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Abstract

Constructing focused, context-based multi-doc-
ument summaries requires an analysis of the
context questions, as well as their correspond-
ing document sets. We present a fuzzy cluster
graph algorithm that finds entities and their con-
nections between context and documents based
on fuzzy coreference chains and describe the
design and implementation of the ERSS sum-
marizer implementing these ideas.

1 Introduction
These days, finding information is a much less challeng-
ing task than processing it, thanks to the success of online
text databases, information retrieval, and web services.
The original idea of automatic summarization—reducing
the amount of information a user has to process by com-
pressing it—can help to alleviate this problem, but in the
worst case just adds even more information to the original
content.

A better solution perhaps is to turn the problem around:
nobody really wants to spent hours on Google searching
for potentially relevant information. What users need is
useful information pertaining to their task at hand, like
writing a report, an email, or a research paper. Shouldn’t
a system be able to sense a user’s current context, search
for relevant information by itself, and present a summary
thereof? Coupled with current information retrieval tech-
niques and intelligent information system architectures
(Witte, 2004), a new generation of language-aware infor-
mation systems could proactively deliver the information
users need, instead of requiring them to spend their limited
time searching for them.

It is this vision that motivates our work in context-based
summarization in general and the context task within the
Document Understanding Conference (DUC) competition
in particular. Although DUC covers only a part of the
outlined vision—namely, summarization of a prescribed

document set based on an explicitly stated context—this is
nevertheless a core component covering one of the central
enabling technologies for a language-aware information
system.

DUC 2006: Context-based Multi-Document Summa-
rization. Like in 2005 (NIST, 2005), the DUC 2006
competition included a single task: the generation of a
focused 250-word summary based on a context, which typ-
ically comprised a set of questions that “model real-world
complex question answering, in which a question cannot
be answered by simply stating a name, date, quantity, etc.”
(NIST, 2006). From the task description: “Successful
performance on the task will benefit from a combination
of IR and NLP capabilities, including passage retrieval,
compression, and generation of fluent text.”

2 Building Focused Summaries

Our summarization system’s main resources are intra- and
inter-document coreference chains, which are computed
using fuzzy set theory as the underlying representational
formalism, hence fuzzy coreference chains. These fuzzy
chains are then clustered, generating a cluster graph data
structure based on which summaries are generated.

We originally presented the ERSS system implementing
these ideas for very short (10 word) single-document sum-
maries (Bergler et al., 2003), followed by an enhanced ver-
sion in 2004 for multi-document summaries (Bergler et al.,
2004), which in turn was further improved for the context
task in DUC 2005 (Witte et al., 2005). In this paper, we
provide a complete description of our clustering strategy
as applied to focused summarization for DUC 2005–2006.

2.1 Summarization Strategy Overview

Our summarization system is based on generating and clus-
tering coreference chains using fuzzy set theory. We com-
pute both inter- and intra-document coreference chains,
which together allow us to find important entities within a
document and across documents.



For focused summaries, based on a set of questions,
we consider the context as yet another document within
a cluster when computing cross-document coreference
chains. This allows us to identify information within and
across documents that are semantically connected with
one or multiple question(s) from the context.

Sentences are then extracted based on a scoring and
ranking scheme and assembled into a multi-document
summary, with only light postprocessing performed on
each sentence. The main components of our system are:

Preprocessing: A number of preprocessing components
perform tokenization, gazetteering (marking tokens
with semantic labels based on lists like person names,
locations, or companies), abbreviation detection,
quote recognition, and sentence splitting. For these
tasks, we use slightly modified versions of the tools
that come with the ANNIE system, which is part of
GATE (Cunningham et al., 2002).

POS Tagger: Part-of-speech tagging is performed by the
Hepple tagger (Hepple, 2000) included in the GATE
distribution.

Named Entity (NE) Transducer: A multi-stage JAPE1

transducer, which is also based on the ANNIE system
that comes with GATE, identifies several named en-
tity types, like Person, Organization, Location, Num-
ber, and Date information.

