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ABSTRACT
The Hasso Plattner Institute (HPI) is a private com-
puter science institute funded by the eponymous SAP
co-founder. It is affiliated with the University of Pots-
dam in Germany and is dedicated to research and teach-
ing, awarding B.Sc., M.Sc., and Ph.D. degrees.

The Information Systems group was founded in 2006,
currently has around ten Ph.D. students and about 15
masters students actively involved in our research ac-
tivities. Our initial and still ongoing research focus has
been the area of data cleansing and duplicate detection.
More recently we have become active in the area of text
mining to extract structured information from text, and
even more recently in data profiling, i.e., the task of
discovering various metadata and dependencies from a
data instance.

1. MOTIVATION
Data abounds – it appears in many forms rang-

ing from traditional relational or XML databases
over semi-structured data, often published as linked
open data, to textual data from documents on the
Web. This wealth of data is ever growing, and many
organizations and researchers have recognized the
benefit of integrating it into larger sets of homoge-
neous, consistent, and clean data. Integrated data
consolidates disconnected sources in organizations;
it combines experimental results to gain new sci-
entific insights; it provides consumers with a more
complete view of product o↵ers, etc.

Yet integration of such data is di�cult due to
its often extreme heterogeneity: Syntactic het-
erogeneity in data formats, access protocols, and
query languages is typically the most simple to
overcome, usually by building appropriate source-
specific wrapper components. Next, structural het-
erogeneity must be overcome by aligning the dif-
ferent schemata of the datasets: Schema matching
techniques automatically detect similarity and cor-
respondence among schema elements, while schema
mapping techniques interpret these to actually

transform the data. Finally, to overcome semantic
heterogeneity the di↵erent meanings of data and the
similar but di↵erent representations of real-world
entities must be recognized. Here, similarity search
and data cleansing techniques are employed.

While the first two challenges have been research
topics of our’s in the past, the last and arguably
most di�cult challenge is a main focus of our cur-
rent research endeavors. This focus manifests itself
in three main research directions, which are mo-
tivated in the following sections: First, and most
recently, in the area of data profiling, i.e., the de-
velopment of methods to discover interesting prop-
erties about unknown datasets. Second, in the area
of data cleansing, i.e., the development of methods
to automatically correct errors and inconsistencies
in databases and in particular to search and con-
solidate duplicates. Third, the area of text mining,
i.e., the extraction of information from textual data,
such as Wikipedia articles, tweets, or other text.

Where possible we aim at making our data and
our algorithms available. A good starting point to
find them is http://hpi.de/naumann/projects/

repeatability.html.

2. DATA PROFILING
“Data profiling is the set of activities and pro-

cesses to determine the metadata about a given
dataset.” [1] The need to profile a new or unfa-
miliar data arises in many situations, in general to
prepare for some subsequent task. Data profiling
comprises a broad range of methods to e�ciently
analyze a given dataset. In a typical scenario, mir-
roring the capabilities of commercial data profiling
tools, tables of a relational database are scanned
to derive metadata including data types and typi-
cal value patterns, completeness and uniqueness of
columns, keys and foreign keys, and occasionally
functional dependencies and association rules. In
addition, research (ours and others’) has proposed
many methods for further tasks, such as the discov-
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ery of inclusion dependencies or conditional func-
tional dependencies. There are a number of con-
crete use cases for data profiling results, including:

• Query optimization: counts and histograms
for selectivity estimation, dependencies for
query simplification

• Data cleansing: pattern and dependency de-
tection to identify violations

• Data integration: inter-database inclusion de-
pendencies to enrich datasets and find join-
paths

• Data analytics: data preparation and initial
insights

• Database reverse engineering: foreign key dis-
covery to understand a schema and identify its
core components

Our survey [1] highlights the community’s signif-
icant research progress in this area in the recent
past. Data profiling is becoming a more and more
popular topic as researchers and practitioners are
recognizing that just gathering data into data lakes
is not su�cient: “If we just have a bunch of data
sets in a repository, it is unlikely anyone will ever be
able to find, let alone reuse, any of this data. With
adequate metadata, there is some hope [. . . ]” [4]

2.1 Profiling relational data
Apart from computationally more simple tasks,

such as counting the number of distinct values in a
column, data profiling is typically concerned with
discovering dependencies in a given, possibly large
dataset. We, and other groups, have developed
various methods to e�ciently discover all mini-
mal functional dependencies, inclusion dependen-
cies, unique column combinations, and order de-
pendencies. More dependencies are to come, such
as join dependencies, matching dependencies, de-
nial constraints, etc. Instead of listing and explain-
ing each technique in any detail, we highlight some
general di�culties we have encountered that make
data profiling both challenging and interesting:

Schema size: Because dependencies can occur
among any column or column combination,
not only the number of records, but also the
number of columns is a decisive factor of com-
plexity.

