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ABSTRACT
Hierarchical classification schemes are an effective and natural
way to organize large document collections. However, complex
schemes make the manual classification time-consuming and re-
quire domain experts. Current machine learning approaches for
hierarchical classification do not exploit all the information con-
tained in the hierarchical schemes. During training, they do not
make full use of the inherent parent-child relation of classes. For
example, they neglect to tailor document representations, such as
embeddings, to each individual hierarchy level.

Our model overcomes these problems by addressing hierarchical
classification as a sequence generation task. To this end, our neural
network transforms a sequence of input words into a sequence of
labels, which represents a path through a tree-structured hierar-
chy scheme. The evaluation uses a patent corpus, which exhibits
a complex class hierarchy scheme and high-quality annotations
from domain experts and comprises millions of documents. We
re-implemented five models from related work and show that our
basic model achieves competitive results in comparison with the
best approach. A variation of our model that uses the recent Trans-
former architecture outperforms the other approaches. The error
analysis reveals that the encoder of our model has the strongest
influence on its classification performance.

CCS CONCEPTS
• Computing methodologies → Neural networks; Natural lan-
guage processing; • Information systems → Document repre-
sentation; • Social and professional topics→ Patents.
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1 HIERARCHICAL CLASSIFICATION
Large document collections can typically be organized by a rich
amount of topics and sub-topics. An effective and natural solu-
tion for organizing such collections is a hierarchical classification
scheme. Hierarchical classes not only improve the retrieval of docu-
ments, but make it also easier to browse and explore the collection.
However, classifying and indexing documents according to a com-
plex hierarchy is time-consuming and involves experts with domain
knowledge. Therefore, automatic approaches for hierarchical clas-
sification are crucial for reducing the burden of manual annotation
and the latency of indexing.

In contrast to standard classification, where the classes are unre-
lated, hierarchical classification deals with schemes that are trees
or directed acyclic graphs. The hierarchy imposes a parent-child
relation among the classes. If an instance belongs to a specific class,
it also belongs to all ancestors of that class.

One area that extensively uses hierarchical classification schemes
is the patent domain. Patent applications need to be examined by
patent officers. Among other criteria, these officers need to judge
the novelty and the non-obviousness of an invention. This task
requires domain-specific knowledge. To match patent applications
with domain experts and in order to perform searches for related
documents, patent offices draw on the standardized, hierarchical
International Patent Classification (IPC) scheme. The IPC is used by
over a hundred of patent-issuing bodies worldwide. Every year, it
is revised and adapted to the upcoming of new fields of invention.

Figure 1 shows an exemplary classification. The scheme follows
a tree-structure, which means each inner node in the hierarchy has
exactly one parent. The label F02D 41/02 comprises the section F,
the class F02, the subclass F02D, the main group F02D 41 and the
subgroup F02D 41/02. In its version of 2018, the IPC contains in
total 8 sections, 131 classes, 642 subclasses, 7,537 groups and 69,487
subgroups. At each level of the hierarchy, the labels also have a
description. For instance, F02, corresponds to “combustion engines”
and its subclass F02D to “controlling combustion engines”.

The upcoming of deep learning and its success at natural lan-
guage processing tasks inspired many new approaches for doc-
ument classification in general and patent classification in par-
ticular [1, 17, 24]. However, no previous work uses sequence-to-
sequence neural network models to address hierarchical patent
classification. These models are typically used for machine trans-
lation and speech to text applications. They comprise an encoder
and a decoder. The encoder processes a sequence of inputs, such
as written or spoken words. It compresses the information into a
(context) vector representation. The decoder is initialized with this
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Sub-Group F02D 41/02
Circuit arrangements for generating control signals

Group F02D 41
Electrical control of supply of combustible mixture or its constituents

Sub-class F02D 
Controlling combustion engines

Class F02
Combustion engines; hot-gas or combustion-product engine plants

Section F
Mechanical engineering; Lighting; Heating; Weapons; Blasting

Figure 1: The International Patent Classification (IPC)
scheme is a complex, hierarchical scheme for patent docu-
ments.

vector representation and emits a sequence of outputs, such as the
translated words.

