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Abstract

The Single-Source Shortest Path problem is classically solved
by applying Dijkstra’s algorithm. However, the plain version
of this algorithm is far too slow for real-world applications
such as routing in large road networks. To amend this,
many speed-up techniques have been developed that build
on the idea of computing auxiliary data in a preprocessing
phase, that is used to speed up the queries. One well-known
example is the Arc-Flags algorithm that is based on the idea
of precomputing edge flags to make the search more goal-
directed. To explain the strong practical performance of such
speed-up techniques, several graph parameters have been
introduced. The skeleton dimension is one such parameter
that has already been used to derive runtime bounds for
some speed-up techniques. Moreover, it was experimentally
shown to be low in real-world road networks.

We introduce a method to incorporate skeletons, the

underlying structure behind the skeleton dimension, to

improve routing speed-up techniques even further. As a

proof of concept, we develop new algorithms called SKARF

and SKARF+ that combine skeletons with Arc-Flags, and

demonstrate via extensive experiments on large real-world

road networks that SKARF+ yields a significant reduction of

the search space and the query time of about 30% to 40%

over Arc-Flags. We also prove theoretical bounds on the

query time of SKARF, which is the first time an Arc-Flags

variant has been analyzed in terms of skeleton dimension.

1 Introduction

The problem of finding the shortest path between two
nodes in a graph is generally solved via Dijkstra’s al-
gorithm [13]. However, despite its low asymptotic
time complexity, this algorithm is too slow for many
real-world applications on large graphs. But, it is
possible to get shorter query times by storing auxil-
iary data that is computed once in a preprocessing
phase and then use it for every routing query. Several
such speed-up techniques have been developed, includ-
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ing Arc-Flags [20], Contraction-Hierarchies [15], Transit-
Nodes [4], Hub-Labels [1] and Reach [16]. Experimen-
tal studies by Bast et al. [3] and Sommer [25] demon-
strate different trade-offs between these algorithms in
terms of query time, preprocessing time, and space com-
plexity, and generally show their good performance on
real-world road networks. All of the above techniques
are able to achieve query times below a millisecond on
continent-wide networks, being significantly faster than
Dijkstra, which is in the order of seconds. However, on
graphs other than road networks, the runtime of these
algorithms often deteriorates to the one of Dijkstra’s.

Hence, street graphs must have special properties
that make these algorithms fast in practice. A popular
way to explain this behavior is to bound the runtime
by graph parameters that are small for real-world in-
stances. This has been done with the help of graph
parameters such as the highway dimension, introduced
by Abraham et al. [2], and the skeleton dimension (κ),
introduced by Kosowski and Viennot [18]. Both pa-
rameters capture the intuition that all sufficiently long
shortest paths can be hit by a small set of roads.

The skeleton dimension is a parameter originally
introduced to prove runtime bounds for the Hub-Labels
algorithm [18]. Intuitively, the skeleton of a node u is
the tree obtained by taking the union of the first p-
fraction of all shortest paths starting at u. Originally,
Kosowski and Viennot fixed p = 2

3 , while we use p = 1
2 .

The skeleton dimension captures the maximum, taken
over all nodes u and all radii r > 0, of the number of
branches the skeleton of u has at distance r from u. A
study by Blum and Storandt [10] shows that for p = 2

3
the skeleton dimension of real-world road networks is
small with a value of around 100 for graphs of different
sizes. It also seems to depend on the densest region in
the graph rather than on its size. Note that by setting
p = 1

2 , the skeleton dimension can only decrease.
In this work, we set out to explore how to use

skeletons to reduce the search space and the query time
of modern routing algorithms. In particular, we focus
on the popular Arc-Flags algorithm proposed first by
Lauther [20, 19]. Arc-Flags makes use of the structure
of shortest path trees to guide Dijkstra’s algorithm to
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the target without exploring many unnecessary nodes.
To do so, Arc-Flags stores only few flags per edge and
hence has the advantage of using significantly less space
compared to Hub-Labels and Transit-Nodes. However,
the Arc-Flags algorithm has worse query times than
Contraction-Hierarchies, Hub-Labels, and Transit-Nodes.
On a Western Europe street graph, Bast et al. [3] mea-
sure query times of around 0.56µs, 2.09µs and 110µs for
Hub-Labels, Transit-Nodes and Contraction-Hierarchies
respectively, while the Arc-Flags queries took 408µs
on average. Nevertheless, the Arc-Flags technique
plays an important role in modern routing for two
reasons. The first is that it is one of the few speed-up
techniques that allows for unidirectional search. This
advantage is of high practical relevance since most
applications have dynamic graphs with changing edge
costs that complicate bidirectional search. The second
reason is that Arc-Flags can be combined with other
techniques to achieve extremely fast query times. Four
such combinations are CHASE (Contraction-Hierarchies
+ Arc-Flags) [6], SHARC (Shortcuts + Arc-Flags) [5],
TNR+AF (Transit-Nodes + Arc-Flags) [6], and Reach-
Flags (Arc-Flags + Reach) [6]. These algorithms are
on the Pareto front of the space vs. query-time [25,
Fig.4] and preprocessing vs. query-time [3, Fig.7]
trade-offs. Also, Arc-Flags is used in practical routing,
e.g., a variation of Arc-Flags with shortcuts is the
routing algorithm employed by the TomTom navigation
systems [24], one of the market leaders for routing
services and navigation devices.

Related Work. An overview of low complexity
bounds depending on the highway dimension or the
skeleton dimension is given by Blum, Funke, and
Storandt [9] for most of the speed-up techniques men-
tioned above. For graphs with bounded highway di-
mension h, Abraham et al. [2] prove a query time of
O(h logD) for Contraction-Hierarchies and Hub-Labels,
and O(h2) for Transit-Nodes. Here, D is the diameter
of the graph. The respective space complexities are in
O(nh logD) and O(nh).

For Hub-Labels, Kosowski and Viennot [18] establish
a query time of O(κ logD) and a space complexity of
O(nκ logD) in terms of the skeleton dimension. The
latter was also used by Blum, Funke, and Storandt [9]
to prove a query time bound of O(κ2 log2 n) for Transit-
Nodes with a space complexity of O(n log n(κ+ log n)).

Blum, Funke, and Storandt [9] introduced an-
other concept called bounded growth to capture prop-
erties of road networks. A network is said to have
bounded growth if the number of nodes at a dis-
tance at most r from a vertex is at most quadratic
in r. For bounded-growth networks, they show query

times of O(
√
n log n), O(n2/3 log8/3 n), and O(

√
n) for

Contraction-Hierarchies, Transit-Nodes, and Hub-Labels
respectively. The space complexities were shown to be
O(n logD), O(n4/3 log4/3 n), and O(

√
n) respectively.

Bauer et al. [8] analyze Contraction-Hierarchies in terms
of treewidth t, and prove a query time of O(t log n) and
space complexity of O(nt log n).

