

ADVANCED RECOMMENDATION TECHNIQUES

\triangleright Intro

Goals

\triangleright Organization, Grading

\triangleright Overview of Recommendation Techniques

- \triangleright What are recommendation techniques?
- \triangleright Where are they being used?
- \triangleright What are they good for?

Goals

Neue Feedly-Beta für Android erschienen

5. April 2013 Kategorie: Android, geschrieben von: caschy

Bei Feedly bittet man um Mithilfe. In den nächsten acht Wochen will man möglichst viele Bugs eliminieren, das Leseerlebnis vereinfachen und natürlich an der Geschwindigkeitsschraube drehen. Aus diesem Grunde hat man eine Betaversion des RSS-Readers für Android veröffentlicht, die jeder von euch nutzen kann, sofern er einfach ausprobieren oder mithelfen will. Die Beta nebst den Installationsanweisungen bekommt ihr im Feedly-Blog und wenn ihr noch einen RSS-Feed zum Test benötigt, dann nehmt diesen ®

- \triangleright Cross-Site article recommendations
- \triangleright Dataset: Articles from 22 different news websites
	- \triangleright + tweets/retweets from their Twitter accounts
- \triangleright Implement different recommendation techniques, test on dataset
- \triangleright Compare results

- \triangleright Teams of two students each
- \triangleright First weeks regular seminar
	- \triangleright Learn about different recommendation techniques
	- \triangleright Form Team, pick technique to implement
- \triangleright Individual feedback and progress sessions
	- \triangleright Frequency depends on progress, problems, etc.
- \triangleright Intermediate Presentation
- \triangleright Final Presenation

\triangleright (Short) project report

- ▶ Presentations: ~ 25%
- \triangleright Implementation: ~40%
- Project Report: ~ 20%
- \triangleright Participation: ~ 15%

Seminar: Advanced Recommendation Techniques

Goal: Cross-platform recommendation for posts on the Web

- \triangleright Given a post on a website, find relevant (i.e., similar) posts from other websites
- \triangleright Analyze features of post, author, website, ...
- \triangleright Compare different state-of-the-art recommendation techniques

Recommend top-k items

Student Questions

Questions???

\triangleright Goals

- \triangleright Predict the user's opinion on a given item based on the user's previous likings and the opinions of other like-minded users
- \triangleright Recommend to a given user the items he/she might like most

- \triangleright Neighborhood-based models
	- \triangleright Derive user profile from user's neighborhood (i.e., most similar users) \rightarrow user-user models
	- \triangleright Derive item profile from item's neighborhood (i.e., most similar items) \rightarrow item-item models
	- Similar models used in: Pandora.com, Music Genome Project, …

Collaborative filtering techniques (overview)

\triangleright Latent factor models

 \triangleright Derive factors that characterize both users and items at the same time

Source: [Koren et al., IEEE 2009](http://edlab-www.cs.umass.edu/cs589/2010-lectures/netflix-matrix-factorization.pdf)

$$
R_u(\text{item}) = \frac{\sum_{u' \in N(u)} sim(u, u') \cdot R_{u'}(\text{item})}{\sum_{u' \in N(u)} sim(u, u')}
$$

 \triangleright Possible similarity measures

► Cosine similarity:
$$
sim(\mathbf{u}, \mathbf{u}') = \frac{\mathbf{u}^T \mathbf{u}'}{\|\mathbf{u}\| \|\mathbf{u}'\|}
$$

► Pearson correlation (for ratings) :
$$
sim(\mathbf{u}, \mathbf{u}') = \frac{\sum_i (u_i - \overline{u})(u'_i - \overline{u'})}{\sqrt{\sum_i (u_i - \overline{u})^2} \sqrt{\sum_i (u'_i - \overline{u'})^2}}
$$

► Scalar agreement:
$$
sim(\mathbf{u}, \mathbf{u}') = exp(-d(\mathbf{u}, \mathbf{u}'))
$$
,
where $d(\mathbf{u}, \mathbf{u}') = \frac{1}{dim(u)} \sum_{i} \frac{(u_i - u'_i)}{|domain u_i|}$ is the disagreement between **u**, **u'**

► Jaccard similarity:
$$
sim(\mathbf{u}, \mathbf{u}') = \frac{|\mathbf{u} \cap \mathbf{u}'|}{|\mathbf{u} \cup \mathbf{u}'|}
$$

 \triangleright Problem: vectors can be large and comparisons can be costly

Diality Sensitive Hashing for nearest neighbor search (1)

LSH with Random-projections for cosine similarity estimation

 \triangleright Given a collection of d-dimensional vectors, chose a random hyperplane defined by unit normal vector w_i and define hash function as $h_i(\mathbf{x}) = w_i \cdot \mathbf{x} \ (\in \{+1, -1\})$

Locality Sensitive Hashing for nearest neighbor search (2)

 \triangleright LSH with Random-projections for cosine similarity estimation Sources: A. Gionis [et al., VLDB 1999](http://www.vldb.org/conf/1999/P49.pdf) and [D. Ravichandran et al., ACL 2005](http://acl.ldc.upenn.edu/P/P05/P05-1077.pdf)

General algorithm for preprocessing:

- 1. Given a family for LSH functions, construct l different hash tables $g_1(h_{11},...,h_{1k}),...,g_l(h_{l1},...,h_{lk})$, where each h_{ij} is randomly chosen
- 2. Run all n input vectors through each of the hash tables

Running time: $O(kln)$

- \triangleright Rating of an item is estimated using known ratings made by the same user on similar items
- \triangleright Item-item similarity estimation is crucial
- General model

$$
\hat{R}_{u}(i) = B_{u}(i) + \frac{\sum_{j \in N(i)} sim(i, j) \cdot (R_{u}(j) - B_{u}(j))}{\sum_{j \in N(i)} sim(i, j)}
$$
\nBased in the best equation of user's rating on *j*

 \triangleright Possible similarity measure (based on Pearson correlation)

$$
sim(i,j) = \frac{\sum_{u \in U(i,j)} (R_u(i) - B_u(i))(R_u(j) - B_u(j))}{\sqrt{\sum_{u \in U(i,j)} (R_u(i) - B_u(i))^2 \sum_{u \in U(i,j)} (R_u(j) - B_u(j))^2}} \cdot \frac{|U(i,j)|}{|U(i,j)| + \lambda}
$$

The larger the number of users who rated *i* and *j*, the better the estimation of user's the performance of user's the estimate of user.