In this paper, we show that classifying a document according
to a hierarchical scheme corresponds to generating a sequence of
class labels. Therefore, we propose a sequence-to-sequence neural
network model that takes a document text as input and outputs
a sequence of class labels — starting with the highest (broadest)
level in the hierarchical classification scheme and ending with the
most fine-grained level. Further, the proposed model internally
uses label embeddings. For example, when the generated sequence
begins with the section F and the class F02, the embeddings of
these two labels are taken into account for generating the next,
more fine-grained label. Label embeddings help to learn internal
representations of classes that only have a few training samples.
They are also used in the field of few-shot learning.

Contributions. In summary, wemake the following contributions:
First, we describe how to address hierarchical classification as a
sequence generation task and show the benefits of this method. Sec-
ond, we design and implement a transformer-based neural network
architecture that follows the sequence-to-sequence paradigm. Fi-
nally, we evaluate this model in comparison to five re-implemented
approaches from related work on a patent classification task and
analyze its errors. To the best of our knowledge, no previous work
explores sequence-to-sequence models for the hierarchical classifi-
cation of patent documents.

Outline. Section 2 summarizes related work in the field of hi-
erarchical classification and gives an overview of approaches for
patent classification in particular. In Section 3, we introduce our
approach and explain how to address hierarchical classification
as a sequence generation task. Further, we describe variations of
our model’s network architecture and its training process, such as
scheduled sampling and beam search. We evaluate our approach
with experiments on a dataset of patent documents in Section 4
and conduct an error analysis in Section 5, before we conclude in
Section 6.

2 RELATEDWORK
Hierarchical classification approaches span three categories: flat,
local, and global. Flat approaches flatten the class hierarchy and
completely ignore parent-child relations. They assume a standard

multi-class classification problem and work only on the level of
leaf nodes. Therefore, they are inefficient for hierarchies with many
levels and classes.

Local approaches follow the top-down paradigm. They classify
the top level first and all other levels subsequently. To this end,
one independent classifier is trained for each node in the hierarchy
(except for leaf nodes). The classifiers share no information among
them. As a consequence, classifiers at the bottom of the hierarchy
suffer from sparse training data. Further, errors propagate from
upper-level classifiers to subsequent ones.

Global approaches use only one classifier. Several studies on
global approaches propose to directly integrate the hierarchical
classification scheme in the learning process, both in the stan-
dard machine learning [9, 31] and in the deep learning [21, 32]
framework. They modify the model architecture or they design
loss functions tailored to the task of hierarchical classification. An
advantage over flat and local approaches is that they avoid irrecov-
erable errors on upper classification levels and that they leverage
the parent-child relations during training.

However, global approaches still do not fully exploit hierarchical
classification schemes. The main issue is that they cannot refine
the document representation (feature set) while they proceed in
the classification. Throughout the classification process and at each
hierarchy level, the same, unaltered document representation is
used.

The reason for this is the way the output space is defined. In gen-
eral, the global approach defines an output space or a loss function
that models the label dependencies statically. Although penalized
when producing a wrong chain of predictions (from the root to a
leaf node), the model never has the chance to improve the document
representation for the specific node in the hierarchy. Therefore, we
propose a model that is able to modify the document representation
at each step and thereby consider the relevant aspects of a docu-
ment for the respective hierarchy level. This ability significantly
improves the performance on hierarchical classification tasks.

Precursors of Sequence-to-Sequence Models. Caled et al. address
a hierarchical classification task with a neural network model [7].
Their model outputs three labels, which correspond to different
hierarchy levels. Although each output serves as input to the other
outputs for more fine-grained hierarchy levels, the model does
not completely follow a sequence-to-sequence architecture. One
single internal representation is used for the three outputs. As a
consequence, the representation cannot be tailored to the differ-
ent hierarchy levels. We address this drawback with our approach
and use one vector representation for each level. Wehrmann et al.
work on hierarchical multi-label classification [28]. Their neural
network combines a global and a local approach by using multiple
loss functions. Similar to the approach by Caled et al., their model
has no sequence-to-sequence architecture. The model cannot prop-
erly learn and exploit the interdependencies of class labels in the
hierarchy.