To the best of our knowledge, no theoretical bounds
in the skeleton dimension were proved for Arc-Flags or
the algorithms building upon it. However, Arc-Flags
has been extensively evaluated experimentally [3],
where it performs best among the purely goal-oriented
algorithms. The performance of Arc-Flags heavily
depends on the flags and thus on the graph partition
on which the flags are based. Bauer et al. [7] show
that optimal partitioning for Arc-Flags is NP-hard on
binary trees. However, many partitioning algorithms
have been developed that produce balanced partitions
with few boundary nodes. Möhring et al. [21] give a
comparison of different partitioning algorithms and
conclude that the METIS partition algorithm presented
by Karypis and Kumar [17] is a suitable choice as
a partition for Arc-Flags. It does not require any
geometric information about the network and the low
number of boundary nodes per cell speeds up the
remaining preprocessing steps. These steps of Arc-Flags
are classically done with Dijkstra searches starting from
all boundary nodes and setting corresponding flags
along the way. This takes multiple hours for larger
graphs, but can be replaced with the PHAST algorithm
by Delling et al. [12], reducing the preprocessing after
the partition to minutes.

Our Contribution. We incorporate the concept
of skeletons into the Arc-Flags algorithm to achieve both
provable theoretical runtime guarantees and significant
speed-ups in practice. To this end, we introduce a new
parameter called cell skeleton dimension (κ̃) for a graph
with a given partition. Our experiments reveal that,
although being large for partitions with large cells, κ̃
gets closer to the classical skeleton dimension κ, the
smaller the cells are chosen. It turns out to be a
useful parameter to analyze algorithms that use graph
partitioning.

As a proof of concept for the versatility of using
skeletons, we present the SKARF algorithm (SKeleton
ARc-Flags), which is based on the idea of searching only
along skeletons using the Arc-Flags framework.

On the theoretical side, we prove that a SKARF
query has a search space ofO(κ̃D) and runs inO(∆κ̃D+
κ̃D log(κ̃D)) time, where ∆ is the maximum node
degree, which is typically very small for street-graphs,
and D is the diameter of the underlying graph. To
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the best of our knowledge, this is the first theoretical
analysis of an Arc-Flags variant using a skeleton-based
graph parameter.

On the practical side, we show via extensive
experiments that the idea of incorporating skeletons
into the Arc-Flags algorithm gives significantly smaller
search spaces. More precisely, we show that SKARF+,
a combination of SKARF and Arc-Flags, gives a 30 %
to 40 % reduction of the search space and query
times over Arc-Flags in most cases. For small par-
tition sizes and bidirectional algorithm versions we
even achieve improvements between 40 % to 50 %.
We emphasize that this speed-up is achieved while
maintaining a similar preprocessing time and using
about three times the storage space of Arc-Flags
in the unidirectional case and two times the storage
space of bidirectional Arc-Flags in the bidirectional case.

Organization. In Section 2 we give the basic
definitions and notations regarding road networks,
Arc-Flags, bidirectional search and skeleton dimension.
In Section 3, we introduce the cell skeleton dimension
and conduct an experimental study to estimate its
size on real-world road networks. Then, in Section 4
we introduce our new algorithm SKARF and perform
a theoretical analysis of its runtime, using the cell
skeleton dimension parameter. In Section 5 we in-
troduce SKARF+ as a combination of SKARF and
Arc-Flags that is more efficient in practice and compare
it experimentally with classical Arc-Flags in Section 6.
We conclude in Section 7 and give an outlook for
future research. The source code 1 and data for all our
experiments is publicly available.

2 Preliminaries

We start with basic notions regarding road networks.

2.1 Road Network Modeling and Notation We
model a road network as a weighted, strongly connected
directed graph G = (V,E, l) with l : E → R+. For two
nodes u, v ∈ V we refer to the shortest path from u
to v in G as PG(u, v) or simply P (u, v) if the graph
is clear from context. We refer to the distance from u
to v, which is given by the sum of all edge weights in
P (u, v), as dG(u, v) or simply d(u, v) if the graph is clear
from context. We denote the transposed graph of G by
G′ = (V,E′, l′), where E′ = {(v, u) | (u, v) ∈ E} and
∀(v, u) ∈ E′ : l′((v, u)) = l((u, v)).

We assume that G has minimum edge weight 1 and

1https://github.com/SKARF-Routing-Algorithm/SKARF-
Routing-Algorithm.git

a bounded maximum node degree of ∆. Since real-world
networks can be modeled as finite graphs, they have
minimum edge weights that can be scaled linearly so
that the minimum weight is 1. Furthermore, we assume
every edge to be a shortest path in G and all shortest
paths in G to be unique. If this is not the case, this
property can be achieved by slightly perturbing the edge
weights and removing edges that are no shortest paths.
Note that under this assumption, there exists exactly
one shortest path tree originating from a given source.
We refer to the shortest path tree of a node u as Tu.

On road networks, for two distinct nodes u, v ∈ V ,
the distance from u to v is usually very similar to the
distance from v to u. To capture this useful property in
our model, we assume that there is a small constant δ ≥
1 such that d(u, v)/d(v, u) ≤ δ holds. The experimental
study by Mori and Samaranayake [22] gives justification
for assuming that δ is small. There it is shown that in a
collection of large cities for paths that are at least 4 500
meters long, δ does not exceed a value of 4.

We denote a partition of V by P and refer to ele-
ments C ∈ P as cells of the partition P. The diameter of
a cell C is denoted byDC := maxu,v∈C d(u, v), the max-
imum cell diameter by Dmax := maxC∈P DC and the
maximum cell size by µ := maxC∈P |C|. For easier no-
tation we refer to the cell of some node v ∈ V as Cv. We
also define the boundary node set of a cell as BC ⊆ C,
BC := {u ∈ C | ∃v /∈ C : (u, v) ∈ E ∨ (v, u) ∈ E}.
These are the nodes that connect the different cells.

2.2 Arc-Flags The Arc-Flags algorithm [20, 19] is a
goal-directed routing speed-up technique that relies on
precomputed data to direct the search to the target. In
the preprocessing phase, the graph is partitioned and
labels are attached to each edge e. A label contains
flags for every cell of the partition and a flag is set to
true if and only if there is a shortest path to a node in
the respective cell that starts with edge e. These labels
are classically precomputed by building shortest path
trees from all boundary nodes of a cell in the transposed
graph and setting the flag of the given cell for each edge
on the shortest path tree to true. This data is then used
in the shortest path query that runs a modified Dijkstra
query relaxing only those edges for which the target cell
flag is set. We consider the Dijkstra implementation
by Fredman and Tarjan [14], where Fibonacci heaps
are used, yielding a runtime in O(|E| + |V | log |V |). In
practice, Arc-Flags has extremely short query times on
real-world road networks when compared to Dijkstra,
which is not yet theoretically explained.

The performance of Arc-Flags depends heavily on
the graph partition. A good partition should have few
boundary nodes and balanced cell sizes. Möhring et
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al. [21] compare different partitioning algorithms and
conclude that METIS, presented by Karypis and Kumar
[17], meets these criteria and is thus a suitable choice
as a partitioner for Arc-Flags. It also has the advantage
that it does not need any geometric information about
the network. These advantages apply unaltered to
SKARF, which is why we use this partitioning algorithm
in our experiments in Section 3 and Section 6.