NP/VG Chunker: Noun phrase (NP) chunking is per-
formed in two steps; firstly, base NPs are gen-
erated using the MuNPEx chunker (Witte, 2006).
And secondly, “long NPs” are generated based on
some prepositional and conjunctional patterns. Verb
groups are computed using the VG chunker module
that comes with the GATE distribution (Cunningham
et al., 2002).

Fuzzy Coreferencer: This component builds intra- and
inter-document fuzzy coreference chains, as de-
scribed in Section 2.2 below.

Summarizer: This is our summarization framework,
which allows for pluggable summarization strategies,
described in more detail below. Coreference cluster
graphs are computed and summaries generated based
on the results of the upstream components.

We now briefly review fuzzy coreference resolution (Sec-
tion 2.2) and then describe our main algorithm for gen-
erating the data structure needed for building summaries,
fuzzy coreference cluster graphs (Section 2.3). Finally, the
generation of focused summaries from this data structure
is covered in Section 2.4.

1JAPE is a regular-expression based language for writing
grammars over annotations, from which (non-deterministic)
transducers can be generated by a GATE component.

2.2 Fuzzy Coreferences
As mentioned above, the main resource of our system are
fuzzy coreference chains. “Fuzzy” here refers to fuzzy
set theory (Klir and Folger, 1988), which forms the for-
mal basis for coreference resolution algorithms based on
fuzzy clustering. Fuzzy coreference resolution is a rather
new approach that differs from the classical rule-based or
statistical algorithms.

For the purpose of this paper, we will only give a brief
outline of fuzzy coreference resolution. Our approach
is described in more detail in (Witte and Bergler, 2003;
Witte, 2002).

Fuzzy coreference resolution algorithms work on enti-
ties and build fuzzy coreference chains using clustering
algorithms.2 The central idea is to use fuzzy set theory
as the formal representation model for entity resolution.
This immediately allows to apply research results and al-
gorithms from the well-understood area of fuzzy clustering
to computational linguistics. A common property of all
fuzzy clustering algorithms is the use of soft thresholds
within the clustering process, allowing a run-time trade-
off between precision (fewer connections between entities,
smaller clusters) and recall (larger clusters, extraneous
links).

2.2.1 Fuzzy Coreference Chains
Fuzzy coreference chains link entities, which are typ-

ically represented by noun phrases (NPs). In this paper,
we denote the set of all noun phrases within a text with
the (crisp) set ALLNP = {np1, . . . ,npm}, i.e., there are m
noun phrases within a document. A single fuzzy corefer-
ence chain c is then represented by a fuzzy set µc, which
maps the domain of all noun phrases ALLNP to the [0,1]-
interval: µc : ALLNP→ [0,1]. Thus, each noun phrase
npi ∈ ALLNP has a membership degree µc(npi), indicat-
ing how certain this NP is a member of chain c. The mem-
bership degree for a single noun phrase µc(npi) ∈ [0,1] is
interpreted in a possibilistic fashion: a value of 0.0 (“im-
possible”) indicates that the NP cannot be a member of
chain c, a value of 1.0 (“100% possibility” or “certain”)
means that none of the available information indicates that
the NP is not in the chain, and intermediate values repre-
sent different degrees of compatibility of a noun phrase
with the chain.

Note that we can apply the same basic idea to cluster
verb groups (VGs) within and across documents, which
we will discuss in the summarization section below.

Example (fuzzy coreference chain). Figure 1 shows
an example for a fuzzy coreference chain c. Here, the

2In this paper, we denote coreference chains computed by
fuzzy coreference clustering algorithms as fuzzy coreference
chains (and not fuzzy clusters as commonly done in the litera-
ture), to avoid confusion with the cluster graphs containing these
chains presented in the next section.



noun phrases np3 and np6 have a very high possibility for
belonging to the chain, np1 only a medium possibility, and
the remaining NPs are most likely not chain members.

Fuzzy Coreference Chain c
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Figure 1: Fuzzy chain c with membership grades for each
noun phrase np1, . . . ,np6

The output of a fuzzy coreference algorithm is a set
of fuzzy coreference chains, similarly to classical coref-
erence resolution systems. Each chain holds all noun
phrases that refer to the same conceptual entity. However,
unlike for classical, crisp chains, we do not have to reject
inconsistent information out of hand, so we can admit a
noun phrase as a member of more than one chain, with
different degrees of certainty for each. This provides an ex-
plicit representation of the uncertainty that is so common
in natural language analysis.