Sequence-to-Sequence Models. Yang et al. propose a sequence-to-
sequence model for multi-label classification [33]. However, the
labels that they consider have no hierarchy. While their model
outputs an ordered sequence, the ground truth labels of each train-
ing sample are given as an unordered set. This discrepancy limits



the applicability of sequence-to-sequence models to the multi-label
classification task, and requires a different method of calculating the
training loss [26]. Li et al. propose a sequence-to-sequence model
for hierarchical classification [16]. When their model generates an
output sequence, they do not enforce the class hierarchy. Instead,
they accept if their model makes up a new class that extends the
pre-defined hierarchy. While this feature can be helpful for revising
hierarchies in unconstrained scenarios, it is inappropriate for the
patent domain. Therefore, we ensure that our model generates only
those label sequences that agree with the hierarchy.

Label Embedding. None of the above mentioned approaches for
hierarchical classification uses label embeddings. These embeddings
are a part of our approach and therefore, we briefly describe related
work on label embeddings in the following. Related work on docu-
ment classification extends the ideas of word embeddings [6, 19, 22]
and document embeddings [15, 30] to also include label embeddings.
As for words and documents, dense vectors can represent labels in a
high-dimensional space to capture their semantics. This method is
particularly successful at the task of few-shot and zero-shot learn-
ing [18, 34], where the relations between labels captured in the
embedding space improve the prediction for classes that rarely or
never occur in the training data.

Several approaches tailor label embeddings to multi-class and
multi-label classification tasks. They adapt the loss functions in
the training process of neural networks [20], use multiple training
tasks [8], and jointly learn word, sentence, document, and label
embeddings [3, 27]. All these approaches neglect class hierarchies.
They assume a flat output space with independent classes.

Patent Classification. Fall et al. [10] introduce standard evalua-
tion tasks and metrics for automated patent classification. We ex-
plain and use these metrics in the evaluation section. An overview
of approaches for patent classification can be found in a survey by
Gomez et al. [11]. The most relevant approaches are naive Bayes,
support vector machines, and k-nearest neighbors. They are applied
to a series of CLEF-IP tasks [23].

More recently, deep learning is used for patent classification.
Grawe et al. use long-short term memory units (LSTMs) but relax
the task by limiting the number of classes to 50 [12]. Another
approach with recurrent neural networks uses gated recurrent
units (GRUs) and patent-specific word embeddings [24]. Li et al.
introduce a benchmark dataset comprising two million patents
from the United States Patent and Trademark Office, called USPTO-
2M [17]. Their approach is based on a convolutional neural network
(CNN) by Kim [13]. To the best of our knowledge, there are no
publications that focus on issues of hierarchical classification in the
patent domain.

3 READ, ATTEND AND LABEL
This section describes how we address hierarchical classification
as a sequence generation task. Further, we introduce a neural net-
work architecture that implements this idea following a discussion
on its characteristics. Referring to the “show, attend and tell” ap-
proach [30], we call our approach “read, attend and label” (RAL).
Our source code is publicly available online.1

1https://hpi.de/naumann/projects/repeatability/text-mining.html

3.1 Hierarchical Labels as Sequences
In a hierarchical classification scheme, a leaf node at the bottom
of the hierarchy describes the lowest, most fine-granular label. For
example, label F02D 41/02 is a leaf node in the introductory example
from the patent domain. This explicit label assignment also entails
a group of implicit label assignments, which is the chain of ances-
tors in the tree-structured scheme. To this end, the explicit label
assignment defines parent-child relations that represent implicit
label assignments, symbolized by ≺ (read “implies”):

F02D 41/02 ≺ F02D 41 ≺ F02D ≺ F02 ≺ F

Each level in the hierarchy represents a degree of specialization
for a given label, which shares some properties with its ancestors.
The group of implicit label assignments essentially is the path from
the root to a specific leaf node in the tree-structured hierarchical
scheme. We understand this path as a sequence of assignments at
different levels. The task of finding the correct leaf node for a given
document can be addressed as the task of generating the sequence
of inner nodes that form a path from the root to the correct leaf
node.

To this end, given a document, we define amodel whose objective
function is to minimize the reconstruction error of the sequence of
label assignments. Instead of using individual models per hierarchy
level, we use one holistic model. It first assigns a label at the top
(broadest) level and then, step by step, at each subsequent level
down to the leaf nodes. Intuitively speaking, the model emulates
the process that patent officers conduct. Instead of immediately
coming up with the correct leaf node F02D 41/02, the classification
process is iterative and first assigns the section F, second the class
F02, and so on. Our model undergoes the same iterative process
when generating a sequence of labels and therefore can learn:

• the sequence structure, e.g., each sequence begins with one
out of eight letters that represent the section;
• the label relations, e.g., the explicit label F02D 41/02 implies
the implicit label F and they share some characteristics;
• the mutual exclusiveness of certain labels, e.g., if the gener-
ated sequence starts with section F it cannot continue with
class A01 or with section B.

