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Abstract—Machine Learning models are expensive to train: they
require expensive high-compute hardware and have long training
times. Therefore, models are extra sensitive to program faults or
unexpected system crashes, which can erase hours if not days
worth of work. While there are plenty of strategies designed to
mitigate the risk of unexpected system downtime, the most popular
strategy in machine learning is called checkpointing: periodically
saving the state of the model to persistent storage. Checkpointing
is an effective strategy, however, it requires carefully balancing
two operations: how often a checkpoint is made (the checkpointing
schedule), and the cost of creating a checkpoint itself.

In this paper, we leverage Python Memory Manager (PyMM),
which provides Python support for Persistent Memory and
emerging Persistent Memory technology (Optane DC) to accelerate
the checkpointing operation while maintaining crash consistency.
We first show that when checkpointing models, PyMM with
persistent memory can save from minutes to days of checkpointing
runtime. We then further optimize the checkpointing operation
with PyMM and demonstrate our approach with the KMeans and
Gaussian Mixture Model algorithms on two real-world datasets:
MNIST and MusicNet. Through evaluation, we show that these
two algorithms achieve a checkpointing speedup of a factor
between 10 and 75x for KMeans and over 3x for GMM against
the current state-of-the-art checkpointing approaches. We also
verify that our solution recovers from crashes, while traditional
approaches cannot.

I. INTRODUCTION

Machine learning programs extensively use Volatile Memory
to accelerate model training by storing and updating their
models in DRAM. Unfortunately, when a program faults or
the machine is power cycled during training, the state of that
training is irreversibly lost. Such program faults or unexpected
system shutdowns can result in large financial loss as hours if
not days of progress is lost and must be redone.

To safeguard the training state from faults or inadvertent
restarts/shutdowns, numerous strategies have been developed.
One of the most popular strategies, called checkpointing [1],
[2], is where the model state is periodically saved to persistent
storage. Upon a program fault or shutdown, the state of the
training can be “rolled back” (or restarted) from the most
recent model version saved. How often the program state is
checkpointed (called the checkpoint schedule) must be balanced
against the penalty for any progress lost between checkpoints,
as the checkpointing operation is not instantaneous. To create

a checkpoint, the training must suspend updating the model
so it’s state can be consistently written to storage.

Machine learning and Deep Learning models can contain
billions of parameters, meaning that the checkpointing opera-
tion must often persist tens to hundreds of GBs of information
at a time which is expensive. Additionally, models can train
for thousands or hundreds of thousands of iterations, leading to
hours if not days of time aggregated by checkpointing alone [3],
[4]. Since each iteration is prohibitively expensive to calculate,
data scientists usually checkpoint with a fixed period (i.e. every
X number of iterations) to amortize the cost of checkpointing.
This results in more work that needs to be recomputed upon a
crash and is proportional to the periodicity of the checkpointing
schedule.

In this paper, we advocate for the use Persistent Memory
(PM), which acts as persistent storage while operating close
to DRAM speeds to accelerate the checkpointing operation.
By using persistent memory we eliminate the additional
slowdown with traditional checkpoint on SSDs or HDDs. Since
checkpointing is faster with our approach, it can occur more
often and thus reduces the time to recreate the lost state during
a crash. Of course, using PM alone does not guarantee crash-
consistency of checkpoints on faults. Users would still need to
handle crash consistency at the program level.

To checkpoint models in a crash-consistent way, we use
Python Memory Management (PyMM), an open-source python
library [5], [6]. PyMM automatically provides crash-consistent
updates of python objects on PM. As a result, PyMM signifi-
cantly simplifies application development and also eliminates
any programmer errors while checkpointing models. Addition-
ally, PyMM is already optimized to work on persistent memory
(such as Optane DC). By using PyMM with PM, we observe
the checkpointing process can be significantly accelerated
while still providing stronger crash consistency guarantees
as compared to the traditional checkpointing strategies (such as
pickle, NumPy.save, and NumPy.memmap). More specifically,
we evaluated our solution on KMeans and Gaussian Mixture
Model algorithms on MNIST and Musicnet datasets and show
10x to 75x, and 3x checkpoint speedup, respectively.

