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Abstract—A patent examiner needs domain-specific knowledge
to classify a patent application according to its field of invention.
Standardized classification schemes help to compare a patent
application to previously granted patents and thereby check its
novelty. Due to the large volume of patents, automatic patent
classification would be highly beneficial to patent offices and
other stakeholders in the patent domain. However, a challenge
for the automation of this costly manual task is the patent-specific
language use. To facilitate this task, we present domain-specific
pre-trained word embeddings for the patent domain. We trained
our model on a very large dataset of more than 5 million patents
to learn the language use in this domain. We evaluated the quality
of the resulting embeddings in the context of patent classification.
To this end, we propose a deep learning approach based on
gated recurrent units for automatic patent classification built on
the trained word embeddings. Experiments on a standardized
evaluation dataset show that our approach increases average
precision for patent classification by 17 percent compared to
state-of-the-art approaches.

Index Terms—Document Classification, Deep Learning, Word
Embedding, Patents

I. INTRODUCTION

In 2017, a record number of 320,003 U.S. patents has
been granted by the U.S. Patent and Trademark Office'. All
granted U.S. patents since 1976 are publicly available as
full text’. These large text collections represent an extensive
amount of human knowledge in an almost unstructured form.
This makes mining information from them challenging and
automatic classification and retrieval a hard problem.

Not only the number of documents but also the patent-
specific vocabulary make the tasks more difficult. Because of
the underlying legal purpose of patent documents, they follow
a specific writing style. Patent applications need to define
the scope of an invention and need to delimit an invention
from others whilst covering as much variation of the invention
as possible. As a consequence, descriptions of an invention
use vague language. For example, a patent calls an invention
“electronic still camera” and “electronic imaging apparatus”,
whereas such a device is called “digital camera” in colloquial
speech (Fig. 1). A patent’s claims are a controversial subject,
because a patent grants rights and also limits the rights of
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others. Patents grant a monopoly for a limited time in exchange
for the disclosure of the invention so that others can license
it.

Unstructured text sections, such as abstracts, descriptions,
and claims, make up the largest part of a patent. The claims
section is essential for defining the scope of an invention. It
describes the extent of the monopoly rights granted by the
patent. Court decisions of the past precisely define the meaning
of “patent speak”. An example are the slight differences
of “consist of” and “comprise™: “consist of” implies an
exhaustive enumeration, whereas “comprise” commences an
enumeration that is not necessarily exhaustive. Classifying
patents is challenging because of patent-specific language use
— even for domain experts.

The International Patent Classification (IPC) is a hierarchi-
cal classification system for patents. It has been periodically
revised and adapted to the upcoming of new fields of invention.
The system considers 4 levels of hierarchy: sections, classes,
subclasses, and group. For example, the U.S. patent no.
4131919 with the IPC code HO4N 1/21 is in group HO4N
1/21, which is in the subclass HO4N, the class HO4, and
section H, The subparts of this code correspond to the sec-
tion “electricity”, class “electric communication technique”,
subclass “pictorial communication, e.g. television”, and group
“Intermediate information storage”. An excerpt of this patent is
depicted in Fig. 1 with the depricated IPC code HO4N 005/79.

This complicated classification system is applied at several
different steps in the patenting process. On the one hand,
patent applicants need to search for prior art, if they file a
patent. They need to retrieve patents about similar inventions
although they might use different words for description. On
the other hand, patent examiners in a patent office need to
check a patent application for its “inventive step or non-
obviousness” and its “novelty”. A patent examiner specialized
in the field of the invention needs to be matched to the patent
application. Finally, patent courts and patent attorneys deal
with the infringement and validity of granted patents. All three
scenarios involve an information retrieval task, where patents
similar to a given patent need to be found. Based on their
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Fig. 1. Patent documents follow a standardized structure and consist of several
fields, such as title, abstract, and claims, but also references. This example is
an excerpt of U.S. patent no. 4131919.

similarity, similar patents mutually limit their scopes.

