (GDPR)1 specifying the right to explanations,
developing explainable AI systems is inevitable, and we expect the field of Explainable
AI to grow in the future. Especially the highly complex neural networks with millions
of parameters raise the bar for many natural language processing tasks significantly. At
the same time, these models are non-interpretable black boxes. We see a need to make
especially these most complex models explainable to ensure trust in them by humans.

In our work, we train a naive Bayes classifier, an SVM, and recurrent neural network
models on a dataset of toxic comments. We examine the explanation methods Layer-wise
Relevance Propagation (LRP) and Local Interpretable Model-agnostic Explanations
(LIME), but also attention layers. Thereby, our study covers a model-based method,
a model-agnostic method, and a self-explanatory model. The naive Bayes classifier
serves as a baseline. For the evaluation of the explanation methods, we use a word
deletion task, the explanatory power index, and t-SNE projections of document vector
representations. We discuss the results and find that the explainability methods LRP

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
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and LIME provide explainability beyond the limits of interpretable machine learning
algorithms, such as naive Bayes.

Contributions In summary, with the present article, we make the following contribu-
tions: First, we provide an overview of explainability methods that can be applied to
offensive language detection. Second, we implement a variety of such methods and
compare them in different experiments. Finally, we interpret the results, discuss the
strengths and weaknesses of the methods, and summarize implications for future work.

Article Outline The remainder of this article is structured as follows: In Section 2,
we describe related work on explainability methods and set our work into its context.
Section 3 focuses on those methods that we implement for this study and how we
train the underlying models for offensive language detection. We evaluate the different
methods and discuss the results in Section 4 and 5, before we conclude in Section 6.

2 Related Work

There are two principal ways to achieve explainability: either by using interpretable
classifiers or by extending non-interpretable classifiers with explainability methods. The
terms explainability and interpretability have no standard definitions in the context
of machine learning. When they are not used interchangeably, the distinction is that
explainability refers to comprehending individual predictions, whereas interpretability
refers to comprehending the decision function (Došilović et al., 2018; Monroe, 2018;
Montavon et al., 2017). The terms local explainability/interpretability and global
explainability/interpretability are used to describe this difference (Mohseni et al., 2018;
Ribeiro et al., 2016). For the lack of consensus in terminology, we define the terms for
this article:

• A decision function f is called explainable, if the decision f(x) for each single
input x ∈ X (in domain X) can be explained in understandable terms to humans.

• A decision function f is called interpretable, if the whole function f (for the whole
domain X) can be explained in understandable terms to humans.

For example, in the special case of a text classifier, an attribution-based explanation
method might output one score per input feature, e.g., input word. The scores de-
note how much each input feature contributes to the classifier’s decision. Note that
interpretability comprises explainability. To this end, interpretability can be derived
from explainability by agglomerating explanations. Ribeiro et al. (2016) propose an
algorithm to select inputs so that the explanations of the decisions to those inputs give
an interpretation of the model. Depending on the domain context of a model, other
explanation forms are possible. For example, there are hierarchical explanations, which
explain sentiment analysis decisions by considering word interactions (Singh et al., 2019;
Tsang et al., 2018; Murdoch et al., 2018).
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2.1 Interpretable Classifiers

Simple models are interpretable without any special methods and abstraction because
they align with human intuitions. The most popular interpretable models are decision
trees since they can easily be visualized and consist of a set of structured decision
rules. Explaining a decision tree’s prediction is as simple as following the branches that
correspond to the input. The most relevant features are closer to the root of the tree.
Thereby, the degree of abstraction for the interpretation can be increased simply by
pruning the tree.
Another class of interpretable models is based on discrete probabilities. The naive

Bayes classifier is interpretable because it uses simple calculations with discrete con-
ditional probabilities. These probabilities can be interpreted as a contribution to the
decision made by the classifier. We use this approach as a baseline in our evaluation.

