
Efficiently Computing Directed Minimum Spanning Trees

Maximilian Böther ∗ Otto Kißig ∗ Christopher Weyand †

Abstract
Computing a directed minimum spanning tree, called ar-
borescence, is a fundamental algorithmic problem, although
not as common as its undirected counterpart. In 1967, Ed-
monds discussed an elegant solution. It was refined to run
in O(min(n2,m logn)) by Tarjan which is optimal for very
dense and very sparse graphs. Gabow et al. gave a version of
Edmonds’ algorithm that runs in O(n logn+m), thus asymp-
totically beating the Tarjan variant in the regime between
sparse and dense. Despite the attention the problem received
theoretically, there exists, to the best of our knowledge, no
empirical evaluation of either of these algorithms. In fact,
the version by Gabow et al. has never been implemented and,
aside from coding competitions, all readily available Tarjan
implementations run in O(n2). In this paper, we provide the
first implementation of the version by Gabow et al. as well
as five variants of Tarjan’s version with different underlying
data structures. We evaluate these algorithms and existing
solvers on a large set of real-world and random graphs.

1 Introduction
The minimum spanning tree problem is well studied with
various applications [15, 33] and algorithms [19, 25, 28].
The directed version, called the minimum spanning
arborescence problem, has received much less attention.
For a given root r, it aims at finding a directed spanning
tree of minimum weight rooted at r. Applications
include infection chain modeling [20] and approximating
traveling salesperson instances [29]. Different versions
and generalizations were studied [14, 22, 21]. Sometimes
multiple roots are given or it is required to find the best
root. Historically, the problem was to find a set of non-
overlapping trees with maximum total weight, called an
optimum branching. As these versions are linear time
equivalent [7, 27], we focus on the minimum spanning
arborescence problem with given root.

The algorithm to find a minimum spanning arbores-
cence was discovered independently by Edmonds [7],
Chu [5], and Bock [2]. Karp [23] was the first to give a
combinatorial proof of correctness. Following the litera-
ture, we call it Edmonds’ algorithm. The algorithm runs
in O(nm) and forms the basis for later, more elaborate

∗Hasso Plattner Institute.
†Karlsruhe Institute of Technology.

versions by Tarjan [35, 4] running in O(min(n2,m log n))
and Gabow et al. [12] running in O(n log n+m), which
we call the GGST algorithm in the following. There exist
parallel algorithms for different settings of distributed
computing [26, 9]. They are based on Edmond’s Algo-
rithm as well but we will focus solely on the sequential
setting. Both Tarjan’s versions and GGST have the
same complexity for very sparse and very dense graphs
while the GGST version beats Tarjan’s by a logarithmic
factor for the regime in between. GGST likely is optimal
since the minimum spanning arborescence problem can
be reduced to (s,t)-shortest path [9] and comparison
based sorting can be reduced to determining the order of
contractions performed during Edmonds’ algorithm [12].
However, a time of O(m log log n) was obtained in the
word RAM model with Tarjan’s version [27]. Moreover,
Tarjan’s version was shown to run in O(n log2 n+m) on
Erdős-Rényi graphs with random weights [35, 8].

To the best of our knowledge, no experimental eval-
uation of these algorithms, or even an implementation of
GGST, exist. The latter is likely due to the rather tech-
nical description and the fact that the algorithm is not
the main result of the corresponding paper. On the other
hand, there exist some efficient (meaning O(m log n)) im-
plementations of Tarjan’s version. The problem is a niche
topic in coding competitions such as the International
Collegiate Programming Contest (ICPC). Unfortunately,
they are hard to find because most of them are only doc-
umented as submissions in online judge systems. The
only ready-to-use library implementations run in O(n2).
This paper provides accessible descriptions and imple-
mentations as well as a detailed evaluation. Our code is
open source and can be found in our public repository1.
The core contributions of this paper include

• five Tarjan implementations with different under-
lying data structures, one of which beats existing
solvers on most instances,

• a high level description of the GGST algorithm with
several optimizations/simplifications,

• an efficient implementation of the GGST algorithm,

1https://github.com/chistopher/arbok

ar
X

iv
:2

20
8.

02
59

0v
1

 [
cs

.D
S]

 4
 A

ug
 2

02
2

https://github.com/chistopher/arbok

• and a detailed experimental evaluation on a large
number of real-word and synthetic networks.

In Section 2 we describe Edmonds’ algorithm along
with the versions by Tarjan and Gabow et al. Section 3
describes the existing and new implementations and
optimization techniques. The experimental evaluation is
presented in Section 4. We conclude in Section 5.

2 Edmonds’ Arborescence Algorithm
We discuss Edmonds’ algorithm in Section 2.1, Tarjan’s
version in Section 2.2, and the GGST version in
Section 2.3. The latter two yield just the weight of the
optimal solution, not the actual edges. Reconstructing
the edge set is discussed in Section 2.4.

2.1 Edmonds’ Original Version Edmonds’ algo-
rithm works as follows. For each vertex v 6= r, pick
the cheapest incoming edge π(v). If the set of these
n − 1 edges contains no cycles, it is an arborescence;
otherwise, it is possible to show that there is an optimal
solution that contains all chosen edges except one for
each cycle. To determine which edge of each cycle to
remove, Edmonds’ algorithm contracts each cycle. Note
that a vertex is part of at most one cycle. The weight of
all edges going into a cycle C is reduced as follows. An
edge pointing at vertex v ∈ C is reduced by the weight
of π(v), i.e., the weight of the cheapest edge incoming
into v. We then compute a solution on the contracted
graph. The resulting solution has an incoming edge for
each cycle C we contracted. This edge corresponds to an
original edge (u, v) with v ∈ C, which we use to replace
the cycle edge π(v) we picked earlier.