Fuzzy chains can be converted to crisp chains using a
defuzzification function, which allows downstream lan-
guage analysis components that are not fuzzy-aware to
use results of a fuzzy algorithm.

2.2.2 Fuzzy Coreference Resolution
Fuzzy chains are constructed through (usually knowl-

edge-poor) fuzzy heuristics. Some features used by our
algorithm are head noun, gender, string similarity, and the
WordNet distance.

Our fuzzy coreference algorithm is essentially a single-
link hierarchical clustering strategy. It initially creates
one fuzzy chain for each NP, which forms its medoid (for
example, in Figure 1, np6 is the chain’s medoid). We then
compute the degree of coreference between all NP pairs
within a text, each degree normalized to a fuzzy value in
the [0,1]-interval. Each fuzzy degree can be interpreted as
a distance between the medoid and the co-refering NP; it
is added to every chain using standard fuzzy set operators.
For example, in Figure 1, at least one fuzzy heuristic
must have determined a fuzzy coreference degree between
(np6,np3) of 0.8.

Finally, all chains are merged using a prescribed con-
sistency degree γ . Merging combines compatible chains
into merged chains (or NP clusters) using the coreference
properties of symmetry and transitivity. The merge degree
γ influences the size of the chains, and in effect, their
precision and recall. A degree of 0 would merge all NPs
into a single (yet useless) chain, while a value of 1 would
lead to chains of the best possible precision, leaving out
uncertain links and thereby resulting in more singletons

(and lower recall). The result is a set of coreference chains
Cγ = {c1, . . . ,co}.

The process of merging is now repeated for each possi-
ble value of γ ∈ {γ1, . . . ,γn},3 leading to a family of coref-
erence chains, a set of sets of chains: C = {Cγ1

1 , . . . ,Cγn
n }.

Note that a similar result can be obtained with a non-fuzzy
coreference clustering strategy, however, for the purpose
of our algorithm described in the next section it is impor-
tant that the individual chains exhibit monotonicity, that
is, if two entities are linked within a chain of a specific
certainty γi, they must also be linked in all chains of lower
certainty γ j ≤ γi.

We use the same algorithm to create both inter- and
intra-document coreference chains, only the number of
enabled heuristics and various parameters differ for each.
The end results are two families of coreference chains, one
for intra- and one for inter-document coreferences.4

For more details on fuzzy set theory, fuzzy clustering,
and fuzzy coreference resolution, we refer the reader to
the cited literature.

2.3 Fuzzy Coreference Cluster Graphs

We can now describe our fuzzy coreference cluster graph
algorithm that builds the data structure needed for con-
structing context-based summaries. This algorithm takes
as input the intra- and inter-document coreference chain
families computed by a coreference algorithm under dif-
ferent (fuzzy) clustering thresholds as described in the
previous section.

The first step is the construction of an initial fuzzy coref-
erence cluster graph, as described in Section 2.3.1 below.
Our clustering algorithm, described in Section 2.3.2, then
works on this data structure, computing clusters that can be
used to create several kinds of multi-document summaries,
including focused summaries (Section 2.4).

2.3.1 Cluster Graph Initialization

A fuzzy coreference cluster graph is an undirected,
weighted graph with entities (here NPs or VGs) as nodes
and weighted coreferences between these entities as edges.
Essentially, it folds both inter- and intra-document coref-
erence chains into one data structure that can then be tra-
versed by the clustering algorithm. Thus, the algorithm’s
input are the intra- and inter-document coreference fami-
lies described above:

3Since fuzzy sets are stored in horizontal representation
through a set of α-cuts, with [µ]α = {ω ∈ Ω|µ(ω) ≥ α}, the
merge degree γ can only assume a finite number of different
values, which typically correspond to the α-cut levels (e.g.,
α ∈ {0.2,0.4,0.6,0.8,1.0}).