\triangleright Advantages

- \triangleright Relatively easy to understand and implement
- \triangleright Results can be explained based on the data,
- New users can be easily added (similarities have to be recomputed after some time)

\triangleright Disadvantages

- \triangleright Introducing new items leads to updated vector representations and similarity parameters
- \triangleright High dependency on the quantity and quality of ratings (performance degrades considerably on large and sparse datasets)
- \triangleright Dependent on efficient and effective similarity estimation

For more details see: [Y. Koren, TKDD 2010](http://dl.acm.org/citation.cfm?id=1644874&bnc=1)

Hasso Plattner **Matrix factorization techniques for recommendation (1)**

Plattne **Matrix factorization techniques for recommendation (2)**

General model

- A Map user $\mathbf{u} \in \mathbb{R}^n$ to $\widehat{\mathbf{u}} \in \mathbb{R}^f$
- \triangleright Map item $\mathbf{i} \in \mathbb{R}^m$ to $\hat{\mathbf{i}} \in \mathbb{R}^f$
- \triangleright f $\ll n, m$

Plain model

- Estimate: $\hat{R}_u(i) = \mu + b_u + b_i + \hat{\mathbf{u}}^T \hat{\mathbf{i}}$ (combination of average rating, user bias, item bias, and inner product between $\hat{\mathbf{u}}$ and $\hat{\mathbf{i}}$)
- A Main challenge: generate appropriate mappings of **u** and **i** into \mathbb{R}^f
- \triangleright Typical approach: Singular Value Decomposition

Matrix factorization techniques for recommendation (3)

Problem with SVD for collaborative filtering

- \triangleright User-item matrix is too sparse (i.e., there are many values missing)
- \triangleright Filling in missing values correctly is difficult
- \triangleright Other possibility: estimate \widehat{u} and \widehat{i} as

$$
\min_{\hat{\mathbf{u}},\hat{\mathbf{h}}} \sum_{\mathbf{A}\ni(u,i)\neq\mathbf{0}} (R_u(i) - \mu - b_u - b_i - \hat{\mathbf{u}}^T \hat{\mathbf{l}})^2 + \lambda (||\hat{\mathbf{u}}||^2 + ||\hat{\mathbf{u}}||^2 + b_u^2 + b_i^2)
$$

Regularization term avoids overfitting to observed data λ can be learned through cross validation

- \triangleright Other information such as temporal dynamics, implicit feedback, and user features (e.g., age, gender, group, etc.) can be added
- \triangleright Two approaches for minimizing above equation:
- (1) Stochastic gradient descent
- (2) Alternating least squares

- \triangleright In 2006, Netflix (an online DVD rental company) announced a contest to improve the state of its recommender system
- ≥ 100 million ratings on more than 17,000 movies, spanning about 500,000 anonymous customers and their ratings
- \triangleright Movies rated on a scale of 1 to 5 stars
- \triangleright Test set with approximately 3 million ratings
- \triangleright The first team that can improve on the root mean square error ($RMSE$) of the Netflix system by 10 % or more could win \$1 million

$$
RMSE = \sqrt{\frac{\sum_{(u,i)\in TestSet} \left(R_u(i) - \hat{R}_u(i)\right)^2}{|TestSet|}}
$$

\triangleright RMSE of the Netflix system: 0.95

\triangleright Winning team shorlty before submitting on July 26th, 2009

Example factors

Lessons learned from the Netflix challenge

- \triangleright Matrix factorization techniques are superior to neighborhood-based ones
- \triangleright But they need to combine many different aspects (e.g., temporal aspect, implicit feedback, user features, user and item bias)
- \triangleright Filling in missing values correctly is difficult
- \triangleright Winning system had many different algorithms stitched together
- \triangleright Many concerns about RMSE as a measure (as it does not capture well user satisfaction)

Research problems in collaborative filtering

\triangleright Data sparsity and noise

 \triangleright Fill in missing values correctly or remove noise

\triangleright Cold start problem

- \triangleright Recommending items to new users (i.e., learn preference for new users)
- \triangleright Predicting rating for new items
- \triangleright Scalability
	- \triangleright Factorization of large sparse matrices is difficult
- \triangleright Recognizing adversarial users or dealing with users who, from time to time, largely disagree with common opinion

\triangleright How to promote diversity in recommendations?

Summary

\triangleright Neighborhood-based models for collaborative filtering

- User-user models
- \triangleright Item-item models
- \triangleright Explainable results, easy to understand and implement but difficult to scale and update (at least for new items added)

 \triangleright Latent factor (i.e., matrix factorization) models for collaborative filtering

- \triangleright Map user and item vectors to lower-dimensional space and measure similarity in that space
- \triangleright SVD can be used but results suffer from sparse data
- \triangleright Learn mappings directly from observed data through optimization problem
- \triangleright Take other aspects into account (e.g.: time, implicit feedback, user bias, item bias, features, etc.)
- \triangleright Scalable models that are superior to the neighborhood based ones