The rest of this paper is organized as follows: We first
describe the background on checkpointing strategies and persis-



tent memory. Then we describe our checkpointing solution with
PyMM, provide experimental results (i.e., setup, methodology,
and results) that demonstrates the benefits of our checkpointing
strategy. We then discuss the related work and finally conclude.

II. BACKGROUND

This section provides a brief background on checkpointing,
how persistent memory works as compared to traditional
memory, and how to use persistent memory to checkpoint.

A. Current Checkpointing Strategies

Checkpointing is defined as the process of writing out
the model parameters and any other information (such as
architecture, data iterator state, etc.) necessary to load the
model and continue training. Currently, checkpointing is
performed on persistent storage devices such as SSDs by
writing objects (i.e., models) via files. More specifically, when
a model is checkpointed, the parameters of the model are
traditionally organized in matrices which are then written to
disk either as separate files (one per collection of parameters),
or in a compressed archive. Unfortunately, this solution is
slow, synchronous, and the training process is stalled during
checkpointing.

Memory mapping is an alternative, asynchronous technique
to checkpointing using files [7]. In this approach, a user creates
a memory map of a file on disk and updates the model in
memory (just like updating it in DRAM). Periodically or
explicitly (i.e., via a msync() call), the contents of the mapped
memory region is persisted to the mapped device. For example,
the NumPy memory mapping API provides functionality that
mimics an ndarray object and a user can perform the same
operations on the memory mapped ndarray as a DRAM
backed ndarray with little to no code modification. When a
write occurs in memory mapped region, the data first makes its
way from the cache to DRAM, where it is eventually flushed
to the device.

Memory mapping, while more elegant than writing to a
file, is also slow, volatile, and not crash consistent. The flush
operation still runs at the speed of the device, which is orders
of magnitude slower than DRAM. Additionally, unless the
user manually invokes eager flushing, the data is still volatile
until it is lazily written in the background. Therefore, memory
mapped checkpointing is only faster than file checkpointing
when the user relies on lazy flushing, meaning the data is not
guaranteed to be persistent when the data is written with the
memory mapping API.

B. Persistent Memory

Persistent Memory (PM) provides high capacity and per-
sistence without sacrificing speed [8]–[14]. The most popular
version of PM is offered by Intel called Optane DC) [15], [16].
The key is that the latency of the devices, while three to five
times slower than DRAM, is orders of magnitude faster than
the latency of existing persistent storage. Therefore, users can
have devices with low latency, high throughput, and persistence.
Similar to DRAM, Optane DC utilizes load/store instructions

and is connected to the memory bus. Another advantage of
Optane DC is its large capacity with a maximum of 512GB
DIMMs. Optane DC uses slots similar to DRAM, meaning that
a system can be equipped with multiple DIMMs. Currently,
the maximum possible capacity for a commodity 2U server is
12TB, significantly more than DRAM.

Optane DC can be configured in a variety of ways. First,
Optane DC can be configured to always persistent data, called
App Direct Mode, or to be volatile, called Memory Mode.
When in Memory Mode, Optane DC can only be accessed
through DRAM cache misses, and essentially provides a layer
between DRAM and lower layers in the memory hierarchy.
In this paper, we do not make use of Memory Mode, and
always configure Optane DC to be persistent. In App Direct
Mode, Optane DC can further be accessed through two settings:
Device Direct Access (DevDax) or Filesystem Direct Access
(FS-DAX). When in FS-DAX, Optane DC can be mounted
like a normal filesystem. However, when in DevDax, Optane
DC can only be accessed through the kernel as an object store.
While DevDAX is slightly faster than FS-DAX, DevDAX is
significantly more difficult to debug, so it is often preferable
to access Optane DC in FS-DAX . An additional benefit to FS-
DAX is that since it is mounted with a filesystem, interfacing
with FS-DAX requires no additional code changes and can be
accessed by normal I/O operations.