4Cross-document chains do not contain links between NPs
of the same document, since these links have already been com-
puted by the intra-document step.



Figure 2: Initialized fuzzy cluster graph

Input (cluster graph initialization). Input to the clus-
ter initialization step is a set of sets of coreference chains
C = Cinter ∪Cintra, with the inter-document coreference
chains Cinter = {Cγ1

1 , . . . ,Cγn
n } and the intra-document

chains Cintra = {Cγ1
n+1, . . . ,C

γn
2n}.

Note that each coreference chain c ∈Cγ

i contains again
a set of sets of NPs, where all NPs within a subset c ∈C
corefer with a certainty degree of γ . We can now create
the initial cluster graph:

Definition (initial cluster graph). An initial cluster
graph G = (V,E) is constructed from the intra- and inter-
document coreference families as follows. The set of
graph nodes V is given by the set containing all NPs from
all documents. The set of edges is derived from the set
C containing both intra- and inter-document coreference
families by iterating through all coreferences C ∈ C . For
each chain c ∈C, we then iterate through all the entities
(npi,np j) within that chain and create an edge of weight
γ between them.

Note that we treat coreferences as links, that is, for a
coreference chain cγ

i = {np1,np2,np3} we add two edges
with weight γ to the graph, one between np1 and np2 and
one between np2 and np3.

Example (initial cluster graph). Figure 2 shows an ex-
ample for an initial cluster graph. There are three docu-
ments d1,d2,d3 and two coreference families (inter- and
intra-document), containing three coreference sets each
for γ ∈ {0.6,0.8,1.0}:5

Cinter = {C1,C2,C3},Cintra = {C4,C5,C6}

With the inter-document chains C1,C2,C3:

C1 = {{np3,np6},{np1,np4,np7},{np2,np9}}
C2 = {{np3,np6},{np1,np4},{np2,np9}}
C3 = {{np1,np4},{np2,np9}}

5Singletons are omitted for brevity

Figure 3: Resulting graph after running the clustering
algorithm with θ = 0.8

and the intra-document chains C4,C5,C6:

C4 = {{np3,np4,np5},{np8,np9}}
C5 = {{np3,np4,np5},{np8,np9}}
C6 = {}

Intra-document coreference chains are drawn horizon-
tally (in red), while cross-document chains (in black) are
displayed from top to bottom. Each edge in the graph is
labeled with the fuzzy certainty value of the coreference;
in the example, np4 and np5 corefer with a certainty of
0.8, while np4 and np7 corefer with a certainty of 0.6.

2.3.2 The Clustering Algorithm

We can now describe the main clustering algorithm that
works on the initial data structure described above. Simi-
larly to chain merging, graph clustering is controlled by a
threshold θ . In general, the lower the clustering threshold,
the more entities are clustered together, resulting in fewer,
but larger, clusters.

The key idea is to use the degree of coreference between
entities, represented by an edge’s weight, as the inverse
distance between those entities: entities linked by an edge
of weight 1.0 are closest, whereas entities with an edge
of weight 0.0 (i.e., no edge) are infinitely far apart. We
can now apply an agglomerative hierarchical clustering
strategy, creating a dendogram data structure:

Definition (coreference graph clustering). The clus-
tering process starts with clusters containing individual
entities, i.e., each node v ∈ V in the initialized graph G
represents a cluster by itself. We now apply a hierarchical
clustering strategy, where we progressively merge clusters
until the algorithm terminates. Two clusters are merged
if a direct edge exists between them of weight γ ≥ θ . If
multiple edges exist between two clusters, we evaluate the
one with the highest weight, i.e., we use a single-linkage
clustering strategy. The algorithm terminates when no
more edges e≥ θ exist between clusters.



“What caused the crash of EgyptAir Flight 990?
Include evidence, theories and speculation.”

