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Abstract
Microaggregation is a classical statistical disclosure control
technique which requires the input data to be partitioned
into clusters while adhering to specified size constraints. We
provide novel exact algorithms and lower bounds for the
task of microaggregating a given network while consider-
ing both unrestricted and connected clusterings, and analyze
these from the perspective of the parameterized complex-
ity paradigm. Altogether, our results assemble a complete
complexity-theoretic picture for the network microaggrega-
tion problem with respect to the most natural parameteri-
zations of the problem, including input-specified parameters
capturing the size and homogeneity of the clusters as well as
the treewidth and vertex cover number of the network.

Introduction
In view of the rising importance of user anonymity and pri-
vacy, it is of paramount importance to ensure that release of
data about relations in social or other networks does not lead
to the disclosure of individual information, while also pre-
serving the informational content. Such tasks lie at the heart
of statistical disclosure control, and are typically tackled by
creating synthetic data from the available real-world net-
work (Das et al. 2022; Belhajjame et al. 2020; Kim, Venkate-
sha, and Panda 2022).

One of the most classical approaches used to create such
data is microaggregation (Domingo-Ferrer 2009; Yan et al.
2022), which typically aggregates available data into small
homogeneous clusters and releases the centers of these clus-
ters instead of the original data points. While it is always
desirable to have a lower bound for the size of these clus-
ters in order to achieve anonymity, depending on the con-
text in which microaggregation is used it may either be use-
ful to allow for clusters of variable size (so-called data-
oriented microaggregation) or to require all the clusters to
have roughly the same size (referred to as fixed-size mi-
croaggregation) (Domingo-Ferrer and Mateo-Sanz 2002;
Solé, Muntés-Mulero, and Nin 2012). The advantage of the
former is that one can achieve more homogeneous clusters,
while the latter ensures that each synthetic data point repre-
sents roughly the same amount of original data points. In-
deed, without an upper bound on the cluster size, it may eas-
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ily happen that two data points in the microaggregated data
represent sets of highly disproportionate sizes.

While microaggregation has obvious connections to clus-
tering, the addition of size control restrictions is not com-
patible with most clustering approaches which typically aim
at maximizing the sizes of coherent clusters. By now, there
is an extensive body of research studying typical network
clustering models from an empirical (Rattigan, Maier, and
Jensen 2007; Mukherjee, Sarkar, and Lin 2017) as well
as complexity-theoretical perspective (Orecchia and Zhu
2014; Micha and Shah 2020). However, research on mi-
croaggregation of networks has so far focused on empiri-
cal aspects (Sun et al. 2012; Iftikhar, Wang, and Lin 2020)
or (to a much smaller extent) on approximation specifi-
cally in the Euclidean space (Domingo-Ferrer, Sebé, and
Solanas 2008; Domingo-Ferrer and Sebé 2006), while very
little was known about the precise boundaries of tractabil-
ity for optimal network microaggregation. In fact, we are
aware of only a single paper that touched on this topic to
date (Thaeter and Reischuk 2021), albeit the related topic
of lower bounded clustering has been explored in two other
works (Abu-Khzam et al. 2018; Casel 2019).

While formal definitions are provided in the Preliminar-
ies later, for the upcoming discussions it will be useful to
already concretize the NETWORK MICROAGGREGATION
problem (hereinafter NMA). On the input, we receive a
network (modeled as an edge-weighted graph G), a lower
bound ℓ, a distance bound d, and an upper bound u1. The
task is then to partition the vertices of G into clusters such
that each cluster (1) has size between ℓ and u, and (2) ad-
mits a center (vertex) whose distance to every vertex in the
cluster is at most d. We remark that, in view of the aim of
anonymizing G, the center need not be part of the cluster
and that a center can be reused for multiple clusters. More-
over, in connection to previous research on network clus-
tering (Deligkas et al. 2022; Macgregor and Sun 2021; van
Bevern et al. 2015), in some settings it is sensible to add a
third requirement which avoids the creation of completely
disconnected clusters: (3) each cluster must be connected
in G. We denote this variant CONNECTED NETWORK MI-

1Setting u to a value slightly above or equal to ℓ models fixed-
size microaggregation, while setting u to the size of the input data
set captures data-oriented microaggregation.
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Figure 1: The figure depicts a network G which forms a
double-tree; all edges have length 1. Setting ℓ = 4 and d = 2
might yield a single cluster over V (G) with a center in r.
Setting additionally an upper bound u = 5 blocks this possi-
bility, and can in particular obtain the highlighted clustering
(with centers marked by squares), which is more succinct.