C. Checkpointing Models on Persistent Memory

The traditional methods of checkpointing (i.e. writing to files
and memory mapping) is supported on Optane DC, albeit with
a significantly faster device. More specifically, as mentioned
earlier, Optane DC communicates directly with the CPU cache
through the memory bus and does not need data to pass
through DRAM. Therefore, when data is written from the
cache to Optane DC, it is written at the speed of the Optane
DC device, which is orders of magnitude faster than its NVMe
SSD counterpart. Optane DC can also be mounted using a
filesystem via FS-DAX and files can be written to the Optane
DC device without any change to I/O libraries.

III. CHECKPOINTING MODELS ON PERSISTENT MEMORY
WITH PYMM

Python Memory Management (PyMM) is an open source
Python library [5], [6] and is functionally similar to memory
mapping but on an Optane DC device II-B. PyMM can interact
with Optane DC in App Direct Mode [5], [16], and it can
interact with other devices that are mapped via FS-DAX,
including NVMe SSDs and other devices (through emulation).
PyMM internally utilizes libraries from Memory-Centric Active
Storage (MCAS) [17], to handle all metadata operations. MCAS
uses a key-value store to support PyMM, and uses libpmem
to flush data to the device.

Like memory mapping, by default, PyMM flushes data lazily
to the device. It also provides an API for eager flushing of data
(via persist()). The key datatype in PyMM is a shelf
object. A shelf acts as a namespace. PyMM offers native
support for NumPy and PyTorch tensors, meaning that programs



import numpy as np
import pymm

# c r e a t e t h e s h e l f
s h e l f = pymm . s h e l f ( " myshe l f " ,

pmem_path=" / mnt / pmem0" ,
s h e l f _ s i z e _ m b =10000)

# Gauss ian M i x t u r e Model w / 2 c l u s t e r s
model = Guass i anMix tu reMode l ( k =2 , . . . )

# p r e a l l o c a t e v a r i a b l e s on t h e s h e l f
s h e l f . means = model . means
s h e l f . covs = model . covs

whi le not m. conve rged ( ) :
model . u p d a t e ( t r a i n i n g _ d a t a )

# I n e f f i c i e n t c h e c k p o i n t w / eager f l u s h i n g
# s h e l f . means = model . means

# E f f i c i e n t c h e c k p o i n t w / in −p l a c e upd a t e
s h e l f . means [ : , : ] = model . means
s h e l f . means . p e r s i s t ( )

# I n e f f i c i e n t c h e c k p o i n t w / eager f l u s h i n g
# s h e l f . covs = model . cov s

# E f f i c i e n t in −p l a c e upd a t e
s h e l f . covs [ : , : , : ] = model . covs
s h e l f . covs . p e r s i s t ( )

Fig. 1: A sample Python program using PyMM to checkpoint a
Gaussian Mixture Model with 2 clusters to a 10GB shelf named
“myshelf” on the Optane DC device mounted at /mnt/pmem0.
After each .persist() call, the shelf variable is guaranteed
to be persisted on the device.

can assign ndarray and tensor values to the shelf as shelf
variables. Coupled with eager flushing, PyMM provides an
API for models to checkpoint with the convenience of memory
mapping, but with the speed of Optane DC.

To provide crash-consistency guarantees, each object con-
tains two sets of checkpointing buffers, which are used in
an alternating fashion to always ensure that model updates
are atomic and persistent. This requires minimal bookkeeping
information, with a single integer (that is atomically updated)
required to determine which buffer contains the most recent
checkpoint. This integer value is only updated once the entire
checkpointing operation has succeeded: meaning that in the
case of unexpected power loss we would only have to redo the
work that happened after the last consistent checkpoint (i.e.,
less than an iteration’s worth of work).

An example of checkpointing a model can be seen in Figure 1.
A shelf can contain multiple data types as different shelf
variables within the same namespace. In contrast, with memory
mapping, multiple memory mapped files are required to save
data of different data types, formats, etc or the application
has to be significantly changed to deal with different data
types within the same mapped region. With PyMM , all of
these values can be stores on a single shelf , minimizing the

amount of code needed to checkpoint on persistent memory.
We note that the code example in Figure 1 contains two

types of shelf assignment operations. The commented out
lines are direct shelf variable assignments. Direct assignment
is slow when the shelf variable already exists. When a shelf
variable already exists, PyMM does not have the luxury of
evaluating the contents of the new value to determine if the
old value’s memory on the device can be recycled. Therefore,
when assigning to an already existing shelf variable, PyMM
must first delete the old shelf variable, and then re-create it
with the new value. When the data is the same size and in
the same format, like when training a model, this process
is wasteful. A more efficient strategy is to assign in-place
to the shelf variable, through the use of library supported
APIs. Specifically, the most generic is to assign in-place to a
ndarray or tensor through the : operator (i.e. X[:,:]
= Y). However, each API has its own variation: NumPy
uses the numpy.copyto(dest, src)) function, while
PyTorch uses the tensor.copy_(other) method.