After an examination of the flight data recorder, the cockpit voice recorder, radar data and small amounts of wreckage,
Hall said in that there was no sign of mechanical failure that could have caused the crash. For much of the past week,
investigators and mourning families have waited as foul weather and winds caused delays in the search for the recorders.
Hall said the retrieval of the first recorder another, the cockpit voice recorder, remains missing on the sea floor
could provide key insights into the crash. An electrical or computer problem would cause those screens to go blank, or
could even result in erroneous flight data to be displayed, Gellert said. That would explain why it kept working longer,
assuming an electrical problem caused the autopilot to disconnect. Primarily because authorities have introduced the
possibility that a human not some mechanical failure caused the crash. Under that theoretical line of reasoning, if
co-pilot Gamil El Batouty really did cause the crash, he could have done so for political rather than personal reasons.
Hall acknowledged there have been ”many rumors, theories and stories” circulating about whether the crash was
caused by mechanical failure or a criminal act such as a hijacking, crew fight or pilot suicide. Investigators doubt that
the plane crash, which resulted in the death of all 217 aboard, may have been caused by a criminal act. The Egyptian
side has strongly opposed the speculations, stressing technical failure might cause the tragedy.

Figure 4: ERSS-generated focused summary for D0617H (context shown on top)

Example (final cluster graph). Figure 3 shows the re-
sult after running the clustering algorithm on the graph
in Figure 2 with θ = 0.8. This results in two large NP
clusters and the singleton cluster {np7} in document d3.
For θ = 0.6, however, np7 would have been added to clus-
ter 1, whereas a larger θ value would have created smaller
clusters and more singletons.

Note that we can repeat the clustering process for each
fuzzy value of θ , which results in a cluster family (or one
multi-dimensional cluster). However, within this paper,
we will only discuss the application of single clusters.

2.4 Generating Focused Summaries
Focused multi-document summaries are based on a user
context, which in DUC corresponds to a set of questions.
Thus, a focused summary needs to collect information
from the documents that pertains to the context (answer
the questions), which can result in a summary that is very
different from standard, unfocused summaries that typi-
cally include the most salient information.

We generate focused summaries from cluster graphs
by including the focus questions (context information) as
another, distinct document d0 when creating and cluster-
ing the fuzzy coreference chains. Then, all clusters that
contain entities (NPs or VGs) from document d0 also con-
tain information relevant to the focus question. All other
clusters, even if they are bigger, are discarded for this
kind of summary, i.e., we slice the cluster graph with the
context document. Within our system, this is done twice,
for the NP cluster graph and the VG cluster graph.

Sentences containing at least one element in the remain-
ing clusters are ranked according to a number of features:

Position: This feature ranks a sentence according to its
position within the original newspaper article. A
linear function is used to award early occurrence in
case the sentence starts before a certain threshold set
to 250 characters. Sentences later in the text do not
receive any scores.

Context NPs: To rank sentences higher that contain sev-
eral noun phrases from the question, we score a sen-
tence s according to a formula that normalizes the
number of entities e within a sentence, depending on
the sentence length in words w:

Score(s) =
(α2 +1) · (1− 1

1+e ) ·
e
w

α2 +
(

1− 1
1+ e

)
An alternative scoring strategy is the harmonic mean,
which we evaluate together with short, long, and no
normalization in Section 3.3.

HamonicScore(s) =
(α2 +1) · (1− 1

1+e ) ·
e
w

α2 · (1− 1
1+e )+ e

w

Both use an empirically determined value of α = 4.

Context VGs: We apply the same strategy we use for
NPs to VGs.

Tf∗idf: For evaluation purposes, we also introduced a
tf∗idf-based feature. This computes a tf∗idf value
for each word in a sentence based on the corpus of
the DUC 2006 data. The score for each sentence is
then computed as the sum of the single tf∗idf scores
divided by the number of words in the sentence.

For each feature, all sentences are ranked based on their
individual scores. Each feature is then assigned a certain
weight, which we empirically determined through experi-
ments (see Section 3.3). And the final sentence ranks are
subsequently computed by summing up their ranks for
each feature with the prescribed weight.