2.2 Sensitivity Analysis and Shapley Values

Sensitivity analysis and Shapley values are two mathematical concepts behind most
explainability methods. Sensitivity analysis figures out how sensitive the output f(x) is
to a change in the input x. For an infinitesimal change in x, this can be expressed as the
gradient ∇f of the decision function f evaluated for the input x. Baehrens et al. (2010)
define −∇f(x) as the explanation vector. Simonyan et al. (2014) apply sensitivity
analysis to explain image classifications made by convolutional neural networks (CNNs)
by using the backpropagation algorithm to obtain the gradient. A simple variant of
sensitivity analysis that leads to more specific explanations for image classification is
gradients multiplied by input (Shrikumar et al., 2017). Explanations by sensitivity
analysis cannot be interpreted as: “What input makes the prediction turn out positive?”,
but rather as: “How to change the input to make the prediction more positive?”.
Shapley values have their origin in coalition game theory. They were proposed to

assign each player of a coalition game the contribution he or she makes to the overall
outcome of the game (Shapley, 1953). The axioms for Shapley values are also desirable
properties in the context of explaining a classifier’s decision:

1. Efficiency The explanation reflects the outcome of the classifier f(x).
2. Symmetry Two features that add the same value to the decision f(x) should be

equally relevant.
3. Additivity If there are multiple decision functions in an ensemble, the final relevance

score should match the sum of the scores of the individual functions.
4. Dummy Player A feature that does not change the outcome of the classifier should

have no relevance.

Shapley values are not used in practice because of their computational costs. Even
if feature interactions are neglected, it is infeasible to do the necessary calculations,
especially with high-dimensional data, such as word embeddings. Despite not being
used often in its pure form, the concept of Shapley values is still relevant. Lundberg
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and Lee (2017) propose the SHAP framework inspired by Shapley values and show that
other explainability methods are approximations of SHAP.

2.3 LRP and LIME

With layer-wise relevance propagation (LRP), Bach et al. (2015) bring the idea of the
efficiency axiom of the Shapley values to deep neural networks. However, propagating
the output f(x) directly to the input features is complicated for complex decision
functions that contain feature interactions and non-linearities, such as those modeled
with neural networks. The LRP method makes use of the layered structure of neural
networks to break this problem down by distributing the relevance stepwise for each layer
in the network. The layer-wise relevance propagation concept defines the constraint that
the summed-up relevance scores for each layer are conserved throughout the propagation.
This constraint is called relevance conservation property.

Ribeiro et al. (2016) propose Local Interpretable Model-agnostic Explanations (LIME).
To explain a decision f(x), LIME approximates the local neighborhood of f(x) with an
interpretable classifier g : {0, 1}d → R that serves as an explanation. Remark that g
and f do not have the same domain. The domain of g is a binary space with the same
dimension as the feature space. Therefore the input to g does only capture the absence
or presence of a feature. LIME considers two aspects to choose the best explanation g
for f(x). First, g needs to be a good local approximation of f in the local neighborhood
of x. Second, the complexity of g should be low to ensure that g is interpretable. To
this end, the best explanation for a decision f(x) is the model g that minimizes the
unfaithfulness and the complexity of g.

2.4 Other Explainability Methods

Related work on explainability typically discusses image classification. CNNs are very
prominent in this domain. Therefore, many CNN-based explainability methods have
been developed. One of the first explainability methods for CNNs is DeConvNet (Zeiler
& Fergus, 2014). This approach tries to explain decisions by inverting convolution,
ReLU operations, and pooling. Applying sensitivity analysis to CNNs by using back-
propagation to obtain the gradient leads to similar explanations (Simonyan et al., 2014).
Springenberg et al. (2015) describe the differences between DeConvNet and Sensitivity
analysis in the aspect of ReLU operations and propose a combination of the approaches
called guided backpropagation. Kindermans et al. (2018) argue that splitting the input
into a signal and a distractor part can lead to clearer explanations. They compare their
methods to Sensitivity analysis, DeConvNet, Guided Backpropagation, and LRP.
Similar to LRP is DeepLIFT (Shrikumar et al., 2017). It also backpropagates