IV. EXPERIMENTS

This section describes our evaluation methodology, exper-
imental setup, and results. The goal of our evaluation is to
assess the performance benefits of using PM for checkpointing.
We would like to answer the following questions through our
evaluation:
Q1 How does checkpointing on Optane DC (without

PyMM) compare to current checkpointing strategies?
Q2 How does checkpointing with PyMM compare to

current checkpointing strategies (on NVMe SSD and
on Optane DC)?

Q3 How does checkpoinging with PyMM hold up on
real-world (i.e, large datasets and models) use cases?

The rationale behind Q1 and Q2 is to validate the need and
usefulness of persistent memory and PyMM for checkpointing,
respectively. Q3 helps in understanding the benefits of using
PyMM on popular real-world datasets.

A. Methodology

To answer Q1 and Q2, we chose to use multiple storage
media and multiple checkpointing strategies. To determine a
baseline, we evaluated checkpointing on traditional storage
media (i.e. a gen-4 NVMe SSD) and chose the fastest solution.
We then considered Optane DC on its own and mounted it
as a filesystem in FS-DAX. We then re-ran our traditional
checkpointing experiments where the files were written to the
Optane DC device instead of the NVMe SSD. Finally, we
used PyMM to checkpoint the same data to Optane DC both
in FS-DAX and DevDax. In each of these experiments, we
varied the size of the data being written from 1GB to 150GB.
We repeated each experiment at least five times to reduce the
chances of randomness interfering with our results.

Additionally, we also ran Q1 for a large number of iterations
to understand the cumulative benefits of PyMM on PM for
long training jobs. This scenario models iterative algorithms
where the model (i.e. the parameters) is checkpointed after



Strategy Optane DC Configs Tested NVMe SSD Tested? traditional? crash consistent?
pickle FS-DAX Yes Yes No

NumPy.save FS-DAX Yes Yes No
NumPy.memmap FS-DAX Yes Yes No

PyMM FS-DAX, DevDax No No Yes

TABLE I: Checkpointing strategy and the media combinations we evaluated in Q1, Q2 and Q3. Note that for strategies which
write to files, Optane DC must be in FS-DAX.

being updated during each iteration. This scenario more closely
resembles that of clustering algorithms and programs which
must protect against faults in general.

To answer Q3, we evaluated two popular clustering al-
gorithms using NumPy and PyTorch. When choosing the
clustering algorithms, we used the following criteria:

1) They must be popular.
2) They must be vectorizable (i.e., provide meaningful

comparison across checkpointing strategies on a variety
of media types).

3) Together they must cover the runtime complexity and
program state size lattice.

4) Together they must cover CPU and GPU based imple-
mentations.

Using this criteria, we chose the KMeans [18]–[21] and
Gausian Mixture Model (GMM) [18], [19], [21], [22] algo-
rithms. Both algorithms solve the k-clustering problem: to
find k representatives from a dataset that optimize some error
function. The KMeans algorithm models a cluster as a centroid,
and seeks to find the center of each centroid that minimizes
the cost (i.e. l2 distance) of assigning each point in the dataset
to its closest cluster. The KMeans algorithm receives its name
from the way it computes the centroid centers: once each
data point is assigned to its closest cluster, the centroids are
recomputed as the mean of the points assigned to that centroid.
KMeans is popular because it is extremely fast and efficient,
so we implemented it with NumPy and it is CPU bound. Our
GMM implementation, on the other hand, is implemented
on the GPU with PyTorch. GMMs take a more sophisticated
approach to modeling a cluster. In a GMM, the probability of
a point coming from a cluster is no longer binary; instead the
probability follows a Gaussian distribution. The goal of the
GMM is then to learn the Gaussian distributions that maximize
the likelihood of generating the data.