Sentence Extraction. We can now extract sentences
from the documents based on their rank. The basic idea is
to generate the summary by choosing the highest ranked
sentences until the word limit has been reached. To pre-
vent exceeding the length limit (250 words in DUC 2006),
the summarizer can replace sentences which would cause



Measure ERSS ERSS’ mean best / worst rank rank’

ROUGE-1 0.369060 0.383591 0.371414 0.409779 / 0.223513 23/35 14/35
ROUGE-2 0.064839 0.076589 0.073627 0.095097 / 0.028351 29/35 18/35
ROUGE-SU4 0.123896 0.134975 0.128826 0.154662 / 0.063982 24/35 17/35
Basic Elements 0.034072 0.034830 0.36179 0.050786 / 0.004565 25/35 23/35
Linguistic quality 3.22 — 3.38 4.39 / 2.32 23/35 —
Responsiveness content 2.52 — 2.54 3.08 / 1.68 21/35 —
Responsiveness overall 2.28 — 2.18 2.84 / 1.34 11/35 —

Table 1: Evaluation results overview for ERSS 2006 (System ID #20) and post-DUC experiment ERSS’

the complete summary to exceed the limit with lower
ranked sentences that still fit in the 250 words limit.

An alternative sentence selection strategy allows to in-
clude lower ranked sentences in the summary if they con-
tain entities of sentences in the context that the the higher
ranked sentences do not address. With this strategy, we
can ensure that at least one sentence referring to every
part of the question is included, presuming such candidate
sentences exist.

Postprocessing. After the relevant sentences have been
ranked and extracted, we perform a few postprocessing
steps:

1. Filter out sentences starting with a quote or a bracket.

2. Remove temporal expressions like “this week,” “last
Saturday,” or “on Monday,” as well as some other
phrases like “nevertheless” or “however.”

3. Sort the sentences according to the position of the
entities in the question, i.e., sentences answering the
first question come first in the summary and so on,
independent of their ordering in the original docu-
ments.

4. Another optional formatting feature, which was
added to improve the human-measured grammati-
cality score, is to use one paragraph in the output
summary for each sentence of the question.

An example for an ERSS-generated summary can be seen
in Figure 4.

3 Evaluation
Like in previous years, NIST evaluated all participating
systems with several automatic ROUGE measures (Lin
and Hovy, 2003; Lin, 2004) and additionally the Basic Ele-
ments (BE) measure (Hovy et al., 2005), as well as a num-
ber of manual measures, including the (pseudo-) extrinsic
Responsiveness score. In addition, we performed eval-
uations on several of our system’s parameters using the
automatic measures in order to determine their influence
on the final score (Section 3.3).

Table 1 gives an overview of the results using the dif-
ferent evaluation measures. Most notable is the striking
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Figure 5: System ranks based on ROUGE, BE and over-
all responsiveness scores for all systems (not including
human summaries)

difference in our system’s rank when evaluated with the
ROUGE and BE measures and the overall responsiveness.
Figure 5 in particular shows the divergence of the results:
While most systems score very similar under the different
measures, they significantly disagree for ERSS (system
no. 20). A similar effect can only be observed for systems
no. 8 and 15, which are highly regarded by the automated
metrics, but score poorly under the manual responsiveness,
and system no. 35, which behaves similarly to our own.

Unlike last year, we did not participate in this year’s
additional Pyramid (Nenkova and Passonneau, 2004) eval-
uation. This is due to our analysis of last year’s results
(Witte et al., 2005), where we could not find any correla-
tion between the Pyramid score and the other automatic or
the manual responsiveness measure when regarding our
system by itself, i.e., not the averaged correlation over all
systems.

3.1 Automatic Evaluation
In addition to the automatic evaluation performed by NIST,
we examined the correlation between the BE score and
several ROUGE scores for our system only, i.e., not the
correlation over all systems. This has been computed
using the Spearman rank coefficient, as we previously
described (Witte et al., 2005); and like last year, their



Measure
average correlation with

BE ROUGE-1 ROUGE-2 ROUGE-SU4 Resp. Content Resp. Overall
Basic Elements — 0.920768 0.958511 0.941801 0.791405 0.604850
ROUGE-1 — 0.937191 0.972629 0.846146 0.614934
ROUGE-2 — 0.978391 0.764322 0.556735
ROUGE-SU4 — 0.781897 0.578343
Responsiveness Content — 0.708283
Responsiveness Overall —