relevance through neural network layers and complies with the relevance conservation
property. Instead of starting with a relevance score that equals the output of the last
layer neuron, DeepLift uses the difference to a reference point as an initial relevance
score. The explainability method CAM (Class Activation Mapping), proposed by Zhou
et al. (2016), uses a special CNN architecture to learn what parts of an image are
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important for the decision, by considering the outputs of the last convolutional layer.
GradCAM extends CAM by combining it with Sensitivity analysis and thereby avoids
to retrain the network for explanations, as it is the case with CAM (Selvaraju et al.,
2017). The concept of Taylor-type Decomposition was proposed alongside LRP (Bach et
al., 2015) and later refined (Montavon et al., 2017). Instead of using relevance messages
to propagate the relevance through the layers, first-order Taylor expansions are used to
distribute the relevance scores to the next layer. Sundararajan et al. (2016) introduce
integrated gradients, a way to fulfill the efficiency axiom of Shapley values by integrating
over the gradients with respect to modified (counterfactual) inputs.
Murdoch and Szlam (2017) analyze the hidden cell states of an LSTM to construct

interpretable rule-based classifiers. This method, called Cell Decomposition, is an
explanation method specific to LSTMs. The same authors propose Contextual Decom-
position, which does not only explain decisions with relevance scores to single words
but also explains phrases and word interactions (Murdoch et al., 2018).
Related work rarely focuses on explanations for text classification. One publication

compares human and automatic evaluation of explanation methods for text classifica-
tion (Nguyen, 2018) and another one describes the application of an attention-based
explanation method to a dataset of personal attacks (Carton et al., 2018). Earlier
results of our research on explanations for offensive language classification are published
in a short paper (Risch, Ruff, & Krestel, 2020).

2.5 Taxonomy of Explainability Methods

We focus on explainability methods that use feature relevance explanations. The first
aspect in which explainability methods can differ is whether they use information
about the model’s structure or not. Layer-wise relevance propagation, for example, is
designed to explain decisions made by neural networks and SVMs, as it uses the layered
structure and the activation values of hidden layer neurons. Hence LRP is a model-based
explainability method. Opposed to that, LIME operates on black-box models and does
only use the models’ input-output pairs to explain decisions. Thus LIME is a model-
agnostic (or post-hoc) explainability method. Model-agnostic explainability methods
often use sampling to approximate the model with another interpretable surrogate
model.

Model-based methods can further be distinguished by the approach they are taking
to assign relevance scores. Many methods rely on gradients to explain a decision. The
simplest of those methods is sensitivity analysis. Guided Backpropagation, integrated
gradients, and gradients × input extend this concept. Layer-wise relevance propagation
and DeepLIFT have in common that they make use of the efficiency axiom of Shapley
values and redistribute a fixed relevance score onto the features. Other methods, like
DeConvNet and Cell Decomposition, are very specific to the machine learning algorithms.
There are also so-called self-explanatory machine learning algorithms which inherently
provide explanations as a side effect of the decision-making process. An example of such
a self-explanatory machine learning algorithm is LSTM with an attention mechanism.
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3 Explaining Offensive Language Detection

In order to be of practical relevance, automatic offensive language detection tools need
to be trusted by users. Trust can only be established if the automatic decisions can
be convincingly explained if needed. We implemented several different algorithms for
offensive language detection and combined them with different explanation methods.
We published our python code for all classifiers, a web application to visualize the
explanations, and the training and evaluation procedures on GitHub.2

3.1 Classifiers and Explainability Methods

As a baseline, we implement a multinomial naive Bayes text classifier and add explain-
ability based on the inherent conditional probabilities. This classifier is an example of
an interpretable machine learning model. Second, we implement an explainable SVM
classifier.3 For multi-class classifications, we use the one-against-all scheme. We gener-
ate explanations for SVM decisions with the model-based explainability method LRP
and the model-agnostic explainability method LIME. Last but not least, we implement
an LSTM with an attention mechanism, which is an example of a self-explanatory
model.

3.2 Dataset

There is a variety of datasets annotated for the detection of hate speech (Gao &
Huang, 2017), racism/sexism (Waseem & Hovy, 2016) or offensive/aggressive/abusive
language (Struß et al., 2019; Kumar et al., 2018). However, most of them are compa-
rably small because of the immense labeling effort. In this article, we use one of the
largest annotated datasets in this field, which contains more than 220,000 comments.
Google Jigsaw released this dataset as part of a Kaggle challenge on toxic comment
classification.4 It comprises user discussions from talk pages of the English Wikipedia,
where each comment can be labeled as toxic, severe toxic, insult, threat, obscene or
identity hate (non-exclusive labels). Table 1 shows that the class distribution is strongly
imbalanced.