2.3 Bidirectional Search Plain Dijkstra can al-
ready be accelerated by searching from source and tar-
get node simultaneously. A correctness proof for dif-
ferent stopping criteria has been provided by Pohl [23].
Given that Arc-Flags runs a Dijkstra search ignoring un-
necessary edges, a bidirectional version of Arc-Flags is
correct as well. In this work, we discuss bidirectional al-
gorithm versions that switch between forward and back-
ward search based on the smallest tentative distance in
the two Dijkstra queues.

2.4 Skeleton Dimension The notion of skele-
tons and skeleton dimension was first introduced by
Kosowski and Viennot [18]. It captures the intuition
that for every source node, the shortest paths that reach
far away from the source all lead over the same small
set of subpaths for most of the way. In order to define
skeletons, we need to introduce the reach first.

Definition 2.1. (Reach) Let s ∈ V and v ∈ Ts with
Ts(v) ⊆ Ts being the set of descendants of v in Ts.
We define the reach of v in Ts as Reachs(v) := 0 if
Ts(v) = ∅ and otherwise as

Reachs(v) := max
x∈Ts(v)

dTs
(v, x).

With this, we are ready to define the skeleton of a node.

Definition 2.2. (Skeleton) Let s ∈ V . The skele-
ton T ∗

s of s is the subgraph of Ts induced by the edges
e = (u, v) ∈ Ts satisfying

Reachs(v) + l(e) > d(s, u).

The parameter skeleton dimension is the maximum
width of all skeletons in a graph. Formally it is defined
over the cut as follows.

Definition 2.3. (Cut) For a node s ∈ V and a radius
r ∈ R+ we define the cut on the graph G around the
node s at distance r as

Cutrs(G) := {e = (u, v) ∈ E | d(s, u) < r ≤ d(s, u)+l(e)}.

Definition 2.4. (Skeleton Dimension) The skele-
ton dimension κ(G) of a graph G = (V,E, l) is

κ(G) := max
s∈V,r∈R+

|Cutrs(T ∗
s )|.

We omit the reference to the graph G if it is clear from
the context. Also, in this case we use κ′ for κ(G′).

Note that our skeleton definition is slightly differ-
ent from the original one by Kosowski and Viennot [18].
There, the skeleton is defined on the geometric realiza-
tion of a graph while we introduce a discrete version for
better algorithmic applicability. Though in our discrete
version the branches of the skeleton become slightly
longer, our experiments show that in practice this re-
sults in no significant increase of the skeleton dimension.
Another difference is that for a node s ∈ V Kosowski
and Viennot [18] include the first two thirds of every
shortest path starting at s in its skeleton, while we re-
strict T ∗

s to the first half of every shortest path starting
at s. We use this more restrictive skeleton definition
because it is sufficient for our proofs and yields smaller
skeletons and thus enables smaller search spaces.

3 Cell Skeletons

Our main tool to theoretically study the effect of low
skeleton dimension on our modification of Arc-Flags are
cell skeletons which we define here.

3.1 Cell Skeleton Dimension

Definition 3.1. (Cell Skeleton) Given a cell C ∈
P the cell skeleton T ∗

C is the union of all skeletons
originating in cell C, i.e.,

T ∗
C :=

⋃
v∈C

T ∗
v .

Analogously to the skeleton dimension, cell skeleton
dimension describes over all cells and all distances
r ∈ R+ the maximum cut size at a distance r from
the cell. To measure the distance from the cell, we take
the distance from its center node.

Definition 3.2. (Center Node) Given a cell C ∈
P, the center node z(C) is defined as the node v of
smallest index that minimizes maxb∈BC

d(v, b)

Definition 3.3. (Cell Skeleton Dimension)
Given a graph G and a node partition P, the cell
skeleton dimension κ̃(G,P) of graph G with partition
P is the maximum cut size over all cell skeletons.
Formally,

κ̃(G,P) := max
C∈P,r∈R+

|Cutrz(C)(T
∗
C)|.

We omit the reference to G and P if they are clear from
the context and we refer to the cell skeleton dimension
of the transposed graph G′ with partition P as κ̃′.
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Table 1: The cell skeleton dimension κ̃ of the Germany
and France road networks and the corresponding cell
skeleton dimension of their transposed graphs, κ̃′.

Germany France
Partition κ̃ κ̃′ κ̃ κ̃′

50 cells 2230 2178 2278 2307
100 cells 1676 1705 1623 1608
200 cells 1200 1179 1057 1061
500 cells 718 757 751 750

1000 cells 517 503 578 590

3.2 Cell skeleton experiments To analyze algo-
rithms using the cell skeleton dimension, we measure
its value in real-world road networks for different parti-
tion sizes. For this we conduct an experimental study
on the Germany and France road networks.

These networks are taken from Open-
StreetMap [11]. They both have around 4,000,000
nodes and 10,000,000 edges where the edge weights
represent the corresponding travel times. To partition
these networks, we use the METIS algorithm [17] and
consider five different partitions of sizes 50, 100, 200,
500 and 1000. For each of those we calculate the cell
skeleton dimension κ̃ and the cell skeleton dimension on
the transposed graph κ̃′. Table 1 presents our results.

We observe that κ̃, with a value of more than
2000 for 50 cells, is quite large when the cells are
large. However, it decreases with decreasing cell size,
with a value of only 517 when the Germany graph is
partitioned into 1000 cells. The corresponding values
on the France graph are very similar.

To set this in relation to the well-known skeleton
dimension κ, we refer to the study by Blum and
Storandt [10]. They compute κ for graphs of different
sizes and present results with a skeleton dimension of
around 100 with a value of 114 for Germany. This
value is smaller than our κ̃, but the gap decreases for
decreasing cell sizes, i.e., larger partitions. For a 1000-
cells partition in Germany κ̃ is about 5 times larger than
the skeleton dimension by the definition that Blum and
Storandt [10] used and that they computed for their
Germany street graph. The cell skeleton dimension on
the transposed graph κ̃′ behaves similarly.

Furthermore, Figure 1 shows the mean width of
cell skeletons meanC∈PCut

r
z(C)(T

∗
C) at different radii r

from the cell’s center node. It indicates that cell skele-
tons have a comparably large width at the start that
decreases rapidly at larger distances approaching the
width of a single skeleton. This is expected behaviour,
since within the cell, every edge belongs to the cell skele-
ton, but outside of the cell the individual skeletons of

Figure 1: The mean width meanC∈PCut
r
z(C)(T

∗
C) on cell

skeletons at different radii r with different colors for
varying partition sizes.

the cell nodes seem to overlap strongly. Thus, it is worth
to keep in mind that the values for the maximum width
of cell skeletons from Table 1 are mostly outliers and
for the majority of possible radii, the width of the cell
skeletons is considerably lower. This also explains the
good performance of our algorithm in practice, which
we analyze in Section 6.

To conclude, the cell skeleton dimension κ̃ is a graph
parameter that can be used for analyzing algorithms
that are performed on partitioned graphs. Its size
can be controlled by the chosen partition and gets
closer to the skeleton dimension for smaller cell sizes,
eventually becoming equal to the skeleton dimension
when cells are single nodes. This parameter will prove
to be especially useful for our theoretical analysis in the
following section.