Table 2: Spearman correlations between the BE, ROUGE-2, ROUGE-SU4, responsiveness content, and responsiveness
overall scores, for all systems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

601
602

603
604

605
606

607
608

609
610

611
612

613
614

615
616

617
618

619
620

621
622

623
624

625
626

627
628

629
630

631
632

633
634

635
636

637
638

639
640

641
642

643
644

645
646

647
648

649
650

S
pe

ar
m

an
 V

al
ue

Document Cluster ID

BE - ROUGE-1
BE - ROUGE-2

BE - ROUGE-SU4
0.01-alpha-risk

Figure 6: Correlation of different ROUGE and BE system
ranks per document cluster over all systems

correlation is copacetic: 0.852 for BE/ROUGE-1, 0.894
for BE/ROUGE-2, and 0.895 for BE/ROUGE-SU4.

Figure 6 shows the correlation for each document set,
over all systems. With the exception of ROUGE-1, the
agreement of the other two ROUGE measures with BE is
for every cluster well above the 0.01 α-risk.

The correlations between the automatic (ROUGE, BE)
and manual (responsiveness, responsiveness overall) mea-
sures are shown in Table 2. The most important result
here is that there is no significant correlation between
the pseudo-extrinsic overall responsiveness score and any
automatic metric.

3.2 Manual Evaluation

Table 3 shows the manual evaluation results for ERSS.
Ranks for ERSS are overall lower compared to last year
(Witte et al., 2005), with the exception of Grammatical
quality, where we implemented most of our improvements
for this year’s version. This appears to be the main reason
for the drastically higher overall responsiveness score,
which also measures the readability of the summary, not
just information content (as this year’s and last year’s
responsiveness measures do).

Linguistic Feature ERSS mean best / worst rank
Grammaticality 3.96 3.58 4.52 / 1.38 9/35
Non-redundancy 4.08 4.23 4.66 / 3.76 24/35
Referential clarity 2.46 3.12 4.70 / 1.90 32/35
Focus 3.32 3.60 4.56 / 2.50 31/35
Structure/Coherence 2.28 2.39 4.22 / 1.16 19/35

Table 3: Manual evaluation results for ERSS 2006

3.3 Post-DUC experiments
In order to determine how our ranking features (see Sec-
tion 2.4) influence the resulting scores, we performed
additional experiments with various parameter settings.
Some of these are shown in Table 4. The tf∗idf-based rank
was introduced to serve as a baseline in order to determine
how much the fuzzy clustering algorithm contributes to
ERSS’ performance.

The first row shows the settings as we ran them for
DUC 2006; the second row gives the results from the
ERSS 2005 system running on the 2006 data. Turning off
the sentence filtering (postprocessing) decreased perfor-
mance slightly, as does the alternative sentence selection
strategy aiming to include an answer for each question
(“AllQs” column). When looking at individual weights,
we can see that NPs contribute most to the summaries,
which is to be expected. Looking only at verbs gives
the worst performance, even lower than ranking based on
tf∗idf. Thus, our newly added verb clustering strategy hurt
the performance—whether this holds in general or is due
to our very crude verb coreference strategy is still under
investigation.

In fact, the best result was obtained using only noun
phrase clusters (Table 4, last row), without using any verb
clusters, early occurrence, or tf∗idf-boost.

We also experimented with different normalization
strategies for the number of NPs or VGs within a sen-
tence. The achieved results can be seen in Table 5. The
formula we used can be found in Section 2.4.