3.3 Training Procedure

The toxic comments dataset represents a multi-label classification problem. Since there
are six labels in the dataset, we can think of the naive Bayes and SVM classifiers as six
independent binary naive Bayes classifiers, respectively, six independent binary SVMs.
The LSTMs have a slightly different architecture for multi-label problems. All labels
share the same LSTM layer, but each label has its own independent fully-connected layer

2https://hpi.de/naumann/projects/repeatability/text-mining.html
3https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
4https://www.kaggle.com/c/jigsawtoxic-comment-classification-challenge
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Table 1: The class distribution of the dataset is strongly imbalanced. The rarest label threat is
assigned to only 0.3% of the samples.

Class Frequency
Clean 201,081
Toxic 21,384
Obscene 12,140
Insult 11,304
Identity Hate 2,117
Severe Toxic 1,962
Threat 689

at the last LSTM output. For the Attention LSTM, each label has its own independent
attention layer with the following fully-connected layer.
We train the explainable LSTM with TensorFlow5 and use the LRP for LSTM 6

implementation to explain decisions with LRP. We use an Attention LSTM by Yang
et al. (2016) with the difference that we only use an attention layer on the word level
and no additional sentence level. We choose the regularization term C = 0.6 for the
SVM. LSTM and Attention LSTM both have a maximum input length of 250, use a
50-dimensional hidden layer for LSTM cells, and are trained with the Adam optimizer
for five respectively three epochs. We train custom GloVe word vectors on the corpus
of the training set and the unlabeled comments included in the dataset.

4 Evaluation

First, we compare the classification performance of different approaches for offensive
language detection. We then describe the experimental setup for the evaluation of their
respective explanations. Finally, we discuss the results.

4.1 Classification Performance

Table 2 presents precision, recall, and F1-score of the trained models on the test set.
Both LSTM architectures outperform SVM, which in turn outperforms the naive Bayes
baseline. We are unable to get good results for the labels severe_toxic, threat, and
identity_hate because each of them makes up less than 1% of the dataset. For the
evaluation of explanations, we only focus on the toxic label as the classifiers perform
best on this label.

5https://www.tensorflow.org/
6https://github.com/ArrasL/LRP_for_LSTM/
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Table 2: Precision (P), Recall (R) and F1-score of the classifiers on the toxic comments dataset.
Bold font indicates best F1-score per class.

Class Label Metric Naive Bayes SVM LSTM Att. LSTM

Toxic
P 69.87 83.22 81.66 84.54
R 63.89 65.98 68.36 69.74
F1 66.75 73.60 74.42 76.43

Severe Toxic
P 14.45 52.11 56.96 58.33
R 92.20 18.05 21.95 07.69
F1 24.98 26.81 31.69 13.59

Obscene
P 51.89 85.64 81.09 86.15
R 75.70 67.57 71.84 67.13
F1 61.57 75.54 76.19 75.46

Threat
P 03.95 72.41 31.43 89.29
R 59.72 29.17 15.28 35.21
F1 07.41 41.58 20.56 50.51

Insult
P 48.41 78.43 72.67 77.64
R 75.75 57.82 69.18 59.56
F1 59.07 66.56 70.88 67.40

Identity Hate
P 11.72 64.47 55.36 65.77
R 73.46 23.22 29.38 49.75
F1 20.21 34.15 38.39 56.64

4.2 Examples of Heatmap Visualization

Explanations by naive Bayes and Attention LSTMs only assign positive relevance scores
between 0 and 1. Relevance scores of naive Bayes explanations are probabilities and
relevance scores of Attention LSTM explanations are results of a normalizing softmax
function. In contrast, explanations by LIME and LRP contain relevance scores that
are unbounded and can also be negative. Attention LSTM explanations are the only
explanations that are class-independent. Other explainability methods can explain any
class, even if the classifier did not predict that class.

The comment in Figure 1 is correctly classified as toxic by both LSTM architectures.
The naive Bayes classifier and the SVM classify it as non-toxic.