The IPC systematically classifies patents into topical sub-
classes. Thereby the retrieval of similar patents can be per-
formed by looking up patents in the same subclass. However,
manually classifying patents into such subclasses is costly in
terms of working power and needs domain-specific knowledge
due to the complexity of the IPC. The goal of automated patent
classification is to save these costs and associate a given patent
document with its correct subclasses automatically. Smith
summarizes the applications of automated patent classification
as (1) matching patent applications with a patent examiner who
is a domain expert for the field of invention, (2) classification
of external documents so that they can easily be retrieved
during the patent examination process, and reclassification of
older patents labeled with outdated classification schemes [1].
In practice, patents can be associated with multiple subclasses.
Therefore, patent classification is not a multi-class but a multi-
label classification task. In fact, our example patent in Fig. 1
is associated with 2 IPC subclasses. In total, the IPC knows
637 subclasses.

In this paper, we propose to improve automatic patent classi-
fication by leveraging recent deep learning techniques. In par-
ticular, we train fastText word embeddings on a large dataset
of more than 5 million patents. We use these embeddings
together with bi-directional Gated Recurrent Units (GRUs) to
classify patents. Experiments show that our approach is supe-
rior to state-of-the-art approaches in terms of three evaluation
measures. For example, we increase micro-average precision
at predicting a patent’s subclass by 17 percent. Further, we
find that domain-specific word embeddings trained on patent
documents outperform standard word embeddings trained on
Wikipedia pages by 9 percent when combined with a GRU-
based neural network.

Our contribution is thus twofold:

1) Computation of word embeddings on the second largest

corpus ever used for training and providing these word
embeddings for download®.

2) Proposing a deep neural network architecture based on
bi-directional Gated Recurrent Units (GRUs) for patent
classification.

Section II summarizes related work in the field of automatic
patent classification and gives an overview of different word
embedding approaches. The three datasets used in this paper
are described in Section III and Section IV describes our
approach to capture semantics in patent language by domain-
specific word embeddings and automatically classify patents.
We evaluate our approach with three experiments in Section V
and conclude in Section VI.

II. RELATED WORK

Fall et al. established a collection of around 75,000 excerpts
of English-language patent applications as a de-facto standard
dataset for the evaluation of automatic patent classification [2].
The dataset is called WIPO-alpha® and is provided by the
World Intellectual Property Office (WIPO). Fall et al. further
propose three evaluation measures that are tailored to the
patent classification task, where a patent is typically associated
with a main subclass, but also with several incidental sub-
classes. We apply the three measures in our experiments and
describe them in detail in Section V. In general, the micro-
precision of assigning the correct class to a given patent is
evaluated.

Seneviratne et al. propose to generate signatures from
patents instead of using the full vocabulary as features [3].
They evaluate their patent classification approach on IPC class
level (114 classes) and subclass level (451 subclasses) on
the WIPO-alpha dataset. While they improve classification
performance in comparison to Fall et al., they optimize also the
time required to index and search a patent collection. Other
results on the WIPO-alpha dataset have been published by
Nguyen (macro-fl: 0.452, micro-f1: 0.755) [4], Rousu et al.
(micro-f1: 0.767) [5], and Qiu et al. (macro-f1: 0.418) [6].

Several researchers conducted their experiments on other
datasets, which makes a direct comparison with their results
impossible. An ensemble of different classifiers slightly im-
proves micro-F1 score on a refined version of the WIPO-alpha
dataset according to Mathiassen and Ortiz-Arroyo [7]. They
report a micro-f1 of 0.867. Instead of IPC, Tran and Kavuluru
use the Cooperative Patent Classification (CPC) system, which
replaces the earlier the U.S. Patent Classification (USPC)
system [8]. They report a micro-fl of 0.700 on a dataset of
patents with 654 subclasses. Dhondt et al. report a micro-fl
0.751 and a micro-precision of 0.800 on a subset of 532,264
English abstracts from the so called CLEF-IP 2010 corpus [9].