The correctness is based on the following fact.
Adding a constant ∆ to all incoming edge weights of
a vertex changes the weight of each arborescence by
∆, since each solution picks exactly one of those. This
means that the edge cost changes performed during the
algorithm preserve the optimal solution. Moreover, the
cycle edges all get a cost of zero. Thus, the final cost is
the same, no matter which edge is replaced.

2.2 Tarjan’s Version Tarjan proposed a version of
Edmonds’ algorithm that, given the right data structures,
runs in O(m log n) or O(n2) [35]. It features two major
improvements. First, the cycle expansion and removal of
one edge per cycle is detached from the main algorithm
and seen as a postprocessing step. The algorithm tracks
all chosen edges as a superset of the solution, which
can be reconstructed afterwards in linear time. The
second change is to formulate the algorithm sequentially
in such a way to avoid rebuilding the graph for each
contraction. The approach goes as follows. While there

u w

v1
v2

v3
v4

Figure 1: Visualization of the growth path with the first
four vertices v1, v2, v3, v4. Also shown are the exit lists
of two arbitrary vertices u,w. Active edges are red and
passive edges blue.

is a vertex other than the root that was not processed
yet, its cheapest, incoming, edge that is not a self-loop
is added to the solution. If this edge forms a cycle with
previously chosen edges, the cost of edges into the cycle is
changed as in Edmonds’ algorithm and the cycle vertices
including their incoming edges are merged into a vertex
representing the cycle. This vertex is then added to the
queue of unprocessed vertices.

The algorithm requires data structures to find the
cheapest incoming edge, recognize cycles of chosen edges,
and to track contractions. The latter two can be achieved
with disjoint set union (DSU) data structures such as
a disjoint set forest [13, 34]. To find cycles, a DSU
maintains weakly connected components with respect
to the chosen edges. Note that each vertex has at
most one incoming chosen edge. Thus, an edge closes
a directed cycle with previously chosen edges, if and
only if, it connects two vertices in the same weakly
connected component. A second DSU is used to manage
contractions and to map original vertices to contracted
vertices. The endpoints of edges are not updated after
each contraction. Instead, a DSU lookup is required
each time the algorithm handles an edge.

The data structure to maintain incoming edge sets
must support four operations: (1) add an element, (2)
extract the minimum element, (3) change the weight
of all elements in the set by a constant, and (4) merge
two sets. If all operations take at most logarithmic
time, the algorithm runs in O(m log n). Most mergeable
heaps (e.g., hollow heaps, treaps, skew heaps) support
operations (1), (2), and (4) and can be extended with lazy
propagation to allow for operation (3). Alternatively, if
operations 2-4 run in O(n), e.g., when using an adjacency
matrix, the algorithm runs in O(n2), which is better for
dense graphs.

2.3 GGST Version Gabow et al. [12] further refine
the version given by Tarjan to reduce the running time
to O(n log n+m). They use the last remaining degree
of freedom, namely the order in which vertices are

processed. The authors suggest to always choose the
vertex from where the last incoming edge originated thus
forming a path of chosen vertices, called the growth path.
To avoid special cases for when the path reaches the
root, they add dummy edges with cost 0 from the root
to all other vertices, making the graph fully connected.
These edges do not affect running time but simplify the
description since the algorithm becomes oblivious to the
root and the additional edges can be removed in the
reconstruction phase. The improved running time is
achieved by exploiting the structure of the path and
clever handling of associated edges. For each vertex,
whether on the growth path or not, an exit list contains
outgoing edges pointing into the growth path. Exit lists
are sorted by the position of their target vertex in the
growth path, i.e., the first edge points closest to the
head of the path. The first edge in each exit list is
called active; all others passive. The active edges are
maintained in a data structure we call an active forest.
Figure 1 shows an example. In the following, we give a
concise, yet comprehensive, description of the algorithm
that differs from the original discussion in the level of
abstraction and simplifies the logic and data structures.

The algorithm starts at an arbitrary vertex and
repeatedly picks the cheapest incoming edge of the
path head until the path covers the whole graph. Each
iteration, the path is either extended or contracted. If
the origin of the picked edge is not yet on the growth
path, then it becomes the new path head. If it is already
on the growth path, then the prefix of the growth path
up to this vertex forms a cycle, which is contracted into
a single vertex that becomes the new path head. The
process is summarized in Algorithm 1. As in Tarjan’s
version, contractions are tracked with a DSU [13, 34]
which handles the find(u) calls.

Growth Path Extension. When the growth path
is extended by a new vertex u, all incoming edges of u
are introduced to the algorithm and inserted into their
respective exit lists. Consider the insertion of an edge,
say (x, u), into x’s exit list. Since u just became the new
head of the growth path, the edge will be inserted at
the front of the exit list. It will become active and, if
the exit list was not empty, the previously active edge
will become passive. Because u just became part of the
growth path, it is not a contracted vertex. However
x may be on the growth path and therefore may be
a contracted vertex. As such, x may have multiple
outgoing edges to u, originating from different vertices
inside x. To deal with this issue (and with multi-edges
in the input), one checks if the first edge in the exit list
already points to u and if so, only keeps the cheaper
one. This limits the exit list to at most one edge to u
maintaining the invariant that an exit list never contains

Algorithm 1: Minimum arborescence algorithm
by Gabow et al. [12]

1 initialize growth path with arbitrary vertex;
2 insert its incoming edges into exit lists;
3 while not all vertices on growth path do
4 query min. incoming edge (u, v) of path head

from active forest;
5 remember (u, v) for reconstruction;
6 if find(u) is not on growth path then
7 insert u’s incoming edges into exit lists;
8 else
9 delete prefix of path up to last occurrence

of find(u);
10 update incoming edge costs for all vertices

on prefix;
11 delete outgoing edges of prefix from exit

lists;
12 merge prefix in DSU and Active Forest;
13 limit edges into the cycle to at most 1 per

origin;

14 insert find(u) at front of path;

two edges to the same vertex.
Growth Path Contraction. When a prefix of the

path forms a cycle, it is contracted just as in Edmonds’
algorithm. That is, the prefix is removed from the path,
incoming edges into the cycle are reduced in cost, edges
resulting in self loops are deleted, the cycle vertices are
contracted in the DSU as well as in the active forest,
and multi-edges are removed.