Both algorithms take k, the number of clusters, as a
hyperparameter; allowing us to control the size of the model
state. More importantly, both algorithms are batch vectorizable,
meaning that we can provide an apples to apples comparison
between PyMM and traditional APIs (DRAM NumPy and
PyTorch vs PyMM NumPy and PyMM PyTorch). When
using a DRAM implementation, we shared the compute phase
of each training iteration: we trained a single model and
checkpointed that model multiple times after each iteration. We
carefully recorded the timings of each checkpointing operation
as well as the time in the compute phase. Therefore, we
can construct the iteration/epoch time for a model using a
particular checkpointing strategy by adding the runtime for
the compute phase of the epoch and the runtime of saving the

model using that checkpointing strategy. For DRAM imple-
mentations, we evaluated all of the checkpointing API/media
combinations from Q1, Q2 and Q3 except for memory mapping
and pickle. We additionally added compressed saving (i.e.
numpy.savez_compressed(...)) as an API method.
We note that our GMM models checkpoint directly from GPU
memory to PM. We chose to implement direct GPU memory
to PM checkpointing after running a exploratory benchmark.
In this benchmark, we observed that GPU memory to PM,
while 20% slower than GPU memory to DRAM, is twice as
fast than GPU memory to DRAM, then DRAM to PM.

When training our models, we considered two datasets
of differing size and dimensionality. We chose the MNIST
handwritten image dataset because of its immense popularity.
Second, we took the MusicNet dataset, specifically the pre-
processed version from Yu et al. [23]. We chose this dataset
because it has a large number of dimensions and a large number
of samples, meaning that the program state when training our
models will be large. We believe that MusicNet creates a
more realistic setting in our benchmarks, as clustering is often
performed on massive datasets.

V. EXPERIMENTAL SETUP

Our experiments were run on a server equipped with dual
Intel Xeon Gold 6248 CPUs providing a total of 80 cores
running at base frequency of 2.5GHz, 348GB of DDR4 DRAM,
and 1.5TB of Optane DC. The server also has two Tesla M60
GPUs and two gen 4 NVMe m.2 drives. Each CPU socket is
given a single Tesla M60 and a single NVMe drive.

In our experiments, we train each model from scratch to
account for random initialization. We note that for GMMs,
random initialization does not affect the number of samples
generated, as the data has enough features to where the
Gaussians are spread out enough to be virtually nonexistent.

VI. RESULTS AND DISCUSSIONS

In this section we present and describe the results of our
experiments.

A. Checkpointing Fixed-Size Models (Q1 and Q2)

The results for our experiments on Q1 and Q2 can be
found in Figure 2. The API method numpy.save serves
as our benchmark as it is the fastest amongst the traditional
checkpointing strategies. We observe that PyMM in DevDAX
is always the fastest solution regardless of the size of the data.
Interestingly, we observe that PyMM in FS-DAX is just as fast
as our benchmark when making single writes, and also just as
good as the first stage of memory mapping. When writing to



(a) 10GB (b) 150GB

Fig. 2: Runtime (seconds) for checkpointing data from DRAM to different storage media. The x axis describes the device being
written to, while the y axis shows the runtime of each checkpoint strategy writing to that device. We note that meshed areas
correspond to the first step of checkpointing, where data is written to volatile memory. The rest of the bar (unmeshed) shows
the remaining runtime for flushing the data to the device. We also note that pickle crashes when writing 150GB models due
to a lack of memory capacity.

Fig. 3: Runtime (hours) for repeatedly checkpointing 10GB
of data from DRAM to different storage media. The x axis
describes the number of repetitions, while the y axis shows
the runtime for writing the data repeatedly. ‘x’ markers are
used for writing to Optane DC while ‘*’ markers are used for
writing to NVMe storage.