CROAGGREGATION (hereinafter CNMA).
The definition in the previous paragraph is close to that

considered in previous works (Abu-Khzam et al. 2018), but
it also generalizes these via the inclusion of an upper bound
u on the size of the cluster. Note that in the standard case of
NETWORK MICROAGGREGATION a lower bound ℓ immedi-
ately implies an upper bound of 2ℓ−1 since a cluster of size
at least 2ℓ can be arbitrarily split in two while not increas-
ing the distance to the center. However, in the case of CON-
NECTED NETWORK MICROAGGREGATION this operation
is not necessarily possible, as the cluster might lose its con-
nectivity. Therefore having only a lower bound might yield
arbitrarily large clusters in this case, leading to an extremely
non-informative representation of the data (see Figure 1 for
an example). Moreover, even in the case of NETWORK MI-
CROAGGREGATION, specifying an upper bound allows for
a finer control of the cluster sizes, as in the fixed-size mi-
croaggregation setting.

Contribution. We initiate the comprehensive study of the
complexity of both NMA and CNMA. While both prob-
lems are easily seen to be NP-complete in their full general-
ity, in many scenarios of interest the instances we deal with
have specific structural properties and the natural question
that arises is whether one can exploit such properties to ob-
tain exact algorithms with good runtime guarantees. To pro-
vide a comprehensive answer to this question, we turn to the
parameterized complexity paradigm (Downey and Fellows
2013; Cygan et al. 2015) that has by now been successfully
applied to a large number of problems from numerous areas
of computer science, including in many settings relevant to
artificial intelligence research (Kronegger et al. 2014; Ga-
nian et al. 2020; Dvořák et al. 2021).

Essentially, in the parameterized refinement of classical
complexity, one analyzes the performance of algorithms not
only with respect to the input size n but also in view of
one or several numerical parameters k which capture spe-
cific properties of the input. If the problem can be solved
in time f(k) · nO(1) for some computable function f , we
say that it is fixed-parameter tractable (FPT). The associ-

ated algorithm is then also called fixed-parameter, and this
represents the most favorable outcome for an NP-hard prob-
lem. A weaker notion of tractability is captured by the class
XP, which contains all problems that can be solved in poly-
nomial time for every constant value of the parameter. Nat-
urally, it may also happen that a problem remains NP-hard
even for some constant parameter value, and similarly we
may also use the established notion of W[1]-hardness to ex-
clude fixed-parameter algorithms under a specific parame-
terization.

When considering natural parameterizations of NMA and
CNMA, two well-motivated parameters are d (which en-
sures that the aggregated clusters are coherent) and u (which
ensures that the clusters are small). As our main contribu-
tion, we establish the complexity of both problems un-
der all combinations of these two parameters along with
structural parameterizations of the network. There, we
consider treewidth (Robertson and Seymour 1984) as the
most prominent and natural structural graph parameter, as
well as the vertex cover number as a restriction of treewidth
that has typically been used to achieve tractability for prob-
lems which are intractable w.r.t. treewidth. Our main results
are summarized in Table 1; in the rest of this section, we
provide an overview and context for the individual results.

As an initial starting point, we observe that NMA as well
as CNMA remain NP-hard even for fixed values of d and u,
which means that to achieve tractability one needs to include
at least some parameterization of the network (that is why
Table 1 only considers combinations of d and u with net-
work parameterizations; it is worth noting that the same con-
siderations also apply to ℓ, since ℓ ≤ u). Next, when using
the treewidth tw of the network (as our baseline structural
parameter), we show that (a) NMA is XP parameterized by
tw+ d, (b) CNMA is XP parameterized by tw alone, and
(c) CNMA is FPT parameterized by tw+ d+u. We obtain
these by designing two new algorithms—one for each prob-
lem variant—where results (b) and (c) follow as a corollary
of the same algorithm for CNMA. These algorithms utilize
the dynamic programming technique employed by virtually
all treewidth-based algorithms, but are non-trivial and es-
pecially result (a) required the introduction of an advanced
cluster-grouping step. We remark that none of these algo-
rithms seem to be obtainable via known algorithmic meta-
theorems for treewidth such as Courcelle’s Theorem (Cour-
celle 1990) or MSOL Partitioning (Rao 2007).