The cost reduction is done with the DSU, which
can be modified to track an offset for each vertex [12].
Whenever the current cost of an edge is needed, a DSU
lookup analogous to a find is made to get the offset of
the target vertex.

Self loops are outgoing edges from the cycle, so by
deleting all edges in exit lists of cycle vertices, self loops
are avoided. This also deletes edges pointing further
down the path but these are irrelevant to the algorithm.
They can only become incoming edges of the head if, in
the future, the path is contracted up to their target and
in this case they would be self loops.

Edges that became multi-edges by the contraction
are consolidated. For each vertex with more than one
edge into the cycle, the prefix of their exit list that points
into the cycle is deleted except for the cheapest of those
edges. If a vertex has more than one edge into the cycle,
at least one of them is passive. Thus, such vertices can
be found by maintaining for each vertex on the growth
path a list of incoming passive edges, called a passive
list.

Active Forest. The active forest maintains all
currently active edges and must be updated accordingly.
It stores for each vertex the outgoing active edge and
a set of incoming active edges. We associate an active
edge with the vertex it originates from. The active forest
is able to INSERT an active edge for a vertex that does
not yet have one in O(1), REPLACE the active edge of
a vertex by another one that points closer to the growth
path head or points to the same vertex but has less
weight in O(1), DELETE the active edge of a vertex
in O(log n), MERGE the sets of incoming active edges
for the first two vertices of the growth path in constant
time, and QUERY the minimum incoming active edge
of the path head in O(log n) amortized time.

It is implemented as follows. Each vertex stores its
incoming active edges in a Fibonacci heap [11], which
enables the operations INSERT, DELETE, MERGE,
and QUERY by just mapping them to the corresponding
Fibonacci heap operations. The REPLACE operation
could be implemented as a DELETE followed by an
INSERT. Unfortunately, this results in a running time of
O(log n). Instead, Gabow et al. [12] suggest to reuse the
internal heap node representing the old edge. The node
is moved from the heap the old edge is in to the heap
where the new edge should be and receives the new edge
as key. This move takes O(1) time and is the crucial
point where the logarithmic factor over Tarjan’s version
is saved. The move operation is possible by restricting
QUERY, REPLACE, and MERGE to the structure of
the growth path. In general, no mergable heap data
structure is known that lifts these restrictions and still
supports something like a move [27].

However, the move has two major problems for
which we need to understand some internals about
Fibonacci heaps. A Fibonacci heap is a forest whose
roots are kept in a list called the root list of the heap.
Each tree maintains the heap property, i.e., the key of a
child node is higher or equal to the key of its parent. The
key in our case is the weight of the corresponding active
edge. Also, a Fibonacci heap usually maintains the
minimum key of nodes in the root list to allow queries in
constant time. The first problem of the move operation
is that the cached minimum of a root list cannot be
updated in constant time if the current minimum is
moved out of that list. Therefore, we do not maintain
the minimum. Instead, the QUERY operation rebuilds
the root list, which is a common operation for Fibonacci
heaps usually done upon extraction of the minimum,
resulting in an amortized O(log n) running time. The
second problem is that moving an internal heap node
actually moves the whole subtree rooted at this node.
Descendants of the node are displaced into the wrong
heap and, moreover, changing the key of the moved node

a

bc

d

e

f

g

a b c

d

e f

g

Figure 2: Example graph (left) and corresponding
reconstruction forest (right). Assume Gabow starts
at the vertex marked with a dot and the edges are
labeled alphabetically in the order they were added to
the growth path. The first step of the reconstruction
process is indicated by colors.

can violate the heap property. To fix the displacement,
every time a Fibonacci heap operation would put a
node into the root list they are returned to the root
list of the heap the node actually belongs to, which we
call the home heap of that node. That is, the home
heap of a heap node is the heap of the target vertex
of the corresponding active edge. Finding the home
heap requires a DSU lookup because the target vertex
might be contained in a contracted vertex. Gabow et
al. [12] prove the following three invariants to address
the violated heap property and the correctness of the
home heap fix. (1) The root of any tree is always in
its home heap. (2) The heaps maintain an additional
heap property w.r.t. their home heaps ordered by the
position in the growth path. That is, the home heap of a
parent node is at least as close to the growth path head
as the home heaps of its children. (3) The original heap
property is never violated between two nodes that are in
their home heap. Only displaced nodes can temporarily
violate the heap property.

Time Complexity. The growth path is extended
at most n times. Since contracting a cycle of length
l reduces the total number of vertices in the graph by
l − 1, there are at most n − 1 contractions and the
summed length of all contracted cycles is less than 2n.
Thus, QUERY, DELETE, and MERGE are called O(n)
times on the active forest. Furthermore, the following
operations happen at most once per edge and can all be
done in constant time. Insertion into an exit list, the
active forest, or passive list, REPLACE in the active
forest, deletion from an exit list, and deletion from a
passive list. The DSU imposes no additional overhead
since, if there are at least n log n calls to find, each
individual one takes amortized constant time [34]. In
total this yields a running time of O(n log n+m).