Optane DC, step 1 of FS-DAX takes almost the entire total
runtime, suggesting that most of the work occurs in writing
to the cache rather than flushing from the cache to the device.
When writing to an NVMe device, PyMM is not available,
and the superior option is our baseline of numpy.save.
Interestingly, according to our results, if DevDAX is not
available, saving to a NVMe device with numpy.save is
a comparable solution to saving on Optane DC and FS-DAX
with PyMM or numpy.save.

Therefore, we answer Q1 and Q2 with if Optane DC is
present in the system, then PyMM with DevDAX is the fastest
solution.

B. Overall Checkpointing Benefits during Training

As seen in Figure 3, even small differences between runtimes
can accumulate when the checkpointing occurs hundreds, if
not thousands of times. Even with a small model size of 1GB,
when training until convergence, using PyMM with DevDAX
can result in saving over 400 seconds (about 7 minutes) from
the next fastest solution (numpy.save on an NVMe SSD
drive) if the model is checkpointed at least 2000 times. When
writing to NVMe storage is more moderately sized (∼10GB),
the time saved between PyMM in DevDAX and the next closest
solution (PyMM in FS-DAX) becomes over 5,800 seconds (over
1.6 hours). Therefore, when running iterative algorithms such
as clustering, which repeatedly checkpoints the model being
trained, the impact of PyMM on the overall checkpointing
time is significant. We omit 1GB, 100GB, and 150GB from
Figure 3 since the trend of the results does not change.

C. Checkpointing on Real-World Datasets (Q3)

To answer Q3, we first look at our KMeans implementation,
the results of which can be seen in Figure 4. As mentioned
in Section IV-A, direct assignment becomes expensive when
PyMM must first delete the old value of the shelf variable
and then write the new value: this is wasteful if the size
and format of the data is unchanged. To implement in-place
assignment, shelf variables are allocated once at the beginning
of training and are never allocated again, allowing for a one-
time upfront cost that writing to files (or direct assignment)
must pay every iteration. We can clearly see from Figure 4(b)
that after removing PyMM direct assignment, that PyMM in-
place performs the best and has near constant runtime regardless
of the number of clusters (and therefore the size of the data
being written). This is supported from Q1 and Q2, where
assignment on either PyMM DevDAX or PyMM FS-DAX was



(a) KMeans on Musicnet with all checkpointing operations (b) KMeans on Musicnet removing PyMM direct assignment.

Fig. 4: Average checkpointing runtimes (seconds) from training KMeans to convergence on the Musicnet dataset.

almost entirely occupied by the time for allocation of memory
from the device. From Figure 4(b) we can see that saving
to an NVMe device is not that much worse than writing to
Optane DC as files. However, we note that this solution is
vastly inferior to PyMM in FS-DAX.

Turning to GMM, we can see the results of our experiments
in Figure 5. First, we note that in this implementation, we
accidentally found two ways of performing an in-place shelf
assignment. This arose naturally from the implementation,
which uses PyTorch to put the computation on a GPU.
The first does an in-place operation using assignment (i.e.
shelf.X[:,:] = new_value), while the second explic-
itly uses torch.copy_(other) to perform the assign-
ment (i.e. shelf.X.copy_(new_value)). These opera-
tions have the potential to differ in two places: the shallow-
copy tensor allocation used for indexing into a tensor (i.e.
shelf.X[:,:] produces a shallow-copy of shelf.X), and
the underlying implementation for the equality operator. From
our results, we conclude that the runtime for creating the

Fig. 5: Average checkpointing runtimes (seconds) from training
GMM to convergence on the Musicnet datasets

Fig. 6: Average speedup ratios of using PyMM inplace vs
checkpointing to NVMe SSD for KMeans on the Musicnet
dataset.

shallow copy is negligable, and the underlying implementation
for the equality operator is the .copy_(other) method.
Therefore, in our results, we observed no difference between
GMM’s inplace and direct assignment strategies.

In Figure 5, we observe a larger linear coefficient for
checkpointing than in Figure 4. This is because GMM allocates
significantly more memory than KMeans. KMeans allocates
one vector per cluster (O(dk)) memory where d is the
dimensionality of the data and k is the number of clusters, while
GMM allocates one mean vector and one covariance matrix per
Gaussian (O(dk + d2k)). We observe that, like with KMeans,
PyMM is the fastest option regardless of the number of clusters
(i.e. data size). Our results also match the results of KMeans,
with compression resulting in larger runtimes (although smaller
files). We observe a looser relationship between checkpointing
to NVMe and Optane DC as files, although this is likely due
to the slower speeds of the NVMe device.