Figure 1a shows that the naive Bayes classifier explains the toxicity of the comment
by marking the word fool. The word killed is stemmed to kill and, therefore, arguably
marked also as an explanation, although it is not toxic in this context. Rarely occurring
words, such as Sarsa, sirhind, and wazir, are also marked as toxic. The effect of
relatively high relevance scores for words that are equally distributed among all classes
is amplified in the binary classification case. For a word w that appears with equal
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(a) Naive Bayes (b) Attention LSTM

(c) SVM - LRP (d) SVM - LIME

(e) LSTM - LRP (f) LSTM - LIME

Figure 1: Heatmap visualization of the explanations by the different classifiers and explainability
methods. For LRP and LIME, red indicates positive and blue indicates negative relevance.

frequency in both classes c, the relevance of a word is P (c|w) ≈ 0.5. Together with the
unbalanced dataset, this leads to problems for rarely occurring words because the used
Laplace smoothing becomes more significant. This smoothing causes high relevance
scores for the words Sarsa, sirhind, and wazir. Note that this example comment is
labeled as not toxic by the naive Bayes classifier despite the high relevance scores of
many words.

Figure 1b shows the explanation generated by the Attention LSTM. The words fool
and ignorant are marked as relevant, and all other words as irrelevant. This explanation
aligns with an explanation a human would give. The explanation does not mark killed
as toxic (in contrast to the naive Bayes classifier). There are two reasons for that.
Attention LSTMs do not use stemming (killed is considered less toxic than kill), and
they take into account surrounding words (context awareness).

For toxic comments, we generally observe meaningful explanations by the Attention
LSTM. However, for non-toxic comments, Attention LSTMs give misleading expla-
nations. Note that the importance weights that we use as word relevance scores are
the result of a softmax function. As a consequence, the Attention LSTM necessarily
distributes a relevance score of one among the words — even if there are no toxic
elements in the comment. We find that Attention LSTMs often mark punctuation as
relevant for non-toxic comments.
Figure 1c and Figure 1d show that LRP and LIME generate almost identical expla-

nations. The toxic words ignorant and fool are detected by the SVM classifier. The
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(a) LSTM - LRP (b) LSTM - LIME

Figure 2: Heatmap visualization of the explanations made by LRP and LIME for a contextually
toxic comment classified by an LSTM neural network.

word killed is also marked as toxic because of stemming. Explanations for non-toxic
comments are also very similar for the SVM classifier. The maximum relevance scores
for non-toxic comments are much smaller than we would expect.

Explanations for LSTM have an unbalanced relevance distribution among the words.
Few words have high absolute relevance and most words have relevance close to zero.
These sparse explanations are desirable in the context of this dataset, as there is
typically a small set of words that explain the toxicity of a comment.

The LRP explanation is similar to the Attention LSTM explanation, but also includes
the word you. LIME rates the term ignorant as much more toxic than LRP does.
We find that LIME often assigns larger negative relevance scores. Explanations for
non-toxic comments do not suffer from the problem with the Attention LSTM, as they
have much smaller relevance scores overall.

In line with van Aken et al. (2018), we find the labeling of the dataset to be inconsistent.
For many comments that are misclassified as toxic, the explanations indeed mark toxic
words. Note that the naive Bayes classifier and the SVM label the example comment
in Figure 1 as non-toxic, but the explanations highlight the toxic words. The labeling
quality of the dataset makes it hard for the classifiers to learn the correct toxicity
threshold.
Figure 2 shows a short toxic comment that contains no swear words. The LSTM

without attention mechanism is the only classifier that correctly labels this comment
as toxic. Without context, none of the words in the comment would be considered
toxic on its own. It is therefore difficult to explain this example with attribution-based
explanations.
Besides this qualitative evaluation by visualizing the explanations, quantitative,

objective methods would be desirable. Unfortunately, evaluating the quality of an
explanation is a hard task. Even for human assessors, deciding which explanation is
good or bad is very hard and often undecidable. The fact, that the explanations (should)
depend on the classification result (which might be wrong), makes the evaluation even
more complicated. Nevertheless, we deploy two methods proposed in the literature to
automatically and objectively evaluate the generated explanations: word deletion and
explanatory power index.