The CLEF-IP 2010 corpus from the Conference and Labs
of the Evaluation Forum’s track for retrieval experiments in
the intellectual property domain (CLEF-IP) considered two

“https://hpi.de/naumann/projects/repeatability/text%2Dmining.html
5WIPO—en—alpha dataset, World Intellectual Property Office, Geneva,
Switzerland, 2002



tasks: (1) recommending patents as prior art for another patent
and (2) patent classification according to the International
Patent Classification system (IPC). Verberne and Dhondt find
that using not only abstracts but also full description texts
improves classification performance [10]. With regard to the
usefulness of metadata, such as applicants, inventors, and
address, they conclude that it does not improve classification.
This result contradicts Beney, who finds that applicant and
address improves classification [11]. They argue that names
and addresses identify companies, which work in restricted
domains. Derieux et al., results are language specific, clas-
sification on English patents is at least 10% better than
on German and French patents [12]. The observation that
language has a strong influence on the classification motivates
further investigation of patent-specific language use. In this
paper, we consider to model this language use with patent-
specific word embeddings. To this end, we summarize work
in the field of word embeddings.

The upcoming of word embeddings or, more general speak-
ing, dense vector representations to capture the semantic mean-
ing of words influences many natural language processing
tasks. With Word2Vec, Mikolov et al. propose an efficient
way to train word embeddings [13]. As a consequence, they
are able to train embeddings on large datasets with billions
of words. A similar approach, termed global vectors (GloVe),
trains word embeddings on global word-word co-occurrence
counts rather than on context windows of limited size [14].
A disadvantage of both Word2Vec and GloVe is the inherent
out-of-vocabulary problem: a word that occurs only in the test
data but not in the training data has no vector representation
in the word embedding space. To overcome this problem,
Bojanowski et al. introduce another context-window-based
approach, which they call fastText [15]. fastText word em-
beddings incorporate information about character n-grams as
subparts of a word. As a consequence, they overcome the out-
of-vocabulary problem of other word embedding approaches
by falling back to embeddings of character n-grams if a word
is unknown.

Recently, deep learning approaches for patent classifica-
tion have been proposed. Xia et al. outline a general deep
learning approach for patent classification based on sparse
auto-encoders and deep belief networks [16]. However, their
proposal is limited to a theoretical approach and lacks prac-
tical experiments. Grawe et al. automatically classify patents
based on word embeddings and long-short term memory units
(LSTMs) in a neural network [17]. Their approach is similar
to ours but has several limitations: (1) it considers only 50
different classes, (2) it achieves only 63% accuracy, and (3)
as opposed to our approach it suffers from out-of-vocabulary
problems, which is inherent to the applied Word2Vec model.

Instead of content-based approaches, which consider only
a patent’s text sections, Li et al. propose a citation-based ap-
proach [18]. They exploit co-citation relations among patents.
Further, they leverage the fact that patents reference other
patents in the same field to explain the novelty of their ideas.
These references are not limited to patents, but also include

TABLE I
A COMPARISON OF THE THREE PATENT DATASETS
Dataset # Documents # Tokens
WIPO-alpha 75,250 561 million
USPTO-2M 2 million 235 million
USPTO-5M 5 million 38 billion

scientific papers. Cross-collection topic models can be used to
recommend references across these different document collec-
tions [19]. While these approaches can help to retrieve similar
patents and can therefore be of help in the patenting process,
we solely focus on content-based classification of patents in
this paper. Similar to the IPC system in the patent domain
is the Medical Subject Headings (MeSH) ontology in the
medical domain. Eisinger et al. compare automatic document
classification for the two classification schemes [20]. They
leverage class co-occurrence frequencies to enrich labeled
classes and propose a guided search as an application.

III. DATASET

In this paper, we consider three different datasets of patent
documents. Tab. I gives an overview of the datasets, their
number of documents, and their number of tokens. The first
dataset is the WIPO-alpha dataset established by Fall et al.,
which is a de-facto standard for the evaluation of automated
patent classification and has been widely used [2]-[6]. The
dataset contains more than 75,000 patents with title, abstract,
claims, and full description. Further, each patent is associated
with a main subclass and incidental subclasses.