2.4 Arborescence Reconstruction Although Tar-
jan [35] proposed to split off the reconstruction phase
from main algorithm, the reconstruction method given
in the paper is incorrect. A note by Camerini et al.
outlines a working method [4]. Consider a new graph
called the reconstruction forest where the nodes are the
edges that are picked by the arborescence algorithm. In
the forest, an edge that was picked as an incoming edge
to a contracted vertex has directed arcs to the edges that
constitute the top-level cycle of the contracted vertex. A
leaf in the reconstruction forest corresponds to the first
picked incoming edge of a vertex of the original graph.
Figure 2 shows an example. The reconstruction process
repeatedly selects a root of the forest. The correspond-
ing edge becomes part of the final solution. The target
vertex in the original graph of the selected edge has an
associated leaf in the reconstruction forest. The process
deletes the path from this leaf to the selected root from
the forest, then proceeds with the next root.

A very concise implementation is possible by noting
that the order in which the main algorithm picks edges
is a reverse topological order of the reconstruction forest.
Thus, all roots are found by iterating over the picked
edges in reverse and skipping already deleted ones.
Further required information are the leaf of each original
vertex and the parent for each node in the reconstruction
forest. The former is computed by iterating over the
picked edges to find the first occurrence of each target.
The latter must be saved by the main algorithm each
time it contracts a cycle.

3 Implementation
This section introduces different solvers for the minimum
arborescence problem, highlights their key points as
well as optimizations and deviations from the abstract
description in Section 2. We compare 11 solvers;
our five versions of Tarjan’s approach using different
data structures, five external Tarjan-based solvers, and
our Gabow implementation (see Table 1). External
solvers fall into two categories, coding competition code
and library solvers. We refer to Section A for more
discussions of the external solvers, e.g., integration issues
and coding errors we had to fix.

Competition Codes. Coding competitions occa-
sionally feature arborescence tasks which require an
efficient implementation for sparse graphs. These imple-
mentations are often not as maintainable or usable as
library solvers, but written with a high focus on perfor-
mance. The online judge platform Library Checker2 con-
tains a test set for the minimum arborescence problem.
We include the jury solution by the maintainer Kohei

2https://judge.yosupo.jp/problem/directedmst

Morita as well as the fastest submission by David Stangl.
We denote them by yosupo3 and felerius4 according
to their pseudonyms on popular contest websites. Fur-
thermore, there is a competition-style implementation
by Takanori Maehara5, which we denote by spaghetti.
With around 130 lines of code, it is the most concise
implementation. However, it lacks the reconstruction
phase and proper memory management.

Library Solvers. The two library implementations
we consider are lemon and atofigh, both running in
O(n2). The former is part of the LEMON library for
graph algorithms6. We use the latest release 1.3.1 from
2014. They save incoming edges in arrays. The merge
is done by iterating over all incoming edge lists of cycle
vertices while collecting the cheapest edge into the cycle
for each origin. They reuse the same collecting array
each time and clear the used entries afterwards, such
that the merge is not O(n) but linear in the number of
merged edges. Thus, the solver is faster the less edges
are involved in each contraction. The second library
implementation, atofigh, was written by Ali Tofigh
and Erik Sjölund7 using the Boost Graph Library [30].
They also represent incoming edge sets in dynamically
growing arrays. However, the arrays are sorted by origin
vertex and the merge is done with the linear time merge
routine usually known from merge sort. It was modified
to remove multi-edges by only keeping the cheapest one
for each origin. The same performance considerations
apply. Note that there exist sparse networks where these
merge strategies yield quadratic running time.

Our Tarjan-based Solvers. Our Tarjan code
shares the logic for the algorithm and reconstruction
and differs only in the data structure to manage the
sets of incoming edges (see Section 2.2). The matrix
solver maintains an adjacency matrix and performs the
operations in linear time. The hollow and treap
solvers use our implementations of Hollow heaps [17]
and Treaps [31], respectively, which both support lazy
propagation to update weights. The hollow heap is not
required to implement the usual decrease key operation,
as it is not required by the algorithm, which allows
for implementing the merge operation efficiently, by
simplifying some bookkeeping tasks. The set and pq
variants use the std::set and std::priority_queue
data structures from the C++ standard template library.
They are typically implemented as a red-black tree [16]
and binary heap [6], respectively. Since the set and
priority queue interface do not support a fast merge

3https://codeforces.com/profile/yosupo
4https://codeforces.com/profile/Felerius
5https://github.com/spaghetti-source/algorithm
6https://lemon.cs.elte.hu/trac/lemon
7https://github.com/atofigh/edmonds-alg

https://judge.yosupo.jp/problem/directedmst
https://codeforces.com/profile/yosupo
https://codeforces.com/profile/Felerius
https://github.com/spaghetti-source/algorithm
https://lemon.cs.elte.hu/trac/lemon
https://github.com/atofigh/edmonds-alg

Table 1: Overview of arborescence algorithms. Tarjan+Path means they implement Tarjan’s version but adjust
the order in which vertices are processed to form a path as in Gabow’s version.

Solver Author/Source Variant Data Structure Runtime

felerius David Stangl Tarjan Skew Heap [32] O(m log n)
spaghetti Takanori Maehara Tarjan+Path Skew Heap [32] O(m log n)
yosupo Kohei Morita Tarjan+Path Pairing Heap [10] O(m log n)
lemon LEMON 1.3.1 Tarjan+Path Adjacency List O(n2)
atofigh Ali Tofigh Tarjan Adjacency List O(n2)
matrix this paper Tarjan Adjacency Matrix O(n2)
treap this paper Tarjan Treap [31] O(m log n)
hollow this paper Tarjan Hollow Heap [17] O(m log n)

set this paper Tarjan Red Black Tree [16] O(m log2 n)

pq this paper Tarjan Binary Heap [6] O(m log2 n)
ggst this paper GGST Fibonacci Heap [11] O(n log n+m)

operation, we use the well known smaller into larger
technique. That is, for a merge we iterate over the
smaller of the two sets and add the elements individually
to the larger set. An element switches sets at most
O(log n) times, each time into a set that is at least twice
as large, and a switch takes O(log n). This sums up to
O(m log2 n) for all merges combined. Since the elements
are moved individually, weight updates do not need lazy
propagation but are handled by an offset for each set
that is applied when an element enters or leaves the set.