Next, we turn to the question of whether one can obtain
more favorable tractability results by exploiting the vertex
cover number vc of the network. In this setting, we apply
a range of techniques to establish the remaining tractabil-
ity results depicted in Table 1. We begin with a trivial ob-
servation that CNMA is FPT parameterized by vc+ u. To
obtain fixed-parameter tractability w.r.t. the same parame-
terization for NMA, we make use of a new structural obser-
vation which guarantees that every sufficiently large YES-
instance of the problem must admit a solution with “ho-
mogeneous” clusters, which in turn allows us to apply the
classical kernelization technique (Cygan et al. 2015); for
a similar approach see, e.g., (Mnich and Wiese 2015). To
establish the fixed-parameter tractability of both problems



NMA CNMA

tw vc tw vc

— NP-h W[1]-h (Thm. 13), XP (Thm. 9) W[1]-h, XP (Cor. 3) W[1]-h (Thm. 14), XP

d W[1]-h, XP (Thm. 1) FPT (Thm. 8) W[1]-h (Thm. 10), XP FPT (Thm. 7)

u NP-h (Thm. 12) FPT (Thm. 5) W[1]-h (Thm. 15), XP FPT (Obs. 4)

d + u W[1]-h (Thm. 11), XP FPT FPT (Cor. 3) FPT

Table 1: Our results—the full complexity-theoretic landscape of (CONNECTED) NETWORK MICROAGGREGATION under all
combinations of considered input-specified parameters (rows) and structural parameters (columns); NP-h means that the prob-
lem remains NP-hard even for a fixed value of the parameters. Dynamic-programming based algorithms are marked in orange.
Algorithms based on insights into optimal solutions or integer programming are marked in magenta or green, respectively.
Lower bounds obtained via atypical reductions from MULTIDIMENSIONAL SUBSET SUM are marked in blue. Results without
a reference follow immediately from other entries in the table.

w.r.t. vc+d, we then use a different tool, notably exhaus-
tive branching in combination with the construction of an
ILP encoding with a bounded number of variables which
can then be solved by Lenstra’s celebrated result (Lenstra
Jr. 1983) and its subsequent improvements (Kannan 1987;
Frank and Tardos 1987). Interestingly, for our final result—
the XP-tractability of NMA when parameterized by vc—
we need to combine both the techniques mentioned above:
in particular, we show that every sufficiently large YES-
instance admits a solution which is “well-structured” (al-
beit in a different way than we required for fixed-parameter
tractability), and then use this fact to design an ILP which
captures the problem.

Finally, we complement all of the aforementioned algo-
rithms with lower bounds that justify the presence of ev-
ery parameter in each of the algorithms; in other words, the
classification arising from these algorithms is tight. First, we
observe that the known intractability of EQUITABLE CON-
NECTED PARTITION parameterized by tw almost immedi-
ately yields the intractability of CNMA w.r.t. tw+ d. Next,
we establish W[1]-hardness of both problems parameterized
by vc alone, as well as the W[1]-hardness of CNMA param-
eterized by tw+ u using two reductions from the classical
INDEPENDENT SET and MULTICOLORED CLIQUE prob-
lems; the main difficult here is that it was necessary to en-
code the structure of the input graph via distances in the net-
work. For the last two open cases, notably NMA parameter-
ized by tw+ u and by tw+ u + d, it is far from obvious
how one could reduce from the usual problems used to es-
tablish intractability: indeed, the intractability of these vari-
ants stems from the possible presence of many “incomplete”
clusters which need to be paired up with each other. Hence,
to establish our final lower bounds, we use a more recent re-
duction technique and start from the MULTIDIMENSIONAL
SUBSET SUM problem (Ganian, Klute, and Ordyniak 2021).

Related Work. The general concept of k-anonymity, i.e.,
replacing a dataset with a similar one but where each en-
try is indistinguishable from at least k − 1 others, was in-
troduced by Sweeney (2002). Aggarwal et al. (2010) pro-
posed the specific model of k-anonymity where the entries
are represented by their respective centers in a clustering.

In that work, the particular optimization problem is called
r-GATHER; the difference to NETWORK MICROAGGRE-
GATION is only that r-GATHER does not specify an upper
bound on the size of the cluster, and the authors showed that
r-GATHER is NP-complete, but admits a 2-approximation.
In the Euclidean space with the sum-of-squares clustering
objective, it is known that an analogue of r-GATHER admits
a O(r3)-factor approximation (Domingo-Ferrer, Sebé, and
Solanas 2008), and a 2-approximation for r = 2 (Domingo-
Ferrer and Sebé 2006). An overview of various versions of
r-GATHER on networks was conducted (Abu-Khzam et al.
2018). The authors of that work considered several variants
of inter- and intra-cluster distance measure, and showed a
number of approximation algorithms and NP-hardness re-
sults.