The second dataset is much larger and contains 5.4 million
patents granted by the United States Patent and Trademark
Office (USPTO). The USPTO keeps records of all U.S. patent
activity since 1790. On their website®, they provide free
bulk downloads of full text patent publications from 1976
to 2016. We use this full dataset and refer to it as USPTO-
5M. Each patent contains bibliographic data, such as title,
inventor, owner, filing date, and granting date. Furthermore,
author information, patent type classification, claims, abstract,
links to other patents or papers, and a detailed description
of the invention are provided. For our experiments, we focus
on textual data and leave out figures and their captions. In
comparison to WIPO-alpha, USPTO-5M is 70 times larger in
terms of number of documents and also number of tokens.

The third dataset is called USPTO-2M and contains 2
million patents. It is publicly available online’ in a pre-
processed JSON format so that other researchers can use it
easily. The dataset is split into a training set with 1.95 million
documents and a test set with the remaining 50,000 documents.
Further, it is limited to titles, abstracts, document identifiers,
and subclasses. In total, there are 637 subclasses. In contrast to
WIPO-alpha, USPTO-2M does not distinguish between main
subclass and incidental subclasses.

Shttps://www.uspto.gov/learning%2Dand%2Dresources/electronic%
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IV. DEEP LEARNING FOR PATENT CLASSIFICATION

Our goal is to automatically classify patents into their
assigned subclasses. The large amount of available patents
and their full text plus the recent success of deep learning
for natural language processing motivate to investigate deep
learning for patent classification. To this end, we propose to
use word embeddings to capture the semantics of the specific
language that is used in patents. Further, we propose a neural
network architecture to automatically classify patents based on
the inferred word embeddings.

A. Domain-Specific Word Embeddings

Word embeddings are a basic ingredient for a variety of
tasks in natural language processing. They represent words as
dense vectors in a vector space. Pre-trained on a large number
of tokens, relations of these representations in a vector space
can mirror semantic relations of words [13].

We propose to train fastText word embeddings based on
the method by Bojanowski et al. [15] with 100, 200, and
300 dimensions. We transform all characters to lowercase and
discard all words that occur less than ten times. The used
context window size is 5.

We train the embeddings on our dataset USPTO-5M, which
contains 38 billion tokens and publish the resulting word
embeddings online®. To the best of our knowledge, this is
the second largest number of tokens ever used to train word
embeddings. It contains more than twice the number of tokens
of the English Wikipedia (16 billion) and is only exceeded
by the Common Crawl dataset, which consists of 600 billion
tokens. We assume that the embeddings are helpful not only
for patent classification but also for other tasks in the patent
domain and hope that other researchers can build on our
results.

B. Neural Network Architecture

Given a patent document, our goal is to infer its main
subclass and also potential incidental subclasses. We investi-
gate how domain-specific word embeddings can help to solve
this classification problem. Therefore, we extract a patent
document’s title and abstract and consider only the sequence of
the first 300 words. We choose this limitation to be comparable
to related work in our evaluation [2], [3]. Longer sequences
linearly increase runtime and memory need.

Fig. 2 visualizes the network architecture. For each word in
the input sequence, we calculate its word embedding based on
our pre-trained, domain-specific fastText model. This sequence
of word embeddings is processed by a spatial dropout, which
randomly masks 10% of the input words to make the neural
network more robust. The remaining 90% of the sequence
serve as input to the next layer in the neural network. In
particular, we propose a deep neural network architecture
based on gated recurrent units (GRUs). We use bi-directional
GRU s so that the input sequence is processed in two directions:
correct order and reverse order of the words. The outputs of
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Fig. 2. The neural network uses pre-trained word embeddings, spatial dropout,
GRUs, dropout, and a dense layer with softmax activation.

these two processing steps are averaged and followed by a
dropout of 10%, again to make the network more robust.

In Section I, we pointed out that patent classification is not a
multi-class but a multi-label classification task. A typical final
layer of our neural network would therefore be a dense layer
with as many units as subclasses and a sigmoid activation.
Instead, we use a dense layer with as many units as subclasses
and a softmax activation. Thereby, we train the model for
the multi-class classification task only and aim to predict a
patent’s main subclass. For training the neural network, the
softmax activation together with a categorical loss function
considers only a single subclass as correct. If our model
predicts any other subclass, such as any incidental subclasses,
the prediction is considered wrong during training.