3.2 Sequence-to-Sequence Model
We propose a special kind of sequence-to-sequence neural network
model inspired by the work of Xu et al. on the task of image cap-
tioning [30]. For our model, the sequence of words in a patent’s
text serves as the input and the generated output is a sequence of
labels, which describes a path from the root to a leaf node in the
tree-structured hierarchical classification scheme. Figure 2 shows
our neural network architecture. Both the encoder and the decoder
differ from the ones by Xu et al. In addition to convolutional layers,
fastText word embeddings encode the sequence of input words [6].
The output sequence does not consist of words that represent an
image caption, but of labels.

The inputs to the decoder are label embeddings, which are embed-
ded in the same space as the input words in the encoder. Therefore,
the labels can leverage the semantics of the words in their text
descriptions. For instance, the descriptions “combustion engines” of
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Figure 2: Our sequence-to-sequence architecture for hierarchical classification consists of an encoder and a decoder part.

class F02 and “machines or engines for liquids” of class F03 are se-
mantically similar because the embeddings of the respective words
are similar. To also incorporate information from the hierarchical
scheme, a label’s embedding considers its own description and the
descriptions of its ancestor nodes. This is achieved by taking the
average of all the word embeddings of its description and the label
embeddings of its ancestor nodes. For example, the label embed-
ding of class F02 is the average of the word embeddings of the
description of F02 and the label embeddings of section F.

The attention mechanism in the neural network controls how
relevant each word in a patent document is for the label prediction
at the different levels of the hierarchy. When a sequence of section,
class, and subclass labels is generated, each label is generated based
on a differently weighted sum of the input words.

We now describe the details of the network architecture in a
more formal way. The encoder maps the input words to their pre-
trained word embeddings. F is the feature map, which is a matrix
that holds the word embeddings. After encoding the sequence of
input words in this way, two separate multilayer perceptrons are
used to initialize the memory state co and the hidden state ho of
the LSTM cell in the decoder. The equations 1 and 2 show this
initialization:

co = tanh(Wc ·
1
N

N∑
i
Fi + bc ) (1)

ho = tanh(Wh ·
1
N

N∑
i
Fi + bh ) (2)

N is the number of input words, bc and bh are trainable bias terms,
andWc andWh are trainable weight matrices of the multilayer
perceptrons.

The attention mechanism allows for each input word being of
different relevance for the different hierarchy levels of prediction
(e.g., section, class or subclass). The context vector S (t ) is produced
with the previous hidden state and the word embedding matrix F
(internal memory). This vector can be interpreted as a summariza-
tion of the input document with the relevant words emphasized for
the given level of prediction.

More formally, the attention mechanism can be considered as
the model’s internal memory. The memory is defined as a matrix,
i.e. the representation obtained by the encoder for each element in

the input sequence. We use an attention mechanism by Bahdanau
et al., which is called soft attention [2]. At each time step t in the
decoding process, in order to generate the next output label, given
the decoder hidden state h(t )dec and the internal memory h(1, · · · ,N )

enc ,
a multilayer perceptron is used to calculate the attention weights:2

score(h(t )d ,h
(1, · · · ,N )
e ) = tanh(Wd · h

(t )
d +We · h

(1, · · · ,N )
e ) (3)

where d stands for decoder, e for encoder,Wd andWe are the
parameters of the feed-forward layer, and tanh is the activation
function. Given this scoring function, it possible to calculate the
alignment scores, i.e., to what extent the output label to be generated
and the words in the input sequence are aligned. To this end, the
softmax function is applied to the result of the alignment:

αt = softmax(score(h(t−1)d ,h
(1, · · · ,N )
e )) (4)

The resulting vectorαt has the same length as the input sequence.
Finally, in order to obtain the context vector, the rows in the model’s
internal memory (the vectors corresponding to the input words)
are weighted by the values of αt and then summed:

ct =
N∑
i=1

αt,i · h
i
e (5)

The target sequence is represented by the label embeddings
L(t ) from the hierarchical classification scheme. S (t ) and L(t ) are
concatenated and then fed to the LSTM cell. The hidden state of the
LSTM, H(t ) , can now be interpreted as the document embeddings
for the given input document. Finally, H(t ) is fed to a multilayer
perceptron in order to generate the next output label.