Size of dependencies: One way to handle the ex-
ponential search space is to limit the size of the
dependencies, i.e., the number of involved at-
tributes. For instance, one could argue that

key-candidates with more than ten attributes
are not useful. On the other hand, a complete
set of metadata can be useful, for instance to
normalize a relation based on its functional de-
pendencies.

Number of dependencies: While much depen-
dency-focussed research, such as normaliza-
tion theory or reasoning with dependencies,
assumes a handful of dependencies as input,
we typically observe thousands, millions and
in some cases even billions of dependencies in
typical real-world datasets. Just storing them
becomes a problem, not to mention reasoning
about them or interpreting them manually.

Treatment of nulls: The semantics of missing
values is an interesting problem for almost any
data management and analysis task, likewise
for data profiling [13].

Intricate pruning: Huhtala et al. already showed
quite complex insights to e�ciently prune the
search space for FD discovery [10]. When pro-
filing for various types of dependencies, cross-
dependency pruning becomes possible.

Relaxed dependencies: Apart from strict de-
pendencies, it is also of interest to discover
partial dependencies, which are true for only
a part of the dataset, and conditional depen-
dencies, which are true for a well-defined such
part.

Dynamic data: While most of our focus has been
on algorithms for a given, static dataset, we
are also interested in e�ciently updating data
profiling results after changes in the data.

Experiments: Testing correctness of algorithms
for given, real-world datasets is straightfor-
ward, but generating artificial testdata with
certain properties, such as a certain number
and distribution of functional dependencies, is
very challenging.

Interpreting results: Any discovered metadata
can only be validated for the dataset at hand.
Some might be true in general, some might be
spurious. We discuss this arguably most im-
portant and most di�cult challenge of making
sense of profiling results in Section 2.4.

In conclusion, research has many avenues to fol-
low!
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2.2 The Metanome project
Metanome is our open Java-based framework and

tool for managing relational datasets and data pro-
filing algorithms [18]. Our motivation for this un-
dertaking is to bundle the many algorithms devel-
oped in our group, to provide an easy interface
and testing environment for developers of new al-
gorithms, and finally to enable fair comparisons
among competing algorithms. Our initial focus was
on functional dependency discovery, and Metanome
features implementations of already eight published
FD-discovery algorithms including those evaluated
in [19] plus seven further algorithms for other dis-
covery tasks (www.metanome.de).

2.3 Profiling RDF data
Among the datasets that are particularly wor-

thy to profile, due to their variety and their gen-
eral interest, are linked datasets. We are apply-
ing traditional and novel data mining technology to
linked data in its RDF representation as subject-
predicate-object triples. For instance, the discovery
of frequent itemsets of predicates or objects in the
context of subjects allows enriching datasets with
missing triples. Another configuration – mining
for frequent subjects in the context of predicates
– achieves a clustering of entities. We have also ap-
plied data mining techniques for the discovery of
conditional inclusion dependencies [16]. The vol-
ume of available linked data (a popular dataset is
from the Billion Triples Challenge, which currently
comprises over 3 billion facts) necessitates space-
e�cient algorithms.

Again, much of our work enters our browser-
based discovery tool, ProLOD++ [2], which fea-
tures techniques to discovery key-candidates, ex-
plore class and property distributed, discover fre-
quent graph patterns, and more (see Figure 1).

2.4 From metadata to semantics
Finding all (and thus very many) dependencies in

a given dataset is only the first part of a meaningful
discovery process. The vast majority of metadata
is spurious: It might be valid only in the current
instance, or it might be valid for any reasonable
instance but meaningless nonetheless. Separating
the wheat from the cha↵ is extremely di�cult, as
it is a jump from (meta-)data to semantics; only a
human can promote a unique column combination
to a key, an inclusion dependency to a foreign key, or
a functional dependency to an enforced constraint.

But computer science can help: We are cur-
rently investing much of our time to transform large
amounts of metadata to schematic information. A

Figure 1: Exploring frequent patterns
in a Linked Dataset with ProLOD
(www.prolod.org)

Figure 2: Clusters of web tables, connected
through (reasonable) inclusion dependencies

first step is a metadata management system to store
and query many di↵erent types of metadata. Next,
we are developing selection and ranking methods
to present to users only the most promising meta-
data. And finally, the visualization of metadata is
an important tool to aid experts in understanding
their data. Figure 2, for instance, shows connected
components created by discovering inclusion depen-
dencies among millions of web tables.