However, during testing, we consider the probabilities out-
put by the softmax activation for all subclasses. We consider
the top three subclasses with the highest probabilities as
our final prediction. Although the neural network is trained
to predict only the main subclass and not the incidental
subclasses, our experiments in Section V show that the model
achieves competitive results for both tasks.

Training of the neural network until conversion takes 13
epochs with a batch size of 256. With a larger batch size,
more subclasses are covered in a particular epoch. The more
diverse set of subclasses potentially prevents the model from
optimizing for a small subset of all subclasses per epoch only.
However, we find no significant difference in classification
performance if we train the model with a batch size of
32 until convergence for 5 epochs. We assume that smaller
batches, which cover less subclasses, have no negative effect
on classification performance at our task, but we did not
conduct experiments to further investigate this matter.

V. EXPERIMENTS

For our experiments, we use three evaluation measures
as proposed by Fall et al. [2]. Fig. 3 visualizes the three



Top Prediction Three Guesses All Categories

Prediction  Truth

Prediction  Truth

@ © © || @O\MO©
® © © | ®

Fig. 3. Three evaluation measures for the task of patent classification. The
predicted, ranked subclasses are compared to the ground truth main subclass
(MC) and the incidental subclasses (IC). (adapted from Fall et al. [2])
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TABLE II
A COMPARISON OF MICRO-AVERAGE PRECISION FOR DIFFERENT
NUMBERS OF WORD EMBEDDING DIMENSIONS ON THE WIPO-ALPHA

DATASET.
Evaluation Word Embedding Dimensions
Measure 100-patent | 200-patent | 300-patent | 300-wiki
Top-Prediction 45% 48% 49% 42%
Three-Guesses 70% 72 % 72 % 67%
All-Categories 54% 56% 57% 50%

evaluation measures and how they differ in comparing the
ranked, top three predicted subclasses with the ground truth
main subclass (MC) and incidental subclasses (IC). These
measures are tailored to the practical application of patent
classification. The measure “top prediction” compares only the
top-ranked prediction to the main subclass. The measure “three
guesses” compares not only the top-ranked but the three top-
ranked ranked predictions to the main subclass. The prediction
is successful if one of the top three predictions matches the
ground truth main subclass. Both measures, “top prediction”
and “three guesses” evaluate only a multi-class classification
task. In contrast, the measure “all categories” considers also
the incidental subclasses as ground truth information and thus
evaluates based on a multi-label ground truth. The measure
checks whether the top prediction is included in the set of the
main subclass and all incidental subclasses. In theory, this set
could contain more than three subclasses. However, in practice
the set contains less than two subclasses on average.

We run three experiments to show that our domain-specific
word embeddings are beneficial for the task of patent classi-
fication. In the first experiment, we compare the classification
performance of four different approaches. Three of them use
our pre-trained, patent-specific word embeddings and differ
only in the number of word embedding dimensions (either
100, 200, or 300). The fourth approach uses generic 300-
dimensional word embeddings trained on Wikipedia pages. All
four approaches have the same neural network architecture as
described in Section IV-B. We use the WIPO-alpha dataset and
apply the three evaluation measures: “top prediction”, “three
guesses”, and “all categories”.

Tab. II lists the results of our first experiment. The patent-
specific word embeddings, which we trained on 38 bil-
lion tokens, outperform word embeddings trained on En-
glish Wikipedia pages. This superiority holds if we use 300-

dimensional word embeddings for both approaches. How-
ever, if we train domain-specific word embeddings with
only 100-dimensional vectors, 300-dimensional word embed-
dings trained on Wikipedia are almost as good as domain-
specific word embeddings. The performance of 200- and
300-dimensional domain-specific word embeddings differ only
slightly.

The second experiment compares our best model to state-
of-the-art approaches for patent classification to show that our
approach achieves competitive results. To this end, we use
the same experiment setup as Fall et al., again on the WIPO-
alpha dataset and are thereby able to compare with results
reported in related work [2], [3]. Tab. III lists the results of
our second experiment. Our best model with domain-specific
word embeddings outperforms the best other approach by up
to 17 percent (42 percent compared to 49 percent precision).