3.3 Scheduled Sampling
When the model generates a label embedding during training, it is
provided with the true label embedding of the previous step instead
of its own prediction of the previous step. This training technique
is known as teacher forcing. As a consequence during training, the
model is never exposed to its own mistakes. It suffers from an
exposure bias. At test time however, the true labels are not available

2In machine translation, this multilayer perceptron is also known as the alignment
model.



and the model is not prepared for that difficulty. In order to mitigate
this issue, we use the scheduled samplingmechanism as proposed by
Bengio et al. [4]. At the very beginning of the training process, the
model is provided with the true label embeddings (teacher forcing).
As the training proceeds, the true label embeddings are more and
more often not provided and instead only themodel’s own predicted
(sampled) label embeddings are used. The probability of using the
true labels follows an inverse sigmoid decay. More precisely, it is
the inverse of the sigmoid decay at the i-th training step, where
k is a parameter typically chosen in the range of the number of
training steps:

k

k + exp( ik )

3.4 Beam Search
At prediction time, the decoder outputs a sequence of vectors, each
representing a probability distribution over all possible labels (the
vocabulary). This is achieved by a dense layer with softmax acti-
vation that takes as input a label embedding. Choosing the most
likely output label at each step of the output sequence generation
is a greedy approach. As an improvement to this naive algorithm,
we use beam search and follow a fixed number (the beam width)
of labels with highest probability. We apply a beam search variant
that is specifically designed for the sequence-to-sequence architec-
ture [29]. It introduces a coverage penalty, which penalizes beams
that do not cover the full source sequence. The beam width is set to
eight so that all eight possible section labels are taken into account
for the first decoding step (the first level of the hierarchy). The
beam search approach allows the model to generate a number of
most likely label sequences. In contrast, the greedy approach can
only generate one sequence, selecting always the most likely label.

More formally, the Beam Search variant is defined as:

s(X ,Y ) = log(P (Y |X )) + cp(X ;Y ) (6)

where P (Y |X ) is the probability of the target sequence given the
source sequence and cp stands for coverage penalty. The penalty is
formulated as follows:

cp(X ;Y ) = β ∗

|X |∑
i=1

log(min(
|Y |∑
i=1

pi, j , 1)) (7)

where pi, j is the attention probability of the j-th target word yi on
the i-th source word xi . This penalty encourages generation of an
output sequence that is most likely to cover all the words in the
source sentence.

3.5 Benefits
The proposed model improves on the standard hierarchical classi-
fication models in several ways. First, the model directly encodes
the parent-child relation and the path through the tree-structured
hierarchy into the labels. This improvement is achieved by defining
the label embeddings as a composition of their own text description
and the text description of their ancestors. Second, it improves the
representation of sparsely populated leaf nodes. If the label F02D
has very few training samples, the model still learns characteris-
tics of F02, because it shares the training data of samples of F02B,
F02C, etc. Further it has a representation for F02D even without

Table 1: Training, validation and test set size of USPTO-2M.

#Documents #Terms #Tokens #Labels

Training 1,900,347 99,609 1,602,406 632
Validation 49,900 31,117 302,892 614
Test 49,900 19,220 303,088 606

2,000,147 104,267 2,602,406 632

any training samples but solely based on the label embedding of
F02D. Third, and most importantly, the model is able to refine the
document representation and the label embedding at each level of
the hierarchy.

3.6 Transformer
Now that we introduced our sequence-to-sequence architecture
and its training procedure, we propose a variation. To this end,
we replace the document representation part with the state-of-
the-art Transformer model [25]. The Transformer model uses a
self-attention mechanism in six layers of encoders and decoders.
Further, it adds positional encoding and as a consequence the order
of the input words becomes relevant.

This variationmakes the document representationmore complex
and entails minor changes to the training procedure. Scheduled
sampling does not apply to the Transformer model. When the
Transformer model generates a label embedding during training, it
is provided its own predictions from all previous steps and not only
its own prediction of the previous step. However, the beam search
works without any changes. All benefits of the standard RAL model
also apply to the presented variation of RAL, which we refer to as
the Transformer model throughout the rest of this paper.