4 Discussion and Conclusions
While ERSS ranks lower this year in the DUC competition,
our analysis shows that the system itself improved slightly
when compared with last year’s version running on the



filter early np vg tfidf AllQs θ ROUGE2 BE

ERSS 2006 vs. 2005
true 3 3 3 0 false 0.6 0.065 0.034
false 0 3 0 0 false 0.6 0.063 0.024

Clustering Threshold θ

true 3 3 3 0 false 0.6 0.065 0.034
true 3 3 3 0 false 0.8 0.065 0.029
true 0 3 0 0 true 0.6 0.066 0.026
true 0 3 0 0 true 0.8 0.077 0.035
true 3 3 0 0 true 0.6 0.071 0.035
true 3 3 0 0 true 0.8 0.074 0.033

Filter Parameter
true 3 3 3 0 false 0.6 0.065 0.034
false 3 3 3 0 false 0.6 0.063 0.029

Include all Questions Strategy
true 3 3 3 0 false 0.6 0.065 0.034
true 3 3 3 0 true 0.6 0.064 0.028

Singleton Scoring Weights
true 3 0 0 0 false 0.6 0.065 0.026
true 0 3 0 0 false 0.6 0.070 0.034
true 0 0 3 0 false 0.6 0.050 0.018
true 0 0 0 3 false 0.6 0.057 0.021

Best Result
true 0 3 0 0 true 0.8 0.077 0.035

Table 4: ROUGE-2 and BE scores for different parameter
configurations, first row shows DUC 2006 settings

same data (both 2005 and 2006).
Since ERSS was largely unchanged, we conclude that

other systems have improved markedly since DUC 2005:
Especially stochastic systems gain from the availability
of a larger training set, since the task was almost un-
changed from last year. This underscores the importance
of a mostly rule-based system like ERSS to explore, de-
velop, and test features for new domains and tasks, where
statistical systems suffer from lack of training data.”
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Sabine Bergler, René Witte, Zhuoyan Li, Michelle Khalife,
Yunyu Chen, Monia Doandes, and Alina Andreevskaia.
2004. Multi-ERSS and ERSS 2004. In Proceed-
ings of the HLT/NAACL Workshop on Text Summa-
rization (DUC 2004). Document Understanding Confer-
ence. http://www-nlpir.nist.gov/projects/duc/
pubs/2004papers/concordia.witte.pdf.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A framework and graphical development envi-
ronment for robust NLP tools and applications. In Proceed-

Formulas
ERSS ERSS’

ROUGE-2 BE ROUGE-2 BE

No normalization 0.062 0.025 0.077 0.035
#Entities/#Words 0.060 0.027 0.070 0.031
#Words/#Entities 0.062 0.024 0.062 0.025
ERSS formula 0.065 0.034 0.077 0.035
1/ERSS formula 0.063 0.024 0.062 0.025
Harmonic 0.064 0.026 0.068 0.029
1/Harmonic 0.065 0.026 0.068 0.029

Table 5: Effects of different sentence normalization strate-
gies on the results

ings of the 40th Anniversary Meeting of the Association for
Computational Linguistics. http://gate.ac.uk.

Mark Hepple. 2000. Independence and commitment: Assump-
tions for rapid training and execution of rule-based pos taggers.
In Proceedings of the 38th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL-2000), Hong Kong,
October.

E. Hovy, C. Lin, and L. Zhou. 2005. Evaluating DUC 2005
using Basic Elements. In NIST (NIST, 2005). http://duc.
nist.gov/pubs.html#2005.

George J. Klir and Tina A. Folger. 1988. Fuzzy Sets, Uncertainty,
and Information. Prentice-Hall.

Chin-Yew Lin and E. H. Hovy. 2003. Automatic evalua-
tion of summaries using n-gram co-occurrence statistics. In
Proc. of the 2003 Human Language Technology Conference
HLT/NAACL 2003, Edmonton, Canada, May 27–June 1.

Chin-Yew Lin. 2004. ROUGE: a Package for Automatic Evalu-
ation of Summaries. In Proceedings of the Workshop on Text
Summarization Branches Out (WAS 2004), Barcelona, Spain,
July 25–26. http://www.isi.edu/~cyl/ROUGE/.

Ani Nenkova and Rebecca J. Passonneau. 2004. Evaluating
Content Selection in Summarization: The Pyramid Method.
In Proc. HLT/NAACL, pages 145–152.

NIST, editor. 2005. DUC 2005, Vancouver, BC, Canada, Octo-
ber 9–10. http://duc.nist.gov/pubs.html#2005.

NIST, editor. 2006. DUC 2006, New York City, NY, USA, June
8–9. http://duc.nist.gov.
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