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Abstract

BDD is an efficient data structure that in last few years has
been used effectively in computer science and engineering.
BDD-based attack in key stream cryptanalysis is supposed
to be one of the best forms of attack in its kind. In this
paper, we propose a new key stream attack which is based
on ZDD(a variant of BDD). We show how our ZDD-based
key stream attack can be used against the E0 type of
the Bluetooth security mechanism. We implemented our
algorithm using CUDD package. The experimental results
witness the superiority of our method. We have also derived
a mathematical proof for the algorithm, which shows that
its behavior even under the worst circumstances is better
than BDD attack.

1 Introduction

In cryptography, pseudo random sequences are fre-
quently used. A pseudo random sequence generator re-
quires to be uniformly distributed, independent, and non-
correlated [8]. In implementation of key stream generators,
the LFSR (Linear Feedback Shift Register) is being used
because all above conditions are met and the corresponding
algebraic analysis is also quite simple.

The LFSR-based key stream generators consist of two
components: a linear bitstream generator L and a nonlin-
ear compression function C, i.e. K = (L,C). First they
generate the key stream Y = C(L(k)), for the cipher key
k, then Y and the plain text P are bitwise XORed to pro-
duce the cipher text E. In cryptanalysis of these generators,
the encryption system is supposed to be known and we are
interested in finding k.

BDD and its variants are data structures that are used ef-
fectively in computer science and engineering. These data
structures give compact and canonical representations for
Boolean functions. Recently, a new attack against LFSR-
based key stream generators is introduced by Krause [4]
which is based on FBDD. Later Shaked and Wool [9] intro-

duced their OBDD-based attack to E0 key stream generator.
In this paper, we introduce a new attack to key stream gen-
erators which uses ZDD. Experimental results show that it
makes a remarkable reduction in time and space complexity
over OBDD and FBDD based attacks. We have also derived
a proof which confirms the experimental results.

This paper is organized as follows. Section 2 provides
the basic definitions and the main concepts: E0 encryption
system and a brief introduction to BDD and ZDD. In sec-
tion 3 the proposed attack is introduced. First the FBDD
attack is discussed, then the attack to E0 with OBDD is re-
viewed. Finally our ZDD-based attack is introduced. Sec-
tion 4 is dedicated to the theoretical complexity analysis of
our method. Section 5 provides concludes.

2 Preliminaries

2.1 E0 Key Stream Generator

E0 is a LFSR-based key stream generator which is used
in Bluetooth security mechanism. LFSR-based key stream
generators consist of two components, a linear bitstream
generator and a nonlinear compression function. After ini-
tialization, the linear bitstream generator L, generates the
bitstream Z. It employs four Linear Feedback Shift Reg-
isters(LFSR), whose output is the input to the compression
function C. The output of the compression function would
be the key stream Y = C(L(k)). The lengths of the four
LFSR are |L0| = 25, |L1| = 31, |L2| = 33 and |L3| = 39,
and their feedback polynomials are:

p0(x) = x25 + x20 + x12 + x8 + 1

p1(x) = x31 + x24 + x16 + x12 + 1

p2(x) = x33 + x28 + x24 + x4 + 1

p3(x) = x39 + x36 + x28 + x4 + 1

At the beginning, the linear generator needs to be loaded
with an initial value for the four LFSRs(128 bits in to-
tal). Summation of the four output bits of the LFSRs make
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the input of the compression function. The compression
function is usually organized with a finite state machine
CE0 : (Q, Σ,Γ, I, F, δ) [1, 9, 5]. Figure 1 displays the
transition function of this finite state machine.

Figure 1. The FSM transition function

2.2 OBDD And ZDD

A Binary Decision Tree is a directed acyclic graph over
a set of Boolean variables ∀m ∈ N,Xm = {x1, ..., xm};
it can represent a Boolean function over Xm. A BDT com-
prises two kinds of vertices, nonterminal vertices, and ter-
minal vertices. Each nonterminal vertex N is assigned a
label V ar(N) ∈ Xm, and has two children Low(N) corre-
sponding to the answer xi = 0 and High(N) correspond-
ing to the answer xi = 1. There is exactly one node with
indegree 0, the root of BDT. Each terminal vertex T is la-
beled by either 0 or 1. Depending on its label, a terminal
vertex is called a 0− T or 1− T . A Boolean function com-
posed of m Boolean variables, has 2m assignments. Each
assignment b ∈ {0, 1}m defines a path from root to a ter-
minal vertex.The label of this terminal vertex is shown as
F (b).

A Binary Decision Diagram is an efficient graph to rep-
resent a Boolean function. A BDD is derived from a
BDT by applying the following reduction rules: merge
all 0 − T vertices and 1 − T vertices, combine similar
subgraphs, remove all ”don’t care” nonterminal vertices.
Two subgraphs G1 and G2 are similar, if in their roots
g1 and g2: V ar(g1) = V ar(g2), Low(g1) = Low(g2)
and High(g1) = High(g2). A ”don’t care” nontermi-
nal vertex is one whose two children are the same, i.e.,
Low(g1) = High(g1).

A Free Binary Decision Diagram is a BDD if along each
path, from root to one of terminal vertices, each variable xi

occurs at most once.
An Oracle graph over Xm is a FBDD with only one (un-

labeled) terminal for which on each path, from the root to
the terminal, all m variables occur. Oracle graph is not de-
signed for computing Boolean functions; its aims is to de-
fine a set of valid ordering for xi ∈ Xm.

G-FBDD is a FBDD if there exists an Oracle graph G
that every ordering of the variables requested in FBDD cor-
responds to a path of G.

A Reduced Ordered Binary Decision Diagram is a G-
FBDD if its Oracle graph G has only one path. On the other
hand, G is degenerated into a linear list that only shows one
order for occurrence of variables.

Zero-suppressed Binary Decision Diagram is a variant of
BDD that can represent a Boolean function. ZDD like BDD
is derived from a BDT by applying similar reduction rules,
i.e., merge all 0− T vertices and 1-T vertices and combine
similar subgraphs, but with different reduction rule. The
last rule for deriving ZDD, remove the nonterminal vertex
N , if High(N) is connected to 0− T [2, 6, 4, 3].

3 ZDD Based Cryptanalysis Of E0

3.1 FBDD Based Cryptanalysis Of Key Stream
Generator

In the algorithm proposed by Krause [4], the method first
reduces the problem for the cryptanalysis of LFSR-based
key stream generators. It assumes that except for key k, all
other parameters are known. Moreover, it is assumed that
the attacker is able to obtain the first bits of the key stream
Y . The attacker’s goal then is computing k = {0, 1}n that
produces the observed key stream. Since in an LFSR, the
first output bits are the initialization value of LFSR, then
Z = L(k) would contain k in the first bits. Then the prob-
lem reduces to finding a bitstream Z with the following con-
ditions:

1. Z can be produced by the linear bitstream generator L.

2. C(Z) is prefix of the observed key stream Y .

For each m ≥ 1, and the bitstream z ∈ {0, 1}m is defined
as:

• GC
m−FBDD denote the oracle graph that defines for

each Z the order in which the bits of Z are read by the
compression function C.

• Rm denote the minimal GC
m − FBDD that decides

whether Z can be produced by L.

• Qm denote the minimal GC
m − FBDD that decides

whether C(Z) is prefix of Y .
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• Pm denote the minimal GC
m − FBDD that decides

whether Z can be produced by L and C(Z) is prefix
of Y .

In [4], the key is considered to be n bits length then it
computes m∗, where m∗ denotes the length of the consec-
utive bitstream required for key discovery. Therefore, the
following algorithm can compute k