4 EVALUATION
We evaluate our model on a hierarchical classification task and
compare its performance to four approaches from related work
and a naive Bayes baseline. The dataset, evaluation metrics, and
experiments are described in the following.

4.1 Dataset
The United States Patent and Trademark Office (USPTO) provides
a collection of more than 9 million patents on their website. Li et
al. extracted a subset of 2,000,147 patents, which they call UPSTO-
2M [17]. They pruned the label to the subclass level, resulting in
632 different labels. The dataset only includes the title and the
abstract because these two fields are generally considered the most
informative parts of patents for the classification task [5]. To model
a realistic evaluation scenario, where the fields of inventions evolve
over time, we apply a time-wise split into training, validation, and
test set. To this end, the training dataset comprises patents published
between 2006 and early 2014, the validation set comprises patents
from late 2014, and the test comprises patents from 2015. Table 1
lists the sizes of the different subsets. Figure 3 shows the class
distribution on the highest level in the hierarchical classification
scheme. The distribution differs only slightly between validation
and test set.



Figure 3: The class distribution on the section level of the
class hierarchy is highly imbalanced. However, it differs
only slightly between validation and test set.
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Figure 4: Three conditions definingmicro-average precision
for the task of patent classification. The predicted ranked
classes are compared to the ground truth main category
(MC) and incidental categories (IC). In this paper, categories
are labels on the subclass level of the IPC scheme. The figure
was adapted from Fall et al. [10].

4.2 Metrics
Patent classification is typically evaluated with micro-average preci-
sion as proposed by Fall et al. [10]. This measure is tailored to three
practical application scenarios of patent classification. The first one
is called Top Prediction (TP) and it compares the top prediction
(main category) to the ground truth. This formulation is identical to
accuracy. Note that the class distribution in our particular dataset
and in patent datasets in general is imbalanced. Models that always
predict the majority class can achieve a high accuracy. While this
metric can be misleading, we include it to be comparable to related
work and rely on other metrics to draw conclusions.

The second metric is called Three Guesses (TG) and is a relaxed
version of TP. The three top-ranked predictions are compared to
the top true label. Finally, the last condition is All Categories (AG),
which considers instead the top three true labels assigned to a
patent (main category and incidental categories) as the ground
truth. The prediction is considered correct if it is in the set of the
three true labels. Figure 4 visualizes the three scenarios.

Hierarchical evaluation measures not only evaluate the predicted
leaf node, but also the prediction on upper levels in the hierarchical
classification scheme. Even if the leaf node is predicted wrong, up-
per levels might be correct, which is better than a completely wrong
prediction (a completely wrong path through the tree-structured
hierarchy).

Table 2: Scheduled sampling improves the model’s classifi-
cation results according to five out of six evaluation metrics
on the validation set.

Sampling Acc TG AG LCA-P LCA-R LCA-F1

standard 53.5 75.8 64.8 70.8 63.2 66.0
scheduled 54.5 75.1 65.7 71.2 63.6 66.4

Table 3: A GLU encoder with kernel (k) size of 3, filter (f)
size of 256 and depth (d) of 2 outperforms all other tested
parameter settings and also themodel without GLU encoder
(base) on the validation set.

Acc TG AG LCA-P LCA-R LCA-F1

base 52.0 74.5 63.1 70.0 62.3 65.1
f128_k3 52.2 74.5 63.2 70.0 62.4 65.3
f256_k3 52.3 74.3 63.2 69.9 62.4 65.2
f512_k3 52.1 74.0 63.2 70.0 62.4 65.2
f256_k3_d2 52.9 75.0 64.2 70.3 62.8 65.6
f256_k3_d3 52.6 74.8 63.8 70.2 62.7 65.5

A common measure for hierarchical document classification is
the Lowest Common Ancestor F-measure (LCA-F1) introduced by
Kosmopoulos et al. [14]. LCA-F1 overcomes two issues that are
present in other hierarchical measures. Most other hierarchical
measures consider the intersection of the sets of all ancestors of
the predicted class and of the true class. However, taking into
account all ancestors has the undesirable effect of over-penalizing
errors that happen to nodes with many ancestors. Moreover, these
measures suffer from the so called “long distance problem”, where
the predicted class is on the same level as the true class, but in
a wrong branch of the tree. The LCA measures (LCA-Precision,
LCA-Recall, LCA-F1) consider the lowest common ancestor for
the evaluation. Thereby, it takes into account a very limited set
of ancestors and correctly penalizes predictions according to the
hierarchical classification scheme. We focus on LCA-F1 for our
evaluation but also list accuracy, micro-average precision for three
guesses and all categories, and LCA-Precision and LCA-Recall for
the sake of completeness.