Figure 6 shows the speedup ratios from the results of
Figures 4 and 5. Speedup ratios are calculated as the ratio



Strategy Configuration One Ckpt. File Two Ckpt. Files
Pass Failed Pass Failed

pickle FS-DAX 0 100 100 0
NumPy.save FS-DAX 0 100 100 0

NumPy.memmap FS-DAX 0 100 100 0
PyMM FS-DAX 100 0 100 0
pyMM DevDax 100 0 100 0

TABLE II: Checkpointing Strategy and the media combinations
evaluated for crash consistency with 100 random crashes.

of an NVMe API’s times to the in-place PyMM times. This
figure shows the magnitude of difference between using an
NVMe device and PyMM. While KMeans speedup trends are
decreasing, we note that the the rate of decrease is also slowing,
suggesting that they will stabilize above a speedup of 1x.

D. Crash-Consistent Checkpointing

We also evaluated the crash-consistent properties of the
checkpointing strategies by injecting 100 random crashes during
the checkpointing process. The results are described in Table II.
Pickle and NumPy.save do not provide crash-consistency by
default. More specifically, the file update during checkpointing
(on persistent media) is not atomic. As a result, a fault or a
crash during checkpointing results in partially updated file (i.e.,
an unusable checkpoint). To avoid this scenario, users have
to explicitly write to different files and recover using the last
complete checkpoint. NumPy.memmap cannot provide crash-
consistent checkpoints as updates are directly to the mapped
region in memory. It is important to note that, though the
NumPy.memmap checkpoints can be remapped in memory
after a crash, but it would not be a consistent (or up to date)
checkpoint as it would contain updates from the previous
checkpoint intermixed with updates from the current checkpoint.
In contrast, updates via PyMM, can provide crash-consistent
checkpoints as PyMM internally maintains two persistent
buffers for each shelf object and alternates writing to these
buffers to create a consistent checkpoint on every update.

VII. RELATED WORK

There has been a gamut of work on checkpointing and
reducing the checkpointing overhead [24]–[30]. To the best of
our knowledge, we are the first to propose and demonstrate
a checkpointing solution using persistent memory (PM) and
a easy to use python library (PyMM), evaluate and quantify
the overheads of different access modes in persistent memory,
and provide guidance on which access modes to use to get the
optimal performance.

Recent work such as CheckFreq [31], Check-N-Run [32], and
DeepFreeze [33] have proposed solutions to reduce the overall
checkpointing time. CheckFreq converts the synchronous check-
pointing operation to a two phase asynchronous operation but
the solution is still limited by the bandwidth and performance
characteristics of the underlying NVMe SSDs [31]. Check-
N-Run focuses on optimizing the overheads of distributed
checkpointing of Deep Learning Recommendation Models via
differential checkpointing (by writing a small portion of the
model during checkpointing) [32]. DeepFreeze on the other

hand, assume deep knowledge about the execution graph and
does asynchronous sharding and copying of model parameters
to speed up checkpointing [33].

Our solution also shares the same goals of reducing the
overall checkpointing time. But at the same time, our solution
is orthogonal to these efforts and can be leveraged by these
solutions to further reduce their overall checkpointing time.

VIII. CONCLUSION

In conclusion, we have shown that it is possible to provide
fast crash-consistent checkpointing with the usage of PyMM
and Optane DC. We first show that when performing a
checkpoint, PyMM in DevDAX is always the fastest operation,
and by repeating this operation over multiple iterations, models
can save minutes to hours to days of checkpointing time.
We then further optimize the checkpointing operation and
show that algorithms such as KMeans and GMM can receive
checkpointing speedups of a factor between 10 and 75x for
KMeans and over 3x for GMM, respectively. We have also
simulated random crashes during checkpointing and show
that PyMM provides superior crash-consistency guarantees
compared to the other traditional checkpointing strategies.
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