4 SKARF

SKARF (SKeleton ARc-Flags) is based on the ob-
servation that each shortest path is covered by the
union of the source’s skeleton and the target’s skele-
ton (Lemma 4.3). Hence, it is sufficient to route on the
union of the two skeletons. In Figure 2, two cells in
a Germany street graph that is partitioned into 1000
cells are visualized with their corresponding cell skele-
tons. Remarkably, the marked edges completely cover
all shortest paths between these two cells.

The idea of SKARF is inspired by the Arc-Flags
algorithm. Instead of saving shortest path trees as in
Arc-Flags, SKARF precomputes cell skeletons for all cells
in the graph and in its transpose. The modified Dijkstra
query is then restricted to the cell skeletons of the source
and target cell.

In this section, we provide a description and theo-
retical analysis of the SKARF algorithm, including its
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Figure 2: The street graph of Germany is partitioned
into 1000 cells. The cell skeletons of the red and green
cell are highlighted in the corresponding color.

preprocessing, query handling and search space size.

4.1 Preprocessing Similarly to Arc-Flags, the graph
is partitioned into γ ∈ N cells.

Algorithm. For every edge e ∈ E, two arrays of
flags Xe and Ye are created, each containing one flag
for every cell C ∈ P which we call Xe(C) and Ye(C),
respectively. All flags are initialized with false. We
then compute the cell skeleton T ∗

C for every cell C ∈ P,
and for every edge e ∈ T ∗

C , we set the flag Xe(C) to
true. This is repeated on the transposed graph such
that for every edge e ∈ T ′∗

C , the flag Ye(C) is set to true.

Lemma 4.1 states that the cell skeleton of a cell C
is equal to the union of the skeletons of its boundary
nodes and the inside of the cell.

Lemma 4.1. Let C ∈ P and G[C] be the subgraph
induced by the nodes in C. It holds that

T ∗
C = G[C] ∪

⋃
b∈BC

T ∗
b .

Proof. We first show T ∗
C ⊆ G[C] ∪

⋃
b∈BC

T ∗
b .

For this let e = (u, v) ∈ T ∗
C be an edge. There must

exist a node s ∈ C for which e lies on its skeleton.
According to the skeleton definition, this means that
Reachs(v) + l(e) > d(s, u). For this to be true there
must exist a descendent x ∈ Ts(v) with dTs

(v, x)+l(e) >
d(s, u). If e ∈ G[C], we are done. Otherwise there must
exist a boundary node b ∈ BC on the shortest path
P (s, v), which leads over e. Then

Reachb(v) + l(e) ≥ dTb
(v, x) + l(e)

= dTs
(v, x) + l(e)

> d(s, u)

≥ d(b, u).

Thus e lies on the skeleton of b and therefore also on⋃
b∈BC

T ∗
b . This proves that every edge in T ∗

C is also in
G[C] ∪

⋃
b∈BC

T ∗
b .

Let now v ∈ T ∗
C be a node. Then there exists an

s ∈ C with v ∈ T ∗
s . If v ∈ C, we are done. Otherwise

v ̸= s holds, which is why there exists an incident
edge e = (u, v) ∈ T ∗

s and thus e ∈ T ∗
C . It was

shown above that then e ∈ G[C] ∪
⋃

b∈BC
T ∗
b follows,

which is why v must also be in G[C] ∪
⋃

b∈BC
T ∗
b . This

proves that every node in T ∗
C is also in G[C]∪

⋃
b∈BC

T ∗
b .

Now we show G[C] ∪
⋃

b∈BC
T ∗
b ⊆ T ∗

C .
For this let e = (u, v) ∈ G[C] ∪

⋃
b∈BC

T ∗
b be an edge.

If e ∈
⋃

b∈BC
T ∗
b , we are done because BC ⊆ C and

therefore
⋃

b∈BC
T ∗
b ⊆ T ∗

C . Let otherwise e ∈ G[C],
then u ∈ C holds. Then

Reachu(v) + l(e) > 0 = d(u, u),

which is why e lies on the skeleton of u. Because u ∈ C,
it follows that e lies also on the cell skeleton T ∗

C . This
proves that every edge in G[C] ∪

⋃
b∈BC

T ∗
b is also in

T ∗
C .

Let now v ∈ G[C] ∪
⋃

b∈BC
T ∗
b be a node. If v ∈⋃

b∈BC
T ∗
b , we are done because

⋃
b∈BC

T ∗
b ⊆ T ∗

C . If
otherwise v ∈ C, then v ∈ T ∗

v ⊆ T ∗
C . This proves that

every node in G[C] ∪
⋃

b∈BC
T ∗
b is also in T ∗

C .

Thus, in order to compute the cell skeletons, it is
sufficient to calculate the skeletons of the boundary
nodes and then perform a final iteration over all
edges e ∈ E to set the corresponding own-cell flag if
both incident nodes are in the same cell C ∈ P, i.e.,
Xe(C) := true and Ye(C) := true.

Runtime. The preprocessing times of both Arc-
Flags and SKARF are dominated by computing shortest
path trees from all boundary nodes. SKARF preprocess-
ing does this twice, on G and G′, but its runtime re-
mains asymptotically equal to Arc-Flags preprocessing.
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Lemma 4.2 states the preprocessing runtime of SKARF
after the graph is partitioned.

Lemma 4.2. Given a graph that is partitioned into γ
cells with at most β boundary nodes each, the prepro-
cessing has a runtime in O(γβ(|V | log |V |+ |E|)).

Proof. The runtime for computing the skeleton of a
node is dominated by computing its shortest path tree,
which can be done in O(|V | log |V | + |E|) [14]. Thus
computing the skeletons of all boundary nodes can be
done in O(γβ(|V | log |V | + |E|)). The final setting of
the own-cell flags does not alter this runtime.

Space consumption. For every edge e ∈ E, the
flag arrays Xe and Ye, each with the size of γ, have
to be saved, resulting in a space consumption of 2γ|E|
bits. This is twice as much as the space consumption of
Arc-Flags, where only flags for the transposed graph are
needed and therefore, for every edge, only one array of
size γ has to be saved.

Möhring et al. [21] show that the space consumption
of Arc-Flags can be reduced by storing all existing
flag combinations per edge in a matrix and assigning
pointers to the corresponding combination to the edges.
Since not all flag combinations occur in the matrix, the
pointers require less space than the flag combinations
themselves. This method can also be applied to SKARF.

4.2 Query and Correctness We describe the way
SKARF answers queries and prove the correctness.

Algorithm. Given a source s ∈ V and a target
t ∈ V , SKARF runs a modified Dijkstra query where
an edge e ∈ E is only considered if Xe(Cs) = true or
Ye(Ct) = true.

Correctness. The skeleton of a node v contains
the first half of every shortest path starting at v. This
implies that every edge on the first half of P (s, t) is on
the skeleton of s and every edge on the second half of
P (s, t) is on the skeleton of t on the transposed graph.
Lemma 4.3 captures this intuition.