Our GGST Solver. The solver features three
optimizations compared to the description in Section 2.3.
First, no dummy edges are inserted. Instead a new path
is started each time the root is reached. Second, we
replace linked lists by dynamic arrays where possible.
Exit lists, passive lists, and the growth path are only
modified at the front, so an array can be used by saving
them in reverse. Actually, the usage of passive lists
as previously described requires arbitrary deletions and
thus cross references for each edge to the position in
the list. Our third optimization is to remove the need
for cross references by simplifying the deletion patterns.
The only time the algorithms deletes edges is during the
contraction of a cycle8. Outgoing edges are deleted by
clearing complete exit lists and mirroring the deletions
across passive lists. Incoming multi-edges are deleted
by clearing complete passive lists and mirroring the
deletions across exit lists. We modify the two steps
to make synchronization between exit and passive lists
easier and restrict modifications to the front of the lists.

When outgoing edges of a cycle are deleted, some of
these edges are self loops and some point further down
the growth path. Instead of mirroring the clearing of the

8The original description by Gabow et al. has more deletions.
We simplified the algorithm in this regard.

exit lists by deleting corresponding entries from passive
lists, we suggest to entirely skip the removal from the
passive lists. This, of course, keeps invalid entries in the
passive lists. However, a passive list is only read during
a contraction to identify multi-edges into the cycle. At
this time, the invalid entries point into a prefix of the
path but at the time of deletion pointed down the path.
Thus, they became self-loops which can be identified and
skipped. Since a passive list is cleared after identification
of self loops, each invalid entry is seen only once.

We propose to implement the consolidation of multi-
edges as follows. For each passive edge into the cycle,
compare the first two edges in the exit list of the origin
of the passive edge and delete the more expensive one.
This “delete one of the first two edges” operation is done
for each origin as often as this origin has passive edges
into the cycle. Since this origin’s exit list starts with an
active edge pointing into the cycle, followed by all the
passive edges into the cycle, the cheapest edge of this
prefix will remain at the front of the exit list. Gabow et
al. propose a similar strategy but delete either the first
edge or the currently inspected passive edge (instead
of the second in the exit list), which requires for each
passive edge a way to obtain its handle in the exit list.

4 Experiments
In this section we evaluate the solvers listed in Table 1.
The solvers, data preparation scripts, plotting code,
execution logs, and the raw timing data are available in
our public repository.

Setup. The experiments were performed on a server
with two 8-Core Intel Xeon™ Gold 6144 CPUs and
192GB DDR4 memory on the openSUSE Leap 15.3
operating system. The implementations are written in
C++ and adjusted to fit a common interface. The code

was compiled with gcc version 10.3.0. Each run had a
timeout of 30 minutes. We used a total of 656 networks
from the following sources. The number of networks is
in parenthesis.

• konect (319). All directed networks smaller than
5GB from the KONECT project9.

• networkrepository (75). A selection of sparse
networks from the Network Repository project10.
The project contains mostly undirected networks
and does not label directed ones as such. We
downloaded all networks (around 3000) and kept the
ones that are labeled as directed in their respective
file format.

• girgs (200). This data set contains Geometric Inho-
mogeneous Random Graphs (GIRGs), a generative
network model closely related to hyperbolic random
graphs [3, 24]. We used the efficient generator by
Bläsius et al. [1] with default parameters except
for n, deg, and seeds. We set n = 104 and aver-
age degrees from 50 to 2000 in steps of 100 with
10 networks per configuration. Edges are directed
randomly.

• antilemon (5). A sparse family of networks crafted
to be difficult for arboresence solvers. They require
at least n/2 contractions with at least n/2 edges
pointing into each contracted cycle. We generated
networks with n = 10i for i ∈ [2, 6].

• fastestspeedrun (47). Test cases of a program-
ming task from the ICPC Northwestern Europe
Regional Contest 201811. They have up to 2500
vertices and are fully connected.

• yosupo (10). Test cases for the Directed MST
problem on the Library Checker website. The
networks are Erdős-Rényi graphs [8] with a random
spanning tree from the root vertex as subgraph.
Weights are sampled uniformly at random.

For networks without weights, we sample integer weights
uniformly at random. If an instance has no specified root,
we restrict us to the largest connected component, and
add a root vertex that connects to all original vertices
with edges of weight infinity.

General Performance. Figure 3 shows all in-
stances with an untied fasted solver, i.e., a solver that
is strictly faster than all others. The major reason for
ties is that two or more solvers are faster than 1ms

9http://konect.cc/
10https://networkrepository.com
11https://2018.nwerc.eu/

102 103 104 105 106 107

n

100

101

102

103

av
g

de
g

76 felerius
177 GGST
6 hollow
2 lemon
50 matrix
229 pq
1 spaghetti

Figure 3: For each instance the untied fastest solver if
any. The legend includes the number of wins per solver.

which is the precision of our measurements. Over all,
115 instances are tied, 85 instances have at least two
algorithms that solve the instance faster than 1ms, 73
instances are solved in under 1ms by at least six solvers,
and 46 instances are solved in under 1ms by all solvers.