4.3 Hyperparameter Optimization
We tune the cell size of the LSTM units (128, 256, 512), the size
of the attention layer (128, 256, 512), the recurrent dropout rate
(0.1, 0.2, 0.3) on the validation set. Cell size and attention layer
size are both set to 256 and dropout rate to 0.2. The training uses
the Adam optimizer and the number of epochs is set to five after
experiments on the validation set. Given five training epochs, a
batch size of 32, and 1.9 million training samples, there are about
300,000 training steps. For the scheduled sampling, the parameter
k of the inverse sigmoid decay is therefore set to 1.3 · 104. Table 2
shows that the scheduled sampling improves the predictions on the
validation set. Similarly, Table 3 and Table 4 explain the choices of
the other hyperparameters.



Table 4: A recurrent dropout rate of 0.2 performs best on the
validation set, while rates of 0.1 or 0.3 yield similar results.

Acc TG AG LCA-P LCA-R LCA-F1

rd0.0 52.9 75.0 64.2 70.3 62.8 65.6
rd0.1 53.4 75.5 64.7 70.7 63.1 66.0
rd0.2 53.5 75.8 64.8 70.8 63.2 66.0
rd0.3 53.3 75.9 64.8 70.7 63.1 66.0

Table 5: Patent classification results on the test set sorted by
lowest common ancestor F1 (LCA-F1). We also list accuracy
(Acc), micro-average precision for three guesses (TG) and all
categories (AG), and the hierarchical metrics LCA-Precision
and -Recall.

LCA-
Model Acc TG AG P R F1

Naive Bayes 40.1 56.2 53.3 62.2 49.7 54.1
Tree-CNN [32] 40.0 63.2 60.2 66.8 53.2 57.9
CNN [17] 45.5 67.0 63.4 67.2 55.0 59.5
LEAM [27] 51.9 75.5 70.0 70.7 57.1 61.9
RAL 53.2 74.9 70.4 70.5 57.9 62.5
GRU [24] 54.0 77.3 72.7 72.2 58.4 63.3
Transformer 56.7 78.9 74.5 72.1 59.5 64.2

4.4 Results on the Test Set
On the test set, we compare RAL and the Transformer model to
a naive Bayes baseline that uses bag-of-words features and four
other approaches from related work:
• Tree-CNN by Yan, which is a convolutional neural network
tailored to hierarchical classification and the biomedical do-
main [32]
• CNN by Li et al., which is a convolutional neural network
for patent classification [17]
• LEAM by Wang et al., which is a label embedding approach
for text classification in general [27]
• GRU by Risch and Krestel, which is a recurrent neural net-
work for patent classification [24]

The models use 100-dimensional fastText word embeddings that
were pre-trained on a patent corpus [24].

Table 5 lists the experiment results on the test set. Our approach,
RAL, outperforms the baseline and three of the four approaches
from related work. It achieves competitive results with the fourth
approach, which is the GRU. The Transformer model outperforms
all approaches. Its strong performance indicates that a sophisticated
document representation is of advantage.

5 ERROR ANALYSIS FOR THE RAL MODEL
The weights of the attention layer give an insight into the errors
of our model. A heat map visualizes the weights with the patent
abstract’s word on the horizontal axis (excluding stopwords) and the
generated labels on the vertical axis. Each cell in the grid represents
the amount of attention a word receives when the corresponding

Figure 5: Attention weights for patent abstract with true la-
bel B25B and prediction label A63B (left) and with true label
A47C and prediction label E06C (right).

label is predicted. The misclassified examples confirm what the
hierarchical measures in the evaluation suggested. If the model
makes an error, it misses the right label completely, e.g., it predicts
B01D instead of E04C.