Lemma 4.3. For every edge e = (u, v) ∈ P (s, t) it holds
that (u, v) ∈ T ∗

s or (v, u) ∈ T ′∗
t .

Proof. We consider two cases. For the first case let
d(s, u) < d(u, t). Then it follows that

Reachs(v) + l(e) ≥ d(v, t) + l(e) = d(u, t) > d(s, u)

and therefore by the definition of a skeleton (u, v) ∈ T ∗
s .

For the second case let d(s, u) ≥ d(u, t) and let
Reach′t(u) denote the reach of u in T ′

t . Then dG′(u, s) ≥
dG′(t, u) and it follows that

Reach′t(u) + l′((v, u)) ≥ dG′(u, s) + l(e)

≥ dG′(t, u) + l(e)

> dG′(t, v).

Therefore, by the definition of a skeleton we have
(v, u) ∈ T ′∗

t .

It follows immediately that every edge in P (s, t) is
also either in the cell skeleton of Cs or in the cell skeleton
of Ct in the transposed graph. Thus, by the algorithm
preprocessing specification every edge on P (s, t) must
have the flags set that are specified in Lemma 4.4, such
that it is not ignored in the query.

Lemma 4.4. For any distinct s, t ∈ V and any edge e ∈
P (s, t), it holds that Xe(Cs) = true or Ye(Ct) = true.

Proof. Let e ∈ P (s, t) be an edge. Lemma 4.3 implies
that e ∈ T ∗

s or e ∈ T ′∗
t . It follows immediately, that

e ∈ T ∗
Cs

or e ∈ T ′∗
Ct

holds. By the preprocessing
algorithm specification, it follows that Xe(Cs) = true
or Ye(Ct) = true.

Thus, the Dijkstra query operates on a graph that
contains all edges in P (s, t) and finds it as the shortest
path from s to t.

Corollary 4.1. For a source s ∈ V and a target t ∈ V
the SKARF query outputs the optimal shortest path from
s to t.

Proof. Lemma 4.4 implies that all the edges e ∈ P (s, t)
satisfy Xe(Cs) = true or Ye(Ct) = true. Thus, the
Dijkstra query operates on a graph that contains all
edges in P (s, t) and finds it as the shortest path from s
to t.

4.3 Search Space In order to quantify the search
space in terms of the distance from source to target, we
use the notion of a ball.

Definition 4.1. (Ball) The ball of a node s ∈ V
with radius r ∈ R+ on the graph G is defined as

Ballrs(G) := {v ∈ V | d(s, v) ≤ r}.

Recall that we assume a minimum edge length of 1,
which is why there are at most κ̃ nodes with a distance
from the center node in an interval of length 1. Thus
the following lemma holds.
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Lemma 4.5. For a cell C ∈ P and all r ∈ N+ it holds
that

|Ballrz(C)(T
∗
C) \ Ball

r−1
z(C)(T

∗
C)| ≤ κ̃.

Proof. Let U = Ballrz(C)(T
∗
C) \ Ballr−1

z(C)(T
∗
C) and r′ =

1
2

(
r − 1 + minu∈U dT∗

C
(z(C), u)

)
.

We define the function

f : U → Cutr
′

z(C)(T
∗
C), with

f : u 7→ e ⇐⇒ e ∈ PT∗
C
(z(C), u) ∩ Cutr

′

z(C)(T
∗
C)

and show that f is injective by proving the following
two claims.

1. For every u ∈ U there exists an edge e ∈ E with
e = f(u).
Let u ∈ U and let e = (x, u) ∈ PT∗

C
(z(C), u) be the

last edge on the shortest path from z(C) to u. Re-
call that we assume minimum edge lengths of 1 and
that dT∗

C
(z(C), u) ≤ r. Thus dT∗

C
(z(C), x) ≤ r −

1 < r′ must hold. Because also r′ < dT∗
C
(z(C), u)

it follows that e ∈ Cutr
′

z(C)(T
∗
C) and thus e = f(u).

2. For every e = (x, y) ∈ Cutr
′

z(C)(T
∗
C) there exists at

most one u ∈ U with u ∈ f−1(e).

Let e = (x, y) ∈ Cutr
′

z(C)(T
∗
C) and some u ∈ U with

u ∈ f−1(e). Then e ∈ PT∗
C
(z(C), u) holds. Note

that

dT∗
C
(y, u) = dT∗

C
(z(C), u)− dT∗

C
(z(C), y)

≤ r − dT∗
C
(z(C), y)

≤ r − r′

< 1.

Because we assume minimum edge lengths of 1,
y = u must hold. Thus u = y is the only node
in U for which u ∈ f−1(e) can hold.

Because f is injective, it holds that |U | ≤ |Cutr
′

z(C)(T
∗
C)|

and therefore

|Ballrz(C)(T
∗
C)\Ball

r−1
z(C)(T

∗
C)| = |U | ≤ |Cutr

′

z(C)(T
∗
C)| ≤ κ̃.

Then, the number of nodes in a cell skeleton that
are inside a certain ball can be bounded as follows.

Lemma 4.6. For a cell C ∈ P and all r ∈ R+ it holds
that

|Ballrz(C)(T
∗
C)| ≤ κ̃⌈r⌉.

Proof. Because for j, j′ ∈ N, j ̸= j′ the sets

Balljz(C)(T
∗
C) \ Ballj−1

z(C)(T
∗
C) and Ballj

′

z(C)(T
∗
C) \

Ballj
′−1

z(C)(T
∗
C) are disjoint and Ballrz(C)(T

∗
C) ⊆

Ball
⌈r⌉
z(C)(T

∗
C), it follows from Lemma 4.5 that

|Ballrz(C)(T
∗
C)| ≤ |Ball⌈r⌉z(C)(T

∗
C)|

=

⌈r⌉∑
i=1

|Balliz(C)(T
∗
C) \ Ball

i−1
z(C)(T

∗
C)|

≤
⌈r⌉∑
i=1

κ̃ = ⌈r⌉κ̃.

This proves the claim.

The following Lemmas 4.7 and 4.8 bound the search
space in the cell skeleton of the source cell and the target
cell, respectively.

Lemma 4.7. Given a source s ∈ V and a target t ∈ V ,
the number of nodes settled by the SKARF query in T ∗

Cs

is upper bounded by κ̃⌈d(s, t) +Dmax⌉.

Proof. Let v ∈ T ∗
Cs

be a node that is settled by the
SKARF query. Since v got settled before t it follows
that d(s, v) ≤ d(s, t) and thus

d(z(Cs), v) ≤ d(z(Cs), s) + d(s, v) ≤ Dmax + d(s, t).

Then, every settled node in T ∗
Cs

is inside

Ball
d(s,t)+Dmax

z(Cs)
(T ∗

Cs
), and by Lemma 4.6 we obtain

|Balld(s,t)+Dmax

z(Cs)
(T ∗

Cs
)| ≤ κ̃⌈d(s, t) +Dmax⌉.

Lemma 4.8. Given a source s ∈ V and a target t ∈ V
and let T ′∗

Ct
denote the transposed cell skeleton of Ct.