The NETWORK MICROAGGREGATION problem is re-
lated to the well-studied k-Center clustering problem, where
clusters have no size restrictions, but instead the number
of clusters k is predetermined. In particular, Feldmann and
Marx (2020) studied parameterized algorithms and com-
plexity of k-Center clustering on networks for various struc-
tural parameters of the network. A number of recent works
studied parameterized algorithms for clustering with size
constraints on the clusters, among others with k-Median
as the optimization objective (Cohen-Addad and Li 2019;
Bandyapadhyay, Fomin, and Simonov 2021). It is worth to
note that all of the results on k-Center/k-Median mentioned
above offer little insight in our setting, as they heavily ex-
ploit small number of clusters. Last but not least, we men-
tion that there is a large body of work exploring the com-
putational complexity of data clustering in various settings,
e.g., when data is missing (Ganian et al. 2020, 2022).

Preliminaries
We use bold-face letters (e.g., x) for vectors and normal font
for their entries (i.e., x2 is the second entry of vector x). For
a positive integer n we denote by [n] the set of all positive
integers up to (and including) n, that is, [n] = {1, 2, . . . , n},
and let [n]0 = [n] ∪ {0}.

Network Microaggregation. Since the networks in our
problems are typically modeled as graphs, we employ basic



graph-theoretic terminology (Matoušek and Nešetřil 2009;
Diestel 2012). A graph G = (V,E) has a vertex set V and
an edge set E. Most graphs in this paper are edge-weighted;
we treat the edge-weight ω(e) of an edge e as its length. For
two vertices u and v the distance distG(u, v) is the length of
a shortest path between u and v (and is ∞ if no such path
exists). Our problem of interest is:

NETWORK MICROAGGREGATION (NMA)

Input: An undirected n-vertex graph G = (V,E), a
lower bound ℓ ∈ N, an upper bound u ∈ N, a
maximum allowed distance to a cluster cen-
ter d ∈ N and a length function ω : E → [d].

Question: Is there an integer m and a partition Π =
(C1, . . . , Cm) of V together with a list
of vertices C = (c1, . . . , cm) such that
∀i ∈ [m] : ℓ ≤ |Ci| ≤ u, ∀v ∈
Ci : distG(v, ci) ≤ d?

The CONNECTED NETWORK MICROAGGREGATION
problem (CNMA) is defined analogously, but with the addi-
tional requirements that the subgraph induced by each clus-
ter C ∈ Π is connected. We mention that while (C)NMA are
formulated as decision problems for complexity-theoretic
reasons, all our algorithms are constructive and can also out-
put a microaggregation Π as a witness.

The most crucial parts of the input, apart from the struc-
ture of the given network, are arguably those that determine
the quality of the considered microaggregation. Clearly, this
includes the parameter d as this one directly governs the
quality of the microaggregated data (the closer the centers
are to the original datapoints, the higher the quality of the
data collected by the algorithm). Furthermore, by the pa-
rameter u we can directly affect the number of datapoints
in the aggregated data. Therefore, in many settings it would
be desirable to keep the value of both d and u rather low.
In fact, the same applies to u − ℓ as this governs the “pro-
portionality” of the collected data. We remark that both
CONNECTED NETWORK MICROAGGREGATION and NET-
WORK MICROAGGREGATION remain NP-complete even
for constant values of both u and d; indeed, for the for-
mer this follows from the known NP-hardness of the P3-
PARTITIONING graph problem (van Bevern et al. 2015;
Kirkpatrick and Hell 1978; Hell and Kirkpatrick 1982) while
for the latter it is, e.g., an immediate corollary of our stronger
Theorem 11.

Structural Parameters. Let G = (V,E) be a graph. A set
M ⊆ V is a vertex cover of G if M ∩e ̸= ∅ for every e ∈ E.
The vertex cover number of G, denoted vc, is the minimum
size of a vertex cover of G.

A nice tree-decomposition T D of an undirected graph
G = (V,E) is a pair (Tree = (W,F ), {Xx | x ∈ W}),
where Tree is a tree rooted at a node r ∈ W and a bag
Xx ⊆ V is a set of vertices of G associated with node x
such that:

• For every vw ∈ E there is a node x for which v, w ∈ Xx.
• For every vertex v ∈ V , the set of nodes x satisfying
v ∈ Xx forms a subtree of Tree.

• |Xx| = 0 for every leaf x of Tree and |Xr| = 0.
• There are only three kinds of non-leaf nodes in Tree:

– Introduce node: a node x with exactly one child y
such that Xx = Xy ∪ {v} for some vertex v ̸∈ Xy .

– Forget node: a node x with exactly one child y such
that Xx = Xy \ {v} for some vertex v ∈ Xy .

– Join node: a node x with two children y and z such
that Xx = Xy = Xz .