4.3 Word Deletion Task

A good explanation for a text classification characterizes that the words with the highest
relevance scores have the most impact on the classification. Therefore deleting relevant
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words from a text should lead to a significant difference in the classification outcome.
The word deletion evaluation measure builds on this premise (Arras et al., 2017). To
evaluate a classifier and its explanations with word deletion, we generate explanations
for all comments that are correctly classified as toxic (true positives). Consequently, the
accuracy on this subset of comments is 100%. We then successively delete words with
the highest relevance scores from each text and measure the accuracies of the modified
texts at each step. For good explanations, the accuracies should decrease rapidly within
the first few word deletions.

And indeed, the accuracy quickly drops in our experiments because only a few words
often constitute the toxicity of a comment (e.g., swear words). For all classifiers, more
than 80% of the toxic comments could be modified to be not toxic, by deleting only
four words. This large number indicates that all classifiers pick up swear words, as
those are the explanations for most of the toxic comments. For toxic comments without
swear words, the word context is often important, which is the reason for the good
performance of LSTMs.

Figure 3 suggests that SVMs give the best explanations according to the word deletion
evaluation. This suggestion is misleading because we start for each classifier with its
individual subset of true positives: the comments that were correctly labeled as toxic
by that classifier. For LSTMs, this subset also contains comments that can only be
detected as toxic with word context. It is harder to modify those comments with a few
word deletions to be classified as not toxic than it is for comments with a single swear
word.

There is no good alternative to using the individual sets of true positives for the
evaluation of the explanations for each classifier. In our scenario, the different sets of
true positives have a large overlap, which reduces the problem. It is not the case that
each classifier is evaluated on entirely different data but rather on slightly different data.
We explored the idea of using the intersection of all sets of true positives. However, this
approach drastically reduces the size of the dataset for evaluation, and it implicates that
the remaining set contains the most simple comments — the ones that all classifiers
detected correctly as toxic.

4.4 Explanatory Power Index

Arras et al. (2017) propose the Explanatory Power Index (EPI) to evaluate explanations
for text categorizations. The method uses an explanation and the corresponding input
representation (TFIDF, GloVe word vectors) of a text and combines them to a document
summary vector. To obtain this vector, each word in the input representation is scaled
by the assigned relevance. Relevant words are emphasized, and irrelevant words are
weakened. In the vector space of all input representations, the document summary
vectors form clusters of semantically similar texts.

Better explanations lead to better document summary vectors and, therefore, to
clearer clusters. The cluster formation can be quantified by the accuracy of a k-nearest
neighbor (kNN) classifier that is trained and evaluated on multiple random data-splits
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Figure 3: Word deletion experiment for the toxic comments dataset.

of the document summary vectors. The EPI is defined as the mean evaluation accuracy
by the kNN classifiers on random data-splits. We use ten splits in our experiments. EPI
is decoupled from the predictive power of a classifier since the kNN algorithm is trained
and evaluated on the predicted classes for each classifier and not the true classes.

Remark that each entry in a TFIDF vector represents a word. Simply by multiplying
each word’s vector with the relevance assigned to that word by the explanation, we
obtain the document summary vector. In the case of GloVe word vectors, a matrix
represents a document, where each row represents a word. Each row vector gets
multiplied by the relevance of the corresponding word. In a second step, all row vectors
get summed up to obtain the document summary vector. Note that the document
summary vector has the same dimension as the word vectors.

EPI uses the accuracy of the kNN classification. To properly use accuracy as a metric,
we balance the dataset by downsampling the majority class. We use all toxic comments
and randomly sample the same number of non-toxic comments. For each approach, the
hyperparameter k is set so that the accuracy (and therefore the EPI) is maximized.
Using the baseline representations TFIDF and GloVe word vectors, the kNN algorithm
can already distinguish toxic comments from non-toxic comments with high accuracy.
The EPI for naive Bayes explanations is worse than for TFIDF. Explanations by naive
Bayes often assign high relevance scores to rarely occurring words, which results in the
low EPI score. Figure 4c shows that these explanations lead to cluster formations of
document summary vectors, but the resulting clusters are not homogeneous.