Then the number of nodes that are settled by the SKARF
query in T ′∗

Ct
is upper bounded by

κ̃′⌈(δ + 1)d(s, t) +Dmax⌉.

Proof. Let v ∈ T ′∗
Ct

be a node that is settled by the
SKARF query. Since v got settled before t it follows
that d(s, v) ≤ d(s, t) and thus

dG′(t, v) ≤ dG′(t, s) + dG′(s, v)

= d(s, t) + d(v, s)

≤ d(s, t) + δd(s, v)

≤ d(s, t) + δd(s, t)

= (δ + 1)d(s, t).

It follows that

dG′(z(Ct), v) ≤ dG′(z(Ct), t) + dG′(t, v)

≤ Dmax + (δ + 1)d(s, t).
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Then, every settled node in T ′∗
Ct

is inside

Ball
(δ+1)d(s,t)+Dmax

z(Ct)
(T ′∗

Ct
) and by Lemma 4.6 we obtain

|Ball(δ+1)d(s,t)+Dmax

z(Ct)
(T ′∗

Ct
)| ≤ κ̃⌈(δ + 1)d(s, t) + Dmax⌉.

Now we can make a statement about the maximum
number of nodes that can be settled by the SKARF
query. For this, note that for a source s ∈ V and a
target t ∈ V , the SKARF query scans only nodes in
T ∗
Cs

∪ T ′∗
Ct
.

Theorem 4.1. Given a source s ∈ V and a target t ∈
V , the number of nodes that are settled by the SKARF
query is upper bounded by max(κ̃, κ̃′)((δ + 2)d(s, t) +
2Dmax + 2).

Proof. By Lemma 4.7 there can be at most κ̃⌈d(s, t) +
Dmax⌉ settled nodes on T ∗

Cs
and by Lemma 4.8 at most

κ̃′⌈(δ+1)d(s, t)+Dmax⌉ settled nodes on T ′∗
Ct
. Since all

settled nodes are in T ∗
Cs

∪ T ′∗
Ct
, in total there can be at

most

κ̃⌈d(s, t) +Dmax⌉+ κ̃′⌈(δ + 1)d(s, t) +Dmax⌉
≤max(κ̃, κ̃′) ((δ + 2)d(s, t) + 2Dmax + 2)

settled nodes.

Recall that the SKARF query is a modified Dijkstra
search. By Fredman and Tarjan [14], a Dijkstra query
that scans n′ nodes and ∆n′ edges has a runtime
complexity of O(∆n′ + n′ log n′). This leads us to the
final query runtime of SKARF.

Corollary 4.2. Given a source s ∈ V and a target
t ∈ V , the SKARF query runs in O(∆n′+n′ log n′) with
n′ := max(κ̃, κ̃′) ((δ + 2)d(s, t) + 2Dmax + 2).

Proof. By Lemma 4.6 |T ∗
Cs

| = |BallDz(Cs)(T
∗
Cs

)| ≤ κ̃⌈D⌉
and |T ′∗

Ct
| = |BallDz(Ct)(T

′∗
Ct
)| ≤ κ̃′⌈D⌉ hold. The number

of all settled nodes is at most |T ∗
Cs

∪ T ′∗
Ct
| ≤ κ̃⌈D⌉ +

κ̃′⌈D⌉, which is in O(κ̃D). Then the query, which runs
a Dijkstra on O(κ̃D) nodes, has a runtime complexity
in O(∆κ̃D + κ̃D log(κ̃D)).

Corollary 4.3. Assuming δ ∈ O(1) and κ̃′ ∈ O(κ̃),
the SKARF query has a runtime complexity in O(∆κ̃D+
κ̃D log(κ̃D)).

4.4 Bidirectional SKARF Extending SKARF to
a bidirectional version, we improve the result of
Lemma 4.8 where we used bounded asymmetry to
accomplish a statement about the search space inside
the target cell skeleton. Routing on target cell skeletons

in the forward search can be avoided by searching the
target cell skeleton only within the backward search.
This makes the assumption of bounded asymmetry
unnecessary.

Algorithm. Bidirectional SKARF uses the same
preprocessing as SKARF. During the query a forward
Dijkstra search is started from s that relaxes an edge e
if and only if Xe(Cs) = true and a backward Dijkstra
search is started on G′ from t that relaxes an edge e
if and only if Ye(Ct) = true. The processing order is
obtained by comparing the top priority queue elements
of both searches and choosing the one with the smaller
distance to its search origin. The query stops as soon
as a node is settled by both searches.

Correctness. It is shown by Pohl [23] that bidi-
rectional Dijkstra is correct. By Lemma 4.4 the short-
est path is always contained in the union of the source
cell skeleton and the target cell skeleton. To complete
the correctness proof of bidirectional SKARF, it only
has to be guaranteed that some node is settled by both
searches so that the query terminates. Indeed, it can
be proven that there is always a node on P (s, t) that
is in both the skeleton of s and the skeleton of t in the
transposed graph and can therefore be settled by both
searches. Lemma 4.9 captures this statement.

Lemma 4.9. For a source s ∈ V and a target t ∈ V
there exists some node v ∈ V such that v ∈ P (s, t) and
v ∈ T ∗

s ∩ T ′∗
t .

Proof. Let e = (u, v) ∈ E such that e ∈ P (s, t) and
d(s, u) < 1

2d(s, t) ≤ d(s, v). Then

Reachs(v) + l(e) ≥ d(u, t) >
1

2
d(s, t) > d(s, u),

meaning that (u, v) ∈ T ∗
s . Let Reach′t(u) denote the

reach of u in T ′
t . It holds that

Reach′t(u) + l′((v, u)) ≥ dT ′
t
(v, s)

≥ 1

2
dT ′

t
(t, s)

≥ dT ′
t
(t, v).

If Reach′t(u) + l′((v, u)) > dT ′
t
(t, v), then (v, u) ∈ T ′∗

t

follows. If otherwise Reach′t(u) + l′((v, u)) = dT ′
t
(t, v),

then for the next edge (v, w) ∈ P (s, t) it follows that

Reach′t(v) + l′((w, v))

≥ Reach′t(u) + l′((v, u)) + l′((w, v))

= dT ′
t
(t, v) + l′((w, v))

> dT ′
t
(t, w)
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and therefore (w, v) ∈ T ′∗
t . In all cases v ∈ T ∗

s ∩ T ′∗
t

holds.

Thus, as soon as bidirectional SKARF settles a
node in both searches, it terminates and the correct
result can be obtained by finding the node v ∈ V that
minimizes d(s, v) + d(v, t). The shortest path is then
given by the combination of P (s, v) and P (v, t).

Search Space. Using the property that in bidirec-
tional SKARF, both searches relax only edges that are
in the source cell skeleton or the target cell skeleton, re-
spectively, we can replace the result of Lemma 4.8 with
a new one that is rather similar to Lemma 4.7 and can
be proven analogously to it.

Lemma 4.10. Given a source s ∈ V and a target
t ∈ V , the number of nodes settled by the backward
search of bidirectional SKARF in T ′∗

Ct
is upper bounded

by κ̃′⌈d(s, t) +Dmax⌉.