The third experiment evaluates our approach on a more
recent and larger dataset than WIPO-alpha, called USPTO-
2M. Unfortunately, this dataset does not distinguish between
main subclasses and incidental subclasses. For training our
approach, we consider the first listed subclass of each patent
as its main subclass. For the majority of patents only one
subclass is listed anyways.

The measure “all categories” is not influenced by the fact
that the dataset does not explicitly list main subclasses. Both
other measures, “top prediction” and “three guesses”, can only
be approximated, because we can only guess the ground truth
main subclass out of the set of all listed subclasses. Another
limitation of the dataset is that it does not contain patents’ full
texts but only their abstracts and titles. However, the WIPO-
alpha and the USPTO-2M dataset are still quite similar and we
assume that the task of patent classification is equally difficult
on both datasets. We use the patents of the years 2006 to 2013
as training data and the patents of the year 2014 as test data.

Because of the size of the dataset and memory constraints
during training, we can only process the first 30 words of each
patent (instead of the first 300 words as in our other experi-
ments). For the same reason, we can use only 100-dimensional
and no 300-dimensional word embeddings. Tab. IV lists the
results of our third experiment. Surprisingly, the classification
results are even better on the USPTO-2M dataset with the
limited approach than on the WIPO-alpha dataset with our
more complex approach. The USPTO-2M dataset contains 25
times more training samples than the WIPO-alpha dataset. We
assume that the larger number of training samples is the main
reason for the model’s strong performance.

Together, the three experiments show that domain-specific
word embeddings together and a GRU-based neural network
achieve competitive results at the task of patent classification.
In particular, patent-specific word embeddings outperform
generic word embeddings trained on Wikipedia pages. How-
ever, memory constraints during training limit our approach
for the USPTO-2M dataset.



TABLE III
A COMPARISON OF MICRO-AVERAGE PRECISION FOR STATE-OF-THE-ART APPROACHES [2], [3] AND OUR NEURAL NETWORK WITH WIKIPEDIA
WORD EMBEDDINGS (RNN-WIKI) AND PATENT WORD EMBEDDINGS (RNN-PATENT) ON THE WIPO-ALPHA DATASET.

Evaluation Measure | Naive Bayes [2] | k-NN [2] | SVM [2] | SNoW [2] | k-NN [3] | RNN-wiki | RNN-patent
Top-Prediction 33% 39% 41% 36% 42% 45% 49%
Three-Guesses 53% 62% 59% 56% 67% 69% 72 %
All-Categories 41% 46% 48% 43% 50% 53% 57%

TABLE IV
MICRO-AVERAGE PRECISION FOR OUR NEURAL NETWORK WITH PATENT
WORD EMBEDDINGS (RNN-PATENT) WITH 100 DIMENSIONS (LIMITED
TO THE FIRST 30 WORDS OF EACH PATENT) ON THE USPTO-2M DATASET.

Evaluation Measure | RNN-patent
Top-Prediction 53%
Three-Guesses 75%
All-Categories 64%

VI. CONCLUSIONS

In this paper, we studied the task of automatic patent classi-
fication. We proposed to apply domain-specific fastText word
embeddings, which we trained on a large dataset of full texts of
more than 5 million patents. Based on these word embeddings
that capture the special characteristics of patent speak, we
trained a deep neural network with GRUs. Our model is trained
with a softmax activation for the task of multi-class classi-
fication but is applicable also for multi-label classification.
We evaluate our approach with three standard measures in
three experiments and improve micro-average precision by
17 percent compared to the state-of-the-art. Further, we find
that domain-specific word embeddings, trained specifically
on patent documents, outperform generic word embeddings
trained in Wikipedia pages. We publish our trained word
embeddings and hope that other researchers can profit from the
improved semantic representation of patent language. A path
for future work is the application of deep learning approaches
to other tasks that involve natural language processing in the
patent domain, such as classic patent retrieval or reference
recommendation. These approaches can surely benefit from
pre-trained, domain-specific word embeddings that capture
patent speak. Further, an investigation of new neural network
architectures tailored to the needs of the patent domain and
its hierarchical classification system is promising.
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