The explanation methods LIME and LRP have similar EPI scores for the SVM and
LSTM classifiers. Figure 4f and Figure 4g confirm these high EPI scores by showing a
clear separation of toxic and non-toxic comments into two large clusters. In general,
the t-SNE projections of the document summary vectors in Figure 4 suggest that
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Table 3: Explanatory Power Index (EPI) for classifiers and explainability methods. Hyperparameter
k denotes the number of nearest neighbors that maximizes the EPI.

Classifiers Explanation EPI k

Naive Bayes Probabilistic 82.29 3

SVM
TFIDF 87.59 25
LRP 93.38 19
LIME 93.14 19

LSTM
GloVe 84.74 15
LRP 99.67 3
LIME 99.48 9

Att. LSTM Attention 92.04 11

there are multiple clusters of toxic comments. Therefore, document summary vectors
could be used to classify and analyze more fine-grained subclasses of toxic comments.
The clusters of toxic document summary vectors of the Attention LSTM are denser.
However, the separation between the two classes is not as clear as the vectors of the
LSTM without an attention mechanism.

5 Discussion

Word deletion and EPI both define quantitative measures to rate explanations, but
it is hard to measure the quality of explanations. We defined explainability as the
ability to explain a decision of a model in understandable human terms. However, an
explanation that aligns with human intuition does not necessarily need to mirror what
the model actually is doing. So explainability can only be measured qualitatively within
an application context and a target user group. Because our evaluation of explanations
is detached from application context and has no target user group, it is hard to rate
explanations and explainability methods qualitatively.
The model-agnostic property of LIME comes at the cost of a large number of

computations. To achieve stable explanation results with LIME, many perturbed
samples need to be classified first. Opposed to that, LRP does a single relevance
backpropagation for each explanation. In our experiments, LIME takes up to 40 times
longer for explanations than LRP.
The idea to occlude parts of the input and to measure the difference of the output

can be generalized beyond text classification and is also used by LIME to generate
explanations. Note that LIME is therefore tailored to the word deletion task and
might have an unfair advantage in comparison to other explainability methods. For the
linear SVM model, LRP and LIME achieve similar results. For more complex decision
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(a) SVM - LRP (b) SVM - LIME (c) Naive Bayes

(d) TFIDF (e) GloVe word vectors

(f) LSTM - LRP (g) LSTM - LIME (h) Attention LSTM

Figure 4: t-SNE projections of the document summary vectors for each explanation method. For
reference, Figures 4d and 4e show t-SNE projections of the TFIDF vectors and GloVe
word vectors. Red and blue color mark toxic, respectively, non-toxic comments.
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functions, such as those of non-linear LSTMs, the explanations by LRP and LIME differ
considerably. All methods by far outperform the interpretable naive Bayes classifier.
The explanations of the self-explanatory LSTM with an attention mechanism have

some undesirable characteristics. First, the attention mechanism only explains which
words are relevant for a prediction in general (similar to sorting out stop words).
However, the relevance scores of the words do not depend on the predicted class.
Second, we find that the attention mechanism typically marks only a small set of words
as relevant, while all other words are assigned a relevance score close to zero. The
attention mechanism was not designed to achieve explainability. We suppose that slight
modifications could eliminate the undesirable characteristics. For example, we imagine
a hybrid explainability method that uses LRP for the fully-connected layer and the
relevance scores of the attention mechanism.

6 Conclusions and Future Work

In this article, we compared four different approaches to make offensive language
detection explainable: an interpretable machine learning algorithm (naive Bayes), a
model-agnostic explainability method (LIME), a model-based explainability method
(LRP), and a self-explanatory model (LSTM with an attention mechanism). We found
that LRP and LIME achieve explainability beyond the limits of interpretable algorithms
without giving up their superior predictive power.

The model-agnostic method LIME and the model-based method LRP differ mostly
in the way they handle negative relevance scores for simple linear models. The atten-
tion mechanism of the LSTM cannot provide competitive explanations, which is not
surprising, since it was not designed for this task in the first place. However, we assume
that the explanatory power of the attention mechanism could be improved by tailoring
it to the task of giving explanations.
Last but not least, we find that it is difficult to explain the toxicity of a comment

if none of the single words is considered toxic without context. In this case, which
includes implicit offensive language, attribution-based explanations fail. Therefore, we
see other types of explainability as a promising direction for future work.
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