Proof. Let v ∈ T ′
Ct

be a node that is settled by the
backward search of bidirectional SKARF. Since v got
settled before s, it follows that dG′(t, v) ≤ dG′(t, s) =
d(s, t) and thus

dG′(z(Ct), v) ≤ dG′(z(Ct), t)+dG′(t, v) ≤ Dmax+d(s, t).

Then, every settled node is inside Ball
d(s,t)+Dmax

z(Ct)
(T ′∗

Ct
)

and by Lemma 4.6 we obtain |Balld(s,t)+Dmax

z(Ct)
(T ′∗

Ct
)| ≤

κ̃′⌈d(s, t) +Dmax⌉.

Theorem 4.2. Given a source s ∈ V and a tar-
get t ∈ V , the number of nodes that are settled by
the bidirectional SKARF query is upper bounded by
2max(κ̃, κ̃′)⌈d(s, t) +Dmax⌉.

This theorem can be proven analogously to Theo-
rem 4.1. The only difference is that instead of using
Lemma 4.8 we use Lemma 4.10, which gives the im-
provement. We now use this to obtain the following.

Corollary 4.4. Given a source s ∈ V and a tar-
get t ∈ V , the bidirectional SKARF query has a run-
time complexity of O(n′∆ + n′log(n′)), where n′ :=
2max(κ̃, κ̃′)⌈d(s, t) +Dmax⌉.

Note that, as claimed above, Corollary 4.4 is en-
tirely independent of our bounded asymmetry assump-
tion.

5 SKARF+

The SKARF+ algorithm combines the goal-directed
speed-up technique Arc-Flags with the additional search

space restrictions of SKARF. For a source s ∈ V and a
target t ∈ V , it runs a Dijkstra query that relaxes only
edges e ∈ E, which have the according Arc-Flags and
SKARF flags set, i.e., e ∈

⋃
v∈Ct

T ′
v and e ∈ T ∗

Cs
∪ T ′∗

Ct
.

Since both Arc-Flags and SKARF allow every edge
that lies on a shortest path between the relevant cells
of a query to be visited, the combination of the two
algorithms also allows every such edge to be visited,
which in turn gives us the correctness of SKARF+.

The flag computation runtime is identical to the
one of SKARF, since the flag computations for SKARF
include building shortest path trees from all boundary
nodes. During this process, the Arc-Flags flags can be
saved as well.

If the flag vectors of SKARF and Arc-Flags are
saved individually, the space consumption of SKARF+

is exactly the sum of the space consumption of SKARF
and Arc-Flags. However, further optimization is possible
because given an edge e and a cell C, it is enough to
differentiate between three different states:

1. either e ∈ T ∗
C (and thus e ∈

⋃
v∈C Tv),

2. e ∈
(⋃

v∈C Tv \ T ∗
C

)
or

3. e /∈
⋃

v∈C Tv (and thus e /∈ T ∗
C).

The search space of SKARF+ is at most the minimum of
the ones of SKARF and Arc-Flags, although the following
section demonstrates that in practice it is better.

6 Experimental Comparison of SKARF+ and
Arc-Flags

To demonstrate the effectiveness of SKARF+ on real-
world street graphs, we conduct an experimental study
on its performance in comparison with Arc-Flags. Simi-
larly to our experiments in Section 3, these experiments
are performed on a Germany and a France street graph
from OpenStreetMap [11] with about 4,000,000 nodes
and 10,000,000 edges each. Both are again partitioned
with METIS [17] into 50, 100, 200, 500 and 1000 cells
to have results that depend on different partition sizes.

The preprocessing is performed on 50 cores and 80
GB RAM on an AMD EPYC 7742 with x86-64 archi-
tecture that is clocked at 2.25 GHz. In this scenario the
preprocessing expense is feasible with between 2 and 10
hours of computing time for each partition. For Arc-
Flags, PHAST is a more sophisticated preprocessing al-
gorithm to obtain the shortest path trees and set the
flags, achieving total preprocessing times of just 10 min-
utes on the road network of Western Europe [12]. Since
our preprocessing time is dominated by the construc-
tion of the shortest path trees, PHAST can reduce it
significantly. For SKARF+, only the computation of the
reaches would be added, indicating that the SKARF+
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Table 2: A comparison of the performance of Arc-Flags and SKARF+ shortest path queries in their unidirectional
and bidirectional version after running them for 10,000 random node pairs on the Germany (a) and France (b)
street graphs. The performance is measured in terms of average number of settled nodes and query times.

(a) Germany street graph. Average path length: 1157.

Arc-Flags SKARF+ Reduction [%] bid. Arc-Flags bid. SKARF+ Reduction [%]
Part. #sett. time #sett. time #sett. time #sett. time #sett. time #sett. time
#cells nodes [µs] nodes [µs] nodes [µs] nodes [µs] nodes [µs] nodes [µs]

50 68609 282795 49778 199211 27.45 29.56 8028 32843 4487 18616 44.11 43.32
100 38322 254574 26721 172385 30.27 32.28 4478 26200 2724 15424 39.17 41.13
200 22594 92769 14881 55252 34.14 40.44 3158 12290 2031 8029 35.69 34.67
500 11390 43287 7407 27880 34.97 35.59 2034 7938 1569 6248 22.86 21.29
1000 6957 26030 4634 16848 33.39 35.27 1685 6432 1418 5682 15.85 11.66

(b) France street graph. Average path length: 832.

Arc-Flags SKARF+ Reduction [%] bid. Arc-Flags bid. SKARF+ Reduction [%]
Part. #sett. time #sett. time #sett. time #sett. time #sett. time #sett. time
#cells nodes [µs] nodes [µs] nodes [µs] nodes [µs] nodes [µs] nodes [µs]

50 77844 363077 56682 231869 27.19 36.14 7423 33073 3910 16723 47.33 49.44
100 43987 220477 30163 138816 31.43 37.04 4377 20624 2309 10876 47.25 47.27
200 25825 107000 16645 66299 35.55 38.04 2682 10891 1583 6504 40.98 40.28
500 12723 48480 7904 29744 37.89 38.65 1693 6401 1169 4682 30.95 26.86
1000 7703 28973 4758 17765 38.23 38.68 1356 5170 1034 4211 23.75 18.55

preprocessing time can be pushed down to less than
half an hour as well.

In our query implementation we focus on a fair envi-
ronment for a comparison of Arc-Flags and SKARF+ and
do only basic optimizations that affect both algorithms.
For instance, we use a priority queue that allows for
decrease key operations. In addition, we optimize the
flag access by using C++ vectors and dynamic bitsets
instead of slower data structures like hash maps. For
tentative distances and auxiliary data for the final path
reconstruction, we use hash maps. Note that, although
our query times fall short of the ones presented by Bast
et al. [3] (which are below one millisecond), we provide
similar conditions for both algorithms to achieve a fair
comparison.