The width of a nice tree-decomposition (Tree,
{Xx | x ∈ V (Tree)}) is maxx∈V (Tree)(|Xx| − 1),
and the treewidth of the graph G, denoted tw, is the
minimum width of a nice tree-decomposition of G. Let x be
a node of a nice tree decomposition. We denote by V x the
set of all past vertices contained in the subtree rooted at x,
while vertices outside of V x are said to be in the future.
Formally, we have V x =

⋃
y predecessor of x X

y .
It is worth noting that the structure of real-world data has

been demonstrated to attain low treewidth in several set-
tings (Maniu, Senellart, and Jog 2019). Moreover, it is well
known (and easy to see) that vc ≥ tw.

Algorithms for Tree-Like Networks
In this section, we provide dynamic programming algo-
rithms for NMA and CNMA that establish the tractable
fragments of these problems when treewidth is used as a pa-
rameter. We remark that while the use of dynamic program-
ming that relies on bags acting as separators in the graph
is the “golden standard” for treewidth-based algorithms, the
technical details here are far from standard. Among others,
in order to obtain dynamic programming tables which are
succinct enough for our purposes, we needed to identify a
suitable notion of vertex types that capture their properties
when used as a center and incorporate these into the tables.

As the types used in this section will crucially depend
on vertex distances, it will be useful to introduce some ad-
ditional terminology to capture this. As we will not need
to distinguish distances longer than d, let distd(v, w) =
dist(v, w) if dist(v, w) ≤ d and ∞ otherwise. Our oper-
ations over distances are additive, assume the result is set
to ∞ whenever the value exceeds d.

For each node x in a tree-decomposition, we can now par-
tition the vertices of G into center-types that are based on
their membership to V x and their distances to Xx. Formally,
let the center-type of a vertex v for v ∈ V (G) be

tx,v = (distd(v, w1),distd(v, w2), . . . ,distd(v, w|Xx|)),

where wi are the vertices of Xx. A core ingredient for the
proof is that if two vertices have the same type and are both
in the past or both in the future, then they are “indistinguish-
able” from the viewpoint of the bag. We remark that the no-
tion of center-types is related to the well-studied METRIC
DIMENSION problem (Bonnet and Purohit 2021).

Both of the presented algorithm in this section pro-
ceed by leaf-to-root dynamic programming along a nice
tree-decomposition computed using well-known algo-
rithms (Bodlaender 1996; Korhonen 2021). We begin by es-
tablishing the XP-tractability of NETWORK MICROAGGRE-
GATION with respect to treewidth and d which, while still



involving some technical challenges, is the easier of the two
results in this section.

Theorem 1. NETWORK MICROAGGREGATION can be
solved in time nO((d+2)tw).

Proof Sketch. The algorithm stores binary records at each
node x in the following form: D[x, fx, px] ∈ {T,F}, where:

• fx : T x → [n]0 is the total number of vertices in clusters
in V x \ Xx that have a center with center-type T x that
occurs in the future,

• px : T x → [n]0×[n]0 is the lower and upper bound on the
required number of vertices that are expected to be added
to clusters that have a center with respective center-type
in the past.

Intuitively, the records hold aggregated information about
clusters with centers of the same center-type. Vertices within
clusters that have future centers with the same center-type
are interchangeable so we just need their amount. Partially
formed clusters that have centers in the past require some
number of additional vertices to have the correct size. We
can aggregate those clusters that have the same past center-
type because it will not matter which one a new vertex satis-
fies; the total demand still decreases by one. Through the
computation, we immediately resolve aggregated clusters
with center-type t = ∞|Xx| since no more vertices may be
added to these.

The semantics of the records are as follows: a record is
true if and only if the subinstance induced on V x admits a
partial solution satisfying the conditions given by f and p.

Clearly, the number of records is upper-bounded by
nO((d+2)tw). Moreover, the records can be trivially deter-
mined at each leaf node, and once we obtain the records for
the root node r of the tree-decomposition, we can correctly
answer “Yes” if and only if D[r, ∅, ∅] = T since Xr = ∅.
Hence, to complete the proof it suffices to show that the
records can be computed in a leaf-to-root fashion along the
nodes of the tree-decomposition.

Next, we show that for CONNECTED NETWORK MI-
CROAGGREGATION one can also use treewidth to achieve
tractability, albeit with an entirely different dynamic pro-
gramming algorithm.

Theorem 2. CONNECTED NETWORK MICROAGGREGA-
TION can be solved in time O(n3) + dO(tw2)uO(tw)n.

Corollary 3. CONNECTED NETWORK MICROAGGREGA-
TION is in XP parameterized by tw only, and is fixed-
parameter tractable when parameterized by tw+u+ d.