On the untied instances, the pq solver dominates
with 229 wins, followed by ggst with 177, then felerius
with 76, and matrix with 50. Combined, these four
solvers win more than 98% of the untied instances.
Moreover, there is a clear trend regarding the type of
instance each solver is good at mirroring the theoretical
complexities of the algorithms quite closely. The matrix-
based Tarjan solver, matrix, is best for dense graphs,
the heap-based Tarjan solvers, pq and felerius, are
optimal for sparse graphs, and the GGST algorithm
wins in between. For the sparse real-world instances,
there is a clear cut between the pq and felerius solvers.
The felerius solver was specifically tuned to be fast
on the yosupo instances which have barely more edges
than vertices and thus wins on instances with average
degree below 10. Furthermore, all but three of the
177 ggst wins are on GIRGs. We explicitly generated
the GIRGs to fill the gap between the sparse real-
world networks and the fully connected fastestspeedrun
instances. The most surprising result, however, is that
the pq solver using a binary heap performs exceptionally
well although it should scale worse in the number of
edges than the competitors by at least a logarithmic
factor due to the missing merge operation. We identify
three possible reasons for this behavior. First, a
binary heap implementation is very efficiently while the
more complex logic of ggst and less cache efficient
data structures of felerius cause significant overhead.
Second, realistic data is easy in the sense that the
contractions, which are the theoretical bottleneck of the

http://konect.cc/
https://networkrepository.com
https://2018.nwerc.eu/

250 500 750 1000 1250 1500 1750 2000
avg deg

0

2000

4000

6000

8000

10000

12000

tim
e

in
 m

s

atofigh
felerius
GGST
hollow
lemon
matrix
pq
set
spaghetti
treap
yosupo

Figure 4: The run time of the solvers on GIRGs with
104 vertices over growing density. Each data point is
averaged over 10 GIRGs with the same density.

pq solvers, occur not as often or involve less edges and
vertices. Finally, realistic networks are sparse and thus
O(n log n) becomes indistinguishable from O(m log n),
which is the remaining complexity of the binary heap
implementation when ignoring the cost for contractions.
Therefore, on sparse networks with few contractions,
the three solvers ggst, felerius, and pq all have a
complexity of roughly O(n log n) and it comes down
to implementation details like memory layout, cache
efficiency, and the level of code optimization. For the
same reason matrix beats ggst on very dense instances
where both solvers have a complexity of O(n2).

Scaling Analysis. To examine the effect of density
on solver performance we use the girgs data set. The
GIRG model produces realistic networks regarding de-
gree distribution, clustering, and distances that resemble
the real-world networks from the networkrepository and
konect data sets. Figure 4 shows the results. As ex-
pected, the matrix solver is not affected by the number
of edges. It starts out as the slowest solver but beats
all the others by the time the degree reaches 2000. All
other solvers exhibit an approximately linear scaling in
the number of edges which emphasizes again that loga-
rithmic factors are hardly noticeable for reasonably sized
inputs. Most notably, this includes the O(n2) atofigh
and lemon solvers. These solvers heavily depend on the
fact that the instance structure is easy and needs few
contractions involving few edges. The lemon solver is
the second fastest solver only slightly outperformed by
ggst indicating that GIRGs are even easier to solve than
the real-world networks from the other data sets. The
reason for this could be the randomized edge direction
for the GIRGs. Another interesting fact is that the five
solvers that scale the worst with growing density are

yosupo, treap, hollow, spaghetti, and set. These
five have in common that they use pointer-based heap
data structures to manage the edges. The other solvers
use indices into a preallocated pool (felerius), don’t
have a heap element for every edge (ggst), or don’t use
a heap to manage edges (lemon, atofigh).

Time Per Operation. Figure 5 shows the run
times of the solvers divided into initialization, execution,
reconstruction, and destructor subroutines as well as
timeouts. The atofigh solver crashed by exceeding
the available memory on the largest antilemon graph
and 8 road networks from the konect data set, which
are originally from the 9th DIMACS Implementation
Challenge on shortest paths. These crashes are treated
as timeout. The matrix solver is only executed on
graphs with less than 105 vertices, and treated as
timeout otherwise. The lemon solver timed out on
three DIMACS graphs and the largest antilemon graph.

On the real-world networks from the konect and net-
workrepository data sets, the quadratic solvers perform
much worse than the other algorithms. Of course matrix
cannot handle large graphs but also atofigh and lemon
occasionally encounter a difficult instance that overshad-
ows their good performance on the many easy instances
since we only consider the summed run time here. The
lemon solver performs well on the girg data set and
the matrix solver dominates the fully connected fastest-
speedrun instances. Otherwise the quadratic solvers are
never among the fastest. In particular, these three solvers
are more than two orders of magnitude slower than the
felerius solver on the networkrepository graphs where
the felerius solver is the fastest on all instances. The
antilemon instances were crafted as worst case instances
for lemon and atofigh which is clearly visible in the
results. On this data set, the pq solver outperforms the
others. Unsurprisingly, the felerius solver performs
best on the yosupo data which it was optimized for.