3. DATA CLEANSING
With the ever-increasing volume of data, data

quality problems arise. One of the most intriguing
problems is that of multiple, yet di↵erent represen-
tations of the same real-world object in the data:
duplicates. Such duplicates have many detrimental
e↵ects, for instance bank customers can obtain du-
plicate identities, inventory levels are monitored in-
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correctly, catalogs are mailed multiple times to the
same household, etc. A related problem is that of
similarity search in structured data: given a query
record, find the most similar candidate records in
a database and identify whether one of them is a
match.

The areas of similarity search and duplicate de-
tection are experiencing a renaissance both in re-
search and industry. Apart from scientific contribu-
tions we cooperate with companies to transfer our
technology. Both our similarity search and our du-
plicate detection techniques have been adopted by
industry partners.

3.1 Duplicate detection
Detecting duplicates is di�cult: First, duplicate

representations are usually not identical but slightly
di↵er in their values. Second, in principle, all pairs
of records should be compared, which is infeasible
for large volumes of data [9]. Our research addresses
both aspects by designing e↵ective similarity mea-
sures and by developing e�cient algorithms to re-
duce the search space.

One focus of our work is to develop improved vari-
ations of the elegant and simple sorted neighbor-
hood method [8], for instance adapting it to nested
XML data, making it progressive, parallelizing it
for GPU-processing, or creating an adaptive version
that is provably more e�cient than the original [5].

In our experience, research(ers) in duplicate de-
tection su↵ers particularly when trying to trans-
fer technology and methods to industrial settings:
Availability of data is a first issue, that arises even
if a cooperation is firmly established and all par-
ticipating parties in principle agree to the e↵ort.
Next, domain- and partner-specific similarity mea-
sures are needed that satisfy the specific use-case.
Companies can have widely di↵ering views of what
constitutes a duplicate: Measuring recall is impos-
sible due to large dataset sizes, and precision is sur-
prisingly malleable, depending on whom one asks
for validation. And finally, the real world holds
many nitty, gritty details that can be conveniently
ignored in a research setting1. With [20] we were
able to overcome these di�culties and have had a
lasting impact on the data quality of our partner.

3.2 Similarity search
A problem related to duplicate detection, but of-

fering quite di↵erent requirements is that of e�cient
similarity search. Instead of comparing all or many
pairs of records in an o✏ine fashion (n ⇥ n), on-

1
For instance, providing a machine with 16GB main

memory but insisting on a 32-bit operating system.

line similarity search asks for all records matching
a given query record (1 ⇥ n). A typical use case is
a call center agent pulling up customer information
based on a customer’s name and city. The main
challenge is to develop a suitable similarity index,
a much more di�cult undertaking that an exact-
match index.

One of our solutions matches the problem to a
query plan optimization task, choosing similarity
index accesses based on their selectivity and their
cost, each of which is again modified by the dynami-
cally chosen threshold: A low thresholds yields more
candidates, but also more access to disk to retrieve
the candidates [17]. A further insight is the impor-
tance of frequency-aware similarity measures, which
apply di↵erent weights depending on the frequency
of the query terms (Schwarzenegger vs. Miller).

We are currently extending this work to solve the
problem of an ever-growing set of data that shall be
held duplicate free: each query can simultaneously
be an insert-operation.

4. TEXT MINING
Unstructured data in the form of textual doc-

uments can be found everywhere, from medi-
cal records to game chats, and from politicians’
speeches to tweets. These documents cover a vari-
ety of genres, from serious to fun, from entire nov-
els to single words. This diversity makes dealing
with textual data particularly challenging and there
is no one-size-fits-all text mining method yet. We
are currently working on the topics of named entity
linking, topic modeling, and bias detection on var-
ious document collections from the web. We cover
the research areas natural language processing, in-
formation extraction, and recommender systems.

4.1 Named entity linking
A first step in analyzing texts is to find entities.

Named entity linking is a rather new task composed
of named entity recognition and linking the textual
mentions in a document to corresponding entries
in a knowledge base, thus disambiguating the men-
tions. The disambiguation can be performed using
additional information in the knowledge base and
the context of the mentions in the documents. We
developed a named entity linking approach that op-
erates on a textual range of relevant terms. We then
aggregate decisions from an ensemble of simple clas-
sifiers, each of which operates on a randomly sam-
pled subset from the above range [21]. The obtained
results are very good with respect to precision and
recall.
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Some tasks, such as topic-based clustering, re-
quire near perfect precision and therefore we en-
hanced our named entity linking approach using
random walks [6]. This allows for e�cient compu-
tation of the linking and improves the precision at
a minimal expense of recall.