Algorithms Using the Vertex Cover Number
In this section, we investigate the complexity of both con-
sidered problems with respect to the vertex cover number.
It is well known that the vertex cover can be computed by
an efficient fixed-parameter algorithm, and hence through-
out this section we assume that G already comes equipped
with a minimum vertex cover M of size vc.

The results of this section are obtained via the application
of two distinct techniques, and to streamline the presenta-
tion we divide the section into two subsections accordingly.
While the techniques differ, an idea that will be crucial in
both subsections is that even though the number of vertices
we need to deal with may be large, one can group them into
equivalence classes based on a suitable notion of “type”. In-
terestingly, how these types need to be set up in order for the
algorithms to work differs from scenario to scenario (and
also differs from the previous section). Moreover, in some
cases it will be necessary to define not only types for ver-
tices, but also for clusters.

Tractability via Kernelization
Kernelization is a procedure that transforms the instance into
an equivalent one whose size is bounded by the parameter
value (where the reduced instance can then be solved, e.g.,
by brute force or any heuristic), and is the core technique
used in this subsection. Kernelization is required to run in
polynomial time and is typically achieved by using problem-
specific reduction rules. For each such rule, one typically
needs to establish that it is “safe”, meaning that it preserves
Yes and No instances.

We begin with a simple observation for CONNECTED
NETWORK MICROAGGREGATION: every Yes-instance of
CONNECTED NETWORK MICROAGGREGATION may only
contain at most vc ·u vertices.
Observation 4. CONNECTED NETWORK MICROAGGRE-
GATION is fixed-parameter tractable parameterized by the
vertex-cover number vc plus the upper bound u.

Next, we turn our attention to NETWORK MICROAGGRE-
GATION with the same parameterization. Before we intro-
duce the reduction rule, we need a few definitions. We de-
fine the neighborhood-type of a vertex v for v ∈ V \ M ,
where M is a vertex cover of G. Let the neighborhood-type
tv of a vertex be the set of its neighbors, i.e., its open neigh-
borhood. For a cluster C ⊆ V \ M we define its cluster-
multitype t(C) to be the multiset {tv | v ∈ C}, i.e., a
multiset of neighborhood-types of its vertices. We stress that
cluster-multitypes are defined only for those clusters that do
not contain any vertices of M . We call a cluster C homo-
geneous if tv = tw for all v, w ∈ C, and heterogeneous
otherwise. By proving that every Yes-instance also admits a
“nice” solution where each heterogeneous cluster-multitype
occurs only at most ℓ many times, we show:
Reduction Rule 1. Suppose there are at least u · (2vc ·u +
ℓ · u + vc) vertices of the same neighborhood-type. Then,
remove ℓ such vertices.

The exhaustive application of Reduction Rule 1 then suf-
fices to obtain a kernel of size at most 2O(vc ·u), and hence:
Theorem 5. NETWORK MICROAGGREGATION is fixed-
parameter tractable when parameterized by vc+ u.

Algorithms Based on Branching and ILP
Our next set of algorithms combines exhaustive branch-
ing with an encoding into an Integer Linear Program (ILP)
where the number of variables is bounded by the parameters;
such ILPs are known to be fixed-parameter tractable:



Proposition 6 (Lenstra Jr. 1983; Kannan 1987; Frank and
Tardos 1987). There is an algorithm that solves an input
ILP instance I with p variables in time pO(p) · |I|.

We start by defining the types of vertices outside the ver-
tex cover and the types of clusters, both of which are based
on the distances to the vertices in M .

Definition 1. Let M = {v1, v2, . . . vvc} be a vertex cover of
the graph G = (V,E) and let v ∈ V \ M . The vertex-type
tv ∈ {[d] ∪ {∞}}M of v is

tvi =

{
ω(v, vi) If {v, vi} ∈ E,

∞ Otherwise.

By T we denote the set of all vertex-types of vertices.

Definition 2. Let C ⊆ V be a cluster. The cluster-type
t(C) ⊆ T of C is defined as t(C) = {t ∈ T | ∃v ∈ C :
tv = t}. Moreover, let c ∈ T ∪ M . We call (t(C), c) the
extended-cluster-type of cluster C with center c.

We observe that there are |T | ≤ (d + 1)vc different
vertex-types, plus additional vc vertices in the vertex cover
that are dealt with separately. Moreover, the number of dif-
ferent cluster-types is at most 2vc+|T | = 2vc+(d+1)vc ∈
2d

O(vc)

. When also considering the centers, we get at most
2d

O(vc) ·(vc+(d+1)vc) ∈ 2d
O(vc)

possible extended-cluster-
types.

Theorem 7. CONNECTED NETWORK MICROAGGREGA-
TION is fixed-parameter tractable parameterized by the
vertex-cover number vc and the maximum distance d.