Before evaluating the run times of individual subrou-
tines, we note that lemon and atofigh perform most
of the initialization and reconstruction operations in the
main phase of the algorithm while spaghetti has nei-
ther reconstruction nor memory management. With that
in mind, our experiments show that the reconstruction
phase takes only a fraction of the run time independent
of solver or data set. Furthermore, the initialization,
which includes allocating memory and building internal
data structures, takes a considerable amount of time for
all algorithms. The high initialization time can be ex-
plained by the fact that just inserting the edges into the
heap data structures takes O(m log n) and as such is one
of the theoretical bottlenecks of most implementations.
There exist linear time constructions for some of the data
structures (e.g. treaps, binary heaps, skew heaps) but for

100 101 102 103 104 105

atofigh
felerius

GGST
hollow
lemon
matrix

pq
set

spaghetti
treap

yosupo

antilemon

100 101 102 103 104

fastestspeedrun

100 101 102 103 104 105 106

girgs

100 102 104 106

atofigh
felerius

GGST
hollow
lemon
matrix

pq
set

spaghetti
treap

yosupo

konect

100 101 102 103 104 105 106

time in ms

networkrepository

100 101 102 103 104 105

yosupo

initialization run reconstruction destructor timeout

Figure 5: For each data set the summed run time over the contained instances per algorithm. The bars are divided
into colored segments to show the fraction of time spend on each subroutine. For timeouts, all 30 minutes are
counted as timeout no matter what was done in these 30 minutes. Note that the colored segments inside each bar
are completely detached from the logarithmic x-axis.

consistency across solvers, we build them by repeated in-
sertions. Finally, the high destructor time of the yosupo
solver is due to their use of std::shared_ptr instead
of manual memory management.

5 Conclusion
In this paper we discussed the Tarjan and GGST versions
of Edmonds’ algorithm for the minimum spanning
arboresence problem. We outlined existing solvers,
provide our own implementations, and compare their
practical performance. Our implementation of the GGST
algorithm is the first public implementation and our
description simplifies the original one in several aspects.
Our experiments show that the compared solvers perform
well on real-world data while scaling experiments suggest
that realistic networks are substantially easier than worst-
case instances. Even solvers with an O(n2) worst-case
complexity often perform almost linear in the number
of edges. However, they are not as consistent. They
time out when the instance contains difficult structures,
which occasionally happens even on real-world networks.
Furthermore, we find that differences in complexity by
logarithmic factors are mostly irrelevant in practice. Our
O(m log2 n) Tarjan implementation using a binary heap
beats the other solvers on most real-world networks

although our O(n log n + m) GGST implementation
is two logarithmic factors faster asymptotically. This,
again, emphasizes that real-world instances often do not
force the worst case of an algorithm and complex logic
and data structures can produce significant overhead.
For future work, it would be interesting to examine what
makes realistic instances easy and possibly show a better
running time on a random model like hyperbolic random
graphs similar to the result for Erdős-Rényi graphs.

References

[1] T. Bläsius, T. Friedrich, M. Katzmann,
U. Meyer, M. Penschuck, and C. Weyand, Effi-
ciently Generating Geometric Inhomogeneous and Hy-
perbolic Random Graphs, in Proceedings of the Annual
European Symposium on Algorithms (ESA), 2019.

[2] F. C. Bock, An algorithm to construct a minimum di-
rected spanning tree in a directed network, Developments
in Operations Research, (1971).

[3] K. Bringmann, R. Keusch, and J. Lengler,
Geometric inhomogeneous random graphs, Theoretical
Computer Science, 760 (2019).

[4] P. M. Camerini, L. Fratta, and F. Maffioli, A
note on finding optimum branchings, Networks, 9 (1979),
pp. 309–312.

[5] Y.-J. Chu, On the shortest arborescence of a directed
graph, Scientia Sinica, 14 (1965).

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, Third Edition,
MIT press, 2009.

[7] J. Edmonds, Optimum branchings, Journal of Research
of the National Bureau of Standards, 71B (1967), p. 233.

[8] P. Erdős and A. Rényi, On random graphs, i,
Publicationes Mathematicae (Debrecen), 6 (1959).

[9] O. Fischer and R. Oshman, A Distributed Algo-
rithm for Directed Minimum-Weight Spanning Tree, in
33rd International Symposium on Distributed Com-
puting (DISC 2019), vol. 146 of Leibniz International
Proceedings in Informatics (LIPIcs), Dagstuhl, Ger-
many, 2019, Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, pp. 16:1–16:16.

[10] M. L. Fredman, R. Sedgewick, D. D. Sleator,
and R. E. Tarjan, The pairing heap: A new form of
self-adjusting heap, Algorithmica, 1 (1986).

[11] M. L. Fredman and R. E. Tarjan, Fibonacci
heaps and their uses in improved network optimization
algorithms, Journal of the ACM, 34 (1987).

[12] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E.
Tarjan, Efficient algorithms for finding minimum span-
ning trees in undirected and directed graphs, Combina-
torica, 6 (1986).

[13] B. A. Galler and M. J. Fisher, An improved
equivalence algorithm, Communications of the ACM,
7 (1964).

[14] L. Georgiadis, Arborescence optimization problems
solvable by edmonds’ algorithm, Theoretical Computer
Science, 301 (2003).

[15] R. L. Graham and P. Hell, On the history of the
minimum spanning tree problem, IEEE Annals of the
History of Computing, 7 (1985).

[16] L. J. Guibas and R. Sedgewick, A dichromatic
framework for balanced trees, in Proceedings of the An-
nual Symposium on Foundations of Computer Science
(SFCS), 1978.

[17] T. D. Hansen, H. Kaplan, R. E. Tarjan, and
U. Zwick, Hollow heaps, Transactions on Algorithms,
13 (2017).

[18] ISO, ISO/IEC 14882:2020 Programming languages —
C++, International Organization for Standardization,
sixth ed., 2020.

[19] V. Jarník, O jistém problému minimálním [about a cer-
tain minimal problem], Práce moravské přírodovědecké
společnosti, 4 (1930).

[20] T. Jombart, R. M. Eggo, P. J. Dodd, and
F. Balloux, Reconstructing disease outbreaks from
genetic data: a graph approach, Heredity, 106 (2010).

[21] N. Kamiyama, Arborescence problems in directed
graphs: Theorems and algorithms, Interdisciplinary
Information Sciences, 20 (2014).