4.2 Relationship extraction
Once entities are successfully extracted and dis-

ambiguated, finding relations between those entities
is a next logical step. In the context of an industry
project with a large German bank, we aim at build-
ing company networks to support their risk manage-
ment department. These company networks are ex-
tracted automatically from newspaper articles, pos-
ing new challenges to the named entity recognition
task, which is particularly di�cult for German com-
pany names, due to complex, often ambiguous nam-
ing. Further, the relationship types we are inter-
ested in di↵er from standard, binary relations, such
as “married with” or “located in”. Our company
networks require the detection of relations that are
not necessarily binary, e.g. “competitor with” or
“supplier to”. To this end, we developed a holistic,
seed-based algorithm to find these types of relations
by providing a handful of example instantiations.
The algorithm is based on Snowball [3] and can deal
with any type of user-provided relations to extract
relationship types with high precision.

4.3 Recommender systems
As with the information extraction tasks, we

have a strong focus on the application of our re-
search. Therefore, personalization, prediction, and
recommendation play a major role in our group’s
work. From predicting accepted answers in MOOC
forums [11], to recommending hashtags in Twit-
ter [7], we analyzed diverse text collections acces-
sible through the web. We also experimented with
recommending serendipitous news articles [12] to
present to the user not only relevant and novel ar-
ticles, but also some surprising ones.

In an attempt to bridge the gap between tradi-
tional news and social media, we developed a tweet
recommender system [15]. The goal was to pro-
vide the reader of a news article about some event
with an overview of the reactions in Twitter. While
Twitter is often only used to share and distribute
information, it is also used to express opinions, re-
ject ideas, or support certain viewpoints. To de-
tect these (subtle) opinions, traditional sentiment
analysis techniques have to be adapted to recognize
emojis, abbreviations, slang, etc. The mismatch be-
tween the language used in news articles and tweets

makes recommending one based on the other chal-
lenging.

4.4 Bias detection
Finally, we have to deal with another mismatch

between used languages when trying to detect po-
litical bias of mainstream media. Initial experi-
ments on comparing parliamentary speeches with
news articles of various German news outlets [14]
have shown that perceived bias can be automat-
ically quantified. Given the very di↵erent genres
(speeches vs. articles), detecting biased statements
based on their comparison is rather cumbersome.
Only rarely vocabulary use is a good indicator (e.g.,
“nuclear energy” vs. “atomic energy” in Germany).
Nevertheless, identifying this bias in mainstream
media and making it visible to the reader is an im-
portant piece of information.

Beside this statement bias, newspapers can also
influence their readers by only reporting about cer-
tain topics (gate-keeping bias) or covering certain
positions more thoroughly than others (coverage
bias). Automatically detecting all three kinds of
bias is our current goal, making it necessary to ex-
tract not only entities (politicians, parties, domain
experts) and their relations, but also to do fine-
grained opinion mining and sentiment analysis.
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[13] H. Köhler, S. Link, and X. Zhou. Possible and
certain SQL keys. Proceedings of the VLDB
Endowment, 8(11):1118–1129, 2015.

[14] R. Krestel, A. Wall, and W. Nejdl.
Treehugger or Petrolhead? Identifying Bias by
Comparing Online News Articles with
Political Speeches. In Proceedings of the
International World Wide Web Conference
(WWW), pages 547–548, 2012.

[15] R. Krestel, T. Werkmeister, T. P. Wiradarma,
and G. Kasneci. Tweet-recommender: Finding
relevant tweets for news articles. In
Proceedings of the International World Wide
Web Conference (WWW), 5 2015.

[16] S. Kruse, A. Jentzsch, T. Papenbrock,
Z. Kaoudi, J.-A. Quiane-Ruiz, and
F. Naumann. RDFind: Scalable conditional
inclusion dependency discovery in RDF
datasets. In Proceedings of the International
Conference on Management of Data
(SIGMOD), 2016.

[17] D. Lange and F. Naumann. E�cient
similarity search: Arbitrary similarity
measures, arbitrary composition. In
Proceedings of the International Conference
on Information and Knowledge Management
(CIKM), Glasgow, UK, 2011.

[18] T. Papenbrock, T. Bergmann, M. Finke,
J. Zwiener, and F. Naumann. Data profiling
with metanome (demo). Proceedings of the
VLDB Endowment, 8(12):1860–1871, 2015.

[19] T. Papenbrock, J. Ehrlich, J. Marten,
T. Neubert, J.-P. Rudolph, M. Schnberg,
J. Zwiener, and F. Naumann. Functional
dependency discovery: An experimental
evaluation of seven algorithms. Proceedings of
the VLDB Endowment, 8(10):1082–1093,
2015.

[20] M. Weis, F. Naumann, U. Jehle, J. Lufter,
and H. Schuster. Industry-scale duplicate
detection. Proceedings of the VLDB
Endowment, 1(2):1253–1264, 2008.

[21] Z. Zuo, G. Kasneci, T. Gruetze, and
F. Naumann. BEL: Bagging for entity linking.
In International Conference on Computational
Linguistics (COLING), 2014.

68 SIGMOD Record, June 2015 (Vol. 42, No. 2)