Proof Sketch. We begin by observing that the number of
clusters can be upper bounded by vc. We then branch to de-
termine the number m ∈ [vc] of clusters in the solution, their
extended-cluster-types, and which vertex cover vertices they
contain. In each branch, we perform a set of basic checks
to prune out invalid choices (such as when the extended-
cluster-types of clusters cannot correspond to a connected
cluster). Then we construct an ILP with at most |T | ·vc vari-
ables that is a Yes-instance if and only if there is a solution
that corresponds to the given branch.

Next, we turn to NETWORK MICROAGGREGATION. The
following algorithm is based on similar ideas as the previous
Theorem, but there is an additional complication: the num-
ber of clusters is no longer upper bounded by vc. Hence, we
use variables in the ILP formulation to capture how often
each of the extended-cluster-types occurs.

Theorem 8. NETWORK MICROAGGREGATION is fixed-
parameter tractable parameterized by vc+ d.

The final and the most complicated algorithm in this sec-
tion combines both of the techniques: we first show that
there is a solution with certain properties (as was done for
Reduction Rule 1), and we then use this to design an ILP
formulation as in the previous two algorithms.

Theorem 9. NETWORK MICROAGGREGATION is in XP
parameterized by the vertex-cover number vc.

Proof Sketch. As the core ingredient in the proof, we show
that every Yes-instance also admits a solution with at most
2O(vc) cluster centers not in M ; the proof of this claim is
non-trivial and involves a swapping argument on an auxil-
iary graph representation of the solution. Once we establish
the claim, we use exhaustive branching to determine the ex-
act centers which lie outside of M , and at that point we are at
a stage where the existence of a solution can be checked by
a non-trivial ILP with boundedly-many variables which also
relies on a suitable partitioning of vertices into types.

Lower Bounds
This section contains proofs for all lower bounds (i.e., hard-
ness results) required to complete Table 1. Before proceed-
ing to the more interesting results, we first provide a straight-
forward reduction from EQUITABLE CONNECTED PARTI-
TION—a problem which is well-known to be W[1]-hard
when parameterized by treewidth (Enciso et al. 2009).
Theorem 10. CONNECTED NETWORK MICROAGGREGA-
TION is W[1]-hard parameterized by tw, even if d = 1.

Reductions from Multidimensional Subset Sum
In this section, we provide lower-bounds for NETWORK MI-
CROAGGREGATION when parameterized by treewidth by re-
ducing from a problem called MULTIDIMENSIONAL SUB-
SET SUM (MSS for short), which is defined as follows

The input of the MULTIDIMENSIONAL SUBSET SUM
problem contains n dim-dimensional vectors a1, . . . ,an

and a target vector c = (c1, . . . , cdim). The question is
whether there is a subset S ⊆ [n] such that

∑
i∈S ai = c.

MSS is known to be W[1]-hard parameterized by the
number of dimensions, even if all integers in the input are
given in unary (Ganian, Klute, and Ordyniak 2021). The rea-
son we use MSS here is that the “core” of the intractability
in this case—notably, the fact that one would need to store
too much information about incomplete clusters when per-
forming dynamic programming—makes the use of direct re-
ductions from classical W[1]-hard problems problematic.

The following gadget is the centerpiece of our reductions.
Definition 3. A choice gadget choice(k, ℓ, d) for ℓ > k + 3
is a graph consisting of k + ℓ vertices constructed in such a
way that there are only two possible clusters that may cover ℓ
of the vertices—these two possibilities correspond to the ac-
tive and inactive state of the gadget (see Figure 2). Let {u ∈
V (G), X ⊆ V (G)} denote the edge set {{u, x} | x ∈ X}.
Formally, the choice gadget is defined as follows:

choice(k, ℓ, d) =
(
W ∪A ∪ I ∪ {v1, v2, v3},

{{v1,W}, {v1, v2}, {v1, v3}, {v2, A}, {v3, I}}
)
,

where W = {w1, . . . , wℓ−3−k}, A = {a1, . . . , ak}, and
I = {i1, . . . , ik}. Edges have lengths ω({v1,W}) = d −
1, ω({v1, v2}) = ω({v1, v3}) = 1, and ω({v2, A}) =
ω({v3, I}) = d. This gadget shall be connected to other
gadgets only via active vertices A and inactive vertices I .

Theorem 11. NETWORK MICROAGGREGATION is W[1]-
hard parameterized by the treewidth tw even if ℓ, u, and d
are fixed constants.
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Figure 2: An illustration of a choice gadget choice(k, ℓ, d).