To measure the query performance, we run an Arc-
Flags query and a SKARF+ query in their unidirectional
and bidirectional version for 10,000 random node pairs.
We measure the query time in micro seconds and, as
a metric for the search space, the number of nodes
that are settled, i.e., popped out of the Dijkstra queue.
The queries were executed on the same machine as the
preprocessing. Table 2 presents the resulting numbers.

With unidirectional SKARF+ we achieve a search
space reduction over unidirectional Arc-Flags from 27%
to 35% on Germany and up to 38% on France. When

comparing the corresponding bidirectional versions,
SKARF+ even yields a search space decrease of 35% to
44% for 50 to 200 cells on Germany and up to 47% on
France. For 500 and 1000 cells however, this improve-
ment is smaller with 16% to 31%. This can be explained
by the fact that Arc-Flags performs better, the more cells
are used. Therefore the potential for improvement gets
smaller with larger partition sizes. The query time re-
ductions are similar to the search space reductions with
up to 43% on Germany and up to 49% on France for
the bidirectional versions.

The stated improvements come with a trade-off in
the space consumption. Bidirectional SKARF+ needs
around twice as much space for the flags as bidirectional
Arc-Flags, while unidirectional SKARF+ uses three times
as much space as unidirectional Arc-Flags. Thus, the
practical value of SKARF+ lies in its reduction of search
space and query time and is best applied in scenarios
where the additional space can be provided and fast
queries are essential.

7 Conclusion

In this paper, we consider a routing speed-up technique
based on the skeleton dimension. Motivated by the fact
that the skeleton dimension is small in real-world road
networks and because it has been applied to analyses
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of other routing speed-up techniques, we present an
algorithm that exploits small skeletons.

We define the cell skeleton dimension as the maxi-
mum width of cell skeletons over all cells of a partitioned
graph and compute its value on real-world instances of
road networks. We observe it to be large for large cell
sizes, but for more fine-grained partitions it decreases
and approaches the classic skeleton dimension, making
it a useful parameter for analyzing algorithms that work
on partitioned graphs.

We propose the new routing algorithm SKARF,
which is based on the observation that for a source
and a target, the combination of their skeletons covers
the complete shortest path between them. The idea of
SKARF is to reduce the search space in the query to the
cell skeletons of the start and target nodes. Thus, we
provide a theoretical search space size that is bounded
in the cell skeleton dimension. In addition, we show
that the preprocessing time and the space consumption
remain asymptotically the same as in Arc-Flags.

Moreover, we propose the SKARF+ algorithm as
a combination of SKARF and Arc-Flags to obtain an
algorithm uniting the goal-directed nature of Arc-Flags
with the search space restrictions of SKARF. In our
experimental analysis we find that SKARF+ performs
exceptionally well, with a search space and query time
improvement of about 30% to 40% in comparison to
Arc-Flags.

Our theoretical and empirical results on SKARF
show that the skeleton dimension, a graph parameter
that explains the effectiveness of other routing speed-up
techniques, can be used for developing new techniques.
In particular, the cell skeleton approach can greatly
reduce the search space of routing algorithms.

Outlook. Although combining Arc-Flags with SKARF
already achieves significant speed-ups, this does not use
the full potential of skeleton-based techniques. The idea
of combining different flags can be extended by gener-
alizing the concept of skeletons. So far, we considered
skeletons that contain a fraction of p = 1

2 of all short-
est paths. But, we can also use p = a

b for start cells

and p = b−a
b for target cells to guarantee that short-

est paths are completely covered by a combination of
two cell skeletons. Such skeleton combinations would
yield individual search space restrictions that maintain
shortest paths. Thus, for all possible ratios an individ-
ual SKARF version can be implemented and combined
with the other ones. From this perspective, Arc-Flags is
also one such SKARF version, saving cell skeletons with
p = 1 on the transposed graph, and with p = 0 on the
initial graph.

Such an idealized combination would finally exhaust

the potential of skeletons and achieve even better search
space restrictions and query times. To avoid infinite
space consumption, one could approximate this ideal-
ized SKARF combination by saving only a few different
cell skeletons. Instead of a one bit flag that enables the
information necessary to distinguish skeleton from non-
skeleton, an n-bit flag could enable distinguishing be-
tween 2n−1 different skeletons and the state of an edge
of not being on any of those. This is possible because
smaller skeletons are always subsets of larger skeletons.
For a 4-bit approximation of the ideal SKARF version,
preliminary experiments indicate similar search space
improvements over SKARF+ as SKARF+ has over Arc-
Flags.

Having achieved search space guarantees and query
time speed-ups for an Arc-Flags variant, the next natural
step is to employ SKARF+ in more sophisticated algo-
rithms that use Arc-Flags as a subroutine, i.e., nested
Arc-Flags, SHARC, CHASE and Reach-Flags. This may
enable theoretical analyses of these algorithms and lead
to further speed-ups. It remains an open question to
what extent the improvements of SKARF+ over Arc-
Flags transfer to the algorithms mentioned above. Im-
proving these algorithms would contribute to advancing
state-of-the-art routing.
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[21] Rolf H. Möhring et al. “Partitioning Graphs to
Speed Up Dijkstra’s Algorithm”. In: Experimental
and Efficient Algorithms (WEA). 2005, pp. 189–
202. doi: 10.1007/11427186_18.

[22] Juan Mori and Samitha Samaranayake. “Bounded
Asymmetry in Road Networks”. In: Scientific
Reports 9 (2019). doi: 10.1038/s41598- 019-
48463-z.

[23] Ira Pohl. Bi-directional and heuristic search in
path problems. Tech. rep. Stanford Linear Accel-
erator Center, 1969.

[24] Heiko Schilling. TomTom navigation - How math-
ematics help getting through traffic faster. Talk
given at ISMP. 2012.

[25] Christian Sommer. “Shortest-path queries in
static networks”. In: ACM Computing Surveys
(CSUR) 46.4 (2014), pp. 1–31. doi: 10.1145/
2530531.

122
Copyright © 2023 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

06
/1

4/
23

 to
 1

41
.8

9.
22

1.
17

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.4230/OASIcs.ATMOS.2012.71
https://doi.org/10.4230/OASIcs.ATMOS.2012.71
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1016/j.tcs.2016.07.003
https://doi.org/10.1007/s10878-021-00777-3
https://doi.org/10.1007/s10878-021-00777-3
https://doi.org/10.1007/978-3-319-94776-1_20
 https://download.geofabrik.de 
https://doi.org/10.1109/IPDPS.2011.89
https://doi.org/10.1109/IPDPS.2011.89
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/1.9781611974782.95
https://doi.org/10.1007/11427186_18
https://doi.org/10.1038/s41598-019-48463-z
https://doi.org/10.1038/s41598-019-48463-z
https://doi.org/10.1145/2530531
https://doi.org/10.1145/2530531

	Introduction
	Preliminaries
	Road Network Modeling and Notation
	Arc-Flags
	Bidirectional Search
	Skeleton Dimension

	Cell Skeletons
	Cell Skeleton Dimension
	Cell skeleton experiments

	SKARF
	Preprocessing
	Query and Correctness
	Search Space
	Bidirectional SKARF

	SKARF+
	Experimental Comparison of SKARF+ and Arc-Flags
	Conclusion