[22] N. Kamiyama, N. Katoh, and A. Takizawa, Arc-
disjoint in-trees in directed graphs, Combinatorica, 29
(2009).

[23] R. M. Karp, A simple derivation of edmonds' algo-

rithm for optimum branchings, Networks, 1 (1971).
[24] D. Krioukov, F. Papadopoulos, M. Kitsak,

A. Vahdat, and M. Boguñá, Hyperbolic geometry of
complex networks, Physical Review E, 82 (2010).

[25] J. B. Kruskal, On the shortest spanning subtree of a
graph and the traveling salesman problem, Proceedings
of the American Mathematical Society, 7 (1956).

[26] L. Lovasz, Computing ears and branchings in parallel,
in 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985), 1985, pp. 464–467.

[27] R. Mendelson, R. E. Tarjan, M. Thorup, and
U. Zwick, Melding priority queues, Transactions on
Algorithms, 2 (2006).

[28] R. C. Prim, Shortest connection networks and some
generalizations, Bell System Technical Journal, 36
(1957).

[29] Y. V. Salii and A. S. Sheka, Improving dynamic
programming for travelling salesman with precedence
constraints: parallel morin–marsten bounding, Opti-
mization Methods and Software, (2020), pp. 1–27.

[30] B. Schäling, The Boost C++ libraries, 2011.
[31] R. Seidel and C. R. Aragon, Randomized search

trees, Algorithmica, 16 (1996).
[32] D. D. Sleator and R. E. Tarjan, Self-adjusting

heaps, Journal on Computing, 15 (1986).
[33] M. Suk and O. Song, Curvilinear feature extrac-

tion using minimum spanning trees, Computer Vision,
Graphics, and Image Processing, 26 (1984).

[34] R. E. Tarjan, Efficiency of a good but not linear set
union algorithm, Journal of the ACM, 22 (1975).

[35] , Finding optimum branchings, Networks, 7
(1977).

A Appendix
In this section, we briefly describe some further details
on the external solvers.

Integration Issues and Bug Fixes. The lemon
solver does not compile with C++20 upwards because it
uses allocator methods that were deprecated in C++17
and removed in C++20. It performs reconstruction dur-
ing the main algorithm. In Figure 5, its reconstruction
time is the time to obtain the solution from their internal
data structures.

The atofigh solver contains a programming error
in a radix sort subroutine where a right shift equal to the
size of the left hand operand type (int in our template
instantiation) is performed. The C++ standard12

states in Section 7.6.7 concerning shift operators “The
behavior is undefined if the right operand is negative,
or greater than or equal to the width of the promoted
left operand” [18]. Most compilers give a warning (if
enabled) and default to 0, which actually works with the
given implementation. Nevertheless, we fixed this error
by changing ≤ to < in the loop that iterates over the
radix. The atofigh solver performs reconstruction during
the main algorithm. In Figure 5, its reconstruction time
is the time to obtain the solution from their internal
data structures.

The yosupo solver uses std::shared_ptr for mem-
ory management. On very large instances this crashes
due to a stack overflow caused by deep recursion in the
destructor. On Linux machines, one can increase the
stack limit to circumvent this problem, which is what
we do in our experiments.

The spaghetti solver does not free allocated mem-
ory which gives it an advantage over the other solvers.
We decided to keep the leak since a proper cleanup
would require considerable changes to their code. The
spaghetti solver is the only solver that does not support
reconstruction.

Alternative Reconstruction by Stangl. The
felerius solver features an alternative method for
reconstruction more closely related to the original idea
of Edmonds’ algorithm. Recall that Edmonds’ algorithm
contracts each cycle C and when picking an incoming
edge into the contracted vertex, it replaces one of the
cycle edges. That is, the edge into the contracted vertex
corresponds to an original edge (u, v) and replaces the
cycle edge incoming to v. The difficulty when adapting
this to Tarjan’s version is that endpoint indices of edges
are not explicitly updated after each contraction. Thus,
one has to deal with the possibility that the cycle vertices
are contracted vertices representing previous cycles. In

12The standard must be purchased but a working draft is
available at http://www.open-std.org

this case, v might be contained in a cycle vertex v′ ∈ C
rather than being part of the cycle itself. This is, e.g., the
case in Figure 2 where the edge g replaces the edge d.
Stangl tackles this challenge as follows. Since Tarjan
maintains an incoming edge for each vertex during the
main algorithm, the reconstruction phase processes the
cycles from last to first and performs the necessary
replacements. When a cycle is processed, the edge (u, v)
that was picked as incoming for this cycle can be found
as the incoming edge to the vertex representing the cycle.
To find the cycle edge it should replace, a persistent DSU
is used to query the cycle vertex v′ containing v at the
time just before the cycle was contracted. To make
the DSU persistent, Stangl drops path compression [34]
from the data structure which means each find call takes
O(log n). However, the main algorithm as well as the
reconstruction perform only O(n) find calls thus leaving
the total running time unchanged.

Another issue during implementation is that, after
contracting a cycle, it is represented by one of its cycle
vertices. The representative is chosen by the DSU
among the cycle vertices according to the union-by-
size strategy [34]. The picked edge incoming to the
contracted vertex thus overrides the cycle edge of this
representative. The representative and the edge that
was (mistakenly) replaced are saved during the main
algorithm and restored in reconstruction just before the
actual edge is determined that should be replaced.

http://www.open-std.org

	1 Introduction
	2 Edmonds' Arborescence Algorithm
	2.1 Edmonds' Original Version
	2.2 Tarjan's Version
	2.3 GGST Version
	2.4 Arborescence Reconstruction

	3 Implementation
	4 Experiments
	5 Conclusion
	A Appendix