Proof Sketch. Let I = (c,a1,a2, . . . ,an) be an instance
of the MSS problem. Assume, for the sake of the argu-
ment, that we would be able to use arbitrarily large clus-
ters, and set ℓ = u − 1. In this case, we could model each
vector ai as a choice gadget choice(2 · |ai|, ℓ, d) where
|ai| =

∑
j∈[dim] a

i
j . The active state of the choice gadget

for ai corresponds with i ∈ S in the MSS. Every inactive
vertex in Ii of the choice gadget connects to a center of its
auxiliary star with ℓ − 1 leaves. This allows clusters that
cover the auxiliary stars to optionally cover Ii. Hence, if a
choice gadget is in the inactive state, then all of its vertices
are covered with the cluster within the choice gadget and
clusters that cover the auxiliary stars.

Now, we split the active vertices Ai of each choice gadget
into groups Ai

j,≥ and Ai
j,≤ so that |Ai

j,≥| = |Ai
j,≤| = cj .

We first ensure that
∑

i∈active Ai
j,≥ ≥ cj for every j ∈ [dim].

For every j ∈ [dim] we create a demand gadget Dj that is
a tree where the root has cj children, each of which forms a
star with it as the center and ℓ − 2 leaves. Setting the edge
lengths to be d− 1 ensures that each such star must be cov-
ered by a separate cluster. We connect the root of Dj to Ai

j,≥
for every i ∈ [n] making it possible to add active vertices
of Ai

j,≥ to the clusters that cover the tree. The gadget Dj

requires that at least cj of the connected vertices are active.
Because of particular lengths of the construction one

may not exclude that the active vertices of Ai
j,≥ are also

covered by clusters that do not cover the stars in the de-
mand gadget. To guarantee equality, we need to ensure that∑

i∈active Ai
j,≤ ≤ cj for every j ∈ [dim] by extending the

construction. This would complete the construction if we did
not need to preserve a bound on the cluster sizes. To deal
with this final obstacle, we replace the gadget by a different
one depicted in Figure 3.

The next reduction from MULTIDIMENSIONAL SUBSET
SUM is also based on the idea of using choice and duplica-
tion gadgets to capture the selection of vectors in a solution.
However, since the treewidth is bounded by a constant, we
cannot use dim distinct demand gadgets to encode the coor-
dinates of each vector; instead, the coordinates are encoded
via different edge lengths of their connections.

Theorem 12. NETWORK MICROAGGREGATION is NP-
hard even if tw and u are fixed constants.

Closing the Final Gaps
To finalize the complexity picture of NMA and CNMA, we
provide two W[1]-hardness reductions. Both reductions are

s

S

Figure 3: Example of a duplication gadget that duplicates a
vertex s into 9 vertices S.

from a multicolored variant of some well-known combina-
torial problem. In particular, we reduce from MULTICOL-
ORED INDEPENDENT SET and MULTICOLORED CLIQUE,
respectively.
Theorem 13. NETWORK MICROAGGREGATION is W[1]-
hard parameterized by the vertex-cover number vc.

We note that the same construction as the one used above
also works for the connected variant of the problem.
Corollary 14. CONNECTED NETWORK MICROAGGREGA-
TION is W[1]-hard parameterized by vc.

Our final result establishes the W[1]-hardness of CNMA
even when parameterized by treewidth and the upper bound
on the cluster size, which finalizes the complexity picture of
the studied problems.
Theorem 15. CONNECTED NETWORK MICROAGGREGA-
TION is W[1]-hard parameterized by tw+ u.

Conclusions
Our algorithms and lower bounds shed light on the non-
obvious complexity-theoretic behavior of the microaggrega-
tion problem and provide a comprehensive picture for both
NMA and CNMA. It is important to note that—as is typ-
ical for complexity-theoretic studies of problems central to
AI research (Bentert et al. 2021; Grüttemeier, Komusiewicz,
and Morawietz 2021; Dvořák et al. 2021)—the algorithms
provided here are not likely to outperform existing heuris-
tics in practically relevant settings. That being said, the tech-
niques introduced here may in the future serve as inspiration
for improvements in practice.

Our study does not consider the lower bound ℓ as a sepa-
rate parameter since many of the considerations and results
obtained when parameterizing by u immediately carry over
to ℓ as well; in particular, all algorithmic lower bounds pa-
rameterized by u can be directly carried over to ℓ. Moreover,
since it is known that u can be assumed to be at most 2ℓ in
NMA, the two parameters are asymptotically equivalent for
this problem. Last but not least, it may be interesting to in-
vestigate the complexity of the considered problems under
less standard parameterizations, such as the cluster vertex
deletion number.
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