The left-hand side of Figure 5 represents one example. The model
assigns label A63B which is composed by:
• section A: Human Necessities
• class A63: Sport, Games, Amusement
• subclass A63B: Apparatus for physical training, gymnastics,
swimming, climbing, or fencing; ball games; training equip-
ment

Themodel focuses its attention on the word racquet, which is indeed
a “hand tool” used to play tennis. The model’s decision to assign
section A was essentially based on this single information and the
word method. While for the class prediction (A63) the word racquet
was not as relevant, it was again crucial for the final prediction of
the subclass (A63B).

Based on this information themodel prediction seems reasonable.
Nonetheless, the ground truth label for the abstract was instead
B25B, which is composed of:
• section B: Performing operations, Transporting
• class B25: Hand tools; Portable power-driven tools; Handles
for hand implements; Workshop equipment; Manipulators
• subclass B25B: Tools or bench devices not otherwise provided
for, for fastening, connecting, disengaging, or holding

This error and all the one akin underline an essential flaw in
the model. The model is prone to misclassification at the first level
of the hierarchy. Given the shortness of the sequence, the model
is bound to its first decision. Error irrecoverably propagate to the
following hierarchy levels and predictions.

The main reason for this behavior is imputable to the document
representation obtained via the attention mechanism. This compo-
nent of the model is essentially a feature extraction method. The



document representation is simply a weighted sum of the docu-
ment’s words. Nonetheless, for this task, predicting the label simply
based on the presence of specific words and their composition
proves to be ineffective.

More precisely, the ability of correctly encoding the syntactic
structure of the abstracts is crucial for generating the correct predic-
tion. The example presented above shows that the model fails to en-
code that the main subject of the document is a “method/apparatus”
that allows to install a “safety cord” on the “butt” of a “racquet”,
hence B25B being the correct class. Further evidence for this hy-
pothesis is the performance of the CNN by Li et al. [17], which
is significantly lower than the GRU network [24] in our evalua-
tion. This is because the convolutional layers essentially perform
a feature extraction operation similar to the one of the attention
mechanism, e.g., activating the most relevant words but failing to
capture the syntax of the document. With its more sophisticated
document representations, the Transformer model outperforms all
other approaches as listed in Table 5.

Additionally, the right-hand side of Figure 5 presents a similar —
but more subtle — example of the errors caused by the attention
mechanism. The true label for the document is A47C, which is
composed by:
• section A: Human Necessities
• class A47: Furniture; Domestic articles or appliances; Coffee
mills; Spice mills; Suction cleaners in general
• subclass A47C: Chairs, Sofas, Beds

The document describes a “stool” (chair) designed for children,
which presents the feature of being convertible, e.g., it allows to
increase the height of the “stool” (“dual mode”) as the children grow.
Although the model correctly focuses its attention mostly on the
word “stool” for the section level, its prediction is E06C, which is
composed by:
• section E: Fixed constructions
• class E06: Doors, Windows, Shutters, or Roller blinds in gen-
eral; Ladders
• subclass E06C: Ladders

The model is confused by words that correlate with innovations
in the ladders field, such as “lockably” and “ninety”. The word
“steps” appears five times in the document. Although these words
do not receive much attention, in sum they affect the final document
representation, being more related to “ladders” than to “chairs”.

6 CONCLUSIONS AND FUTUREWORK
We are the first to tackle the task of hierarchical classification as
a sequence generation problem. To this end, we implemented an
attention-based neural network model that follows the sequence-
to-sequence paradigm. Given a document’s text representation, the
model generates a sequence of class labels, which can be seen as a
path through a tree-structured hierarchical classification scheme.
This model leverages parent-child relations for its training and is
the first to adapt the document representation for each level of the
hierarchy individually. The underlying label embeddings help the
model to cope with sparse training data.

We compare our model to five re-implemented approaches from
related work on a dataset of patents, which exhibits a hierarchical
classification scheme. The evaluation shows that our model RAL

outperforms three of the four other approaches and that it achieves
competitive results with the fourth model. Further, we find that a
variation of our approach, which uses a different representation
based on the Transformer model, outperforms all other approaches.
The error analysis reveals that recovering from early errors dur-
ing the sequence generation is difficult even for the best models.
The most promising direction for future work therefore is to com-
bine the sequence-to-sequence architecture with more powerful
encoders and more complex document representations. Another
direction is to use the label embeddings and the attention weights
for interpretability of the otherwise black-box neural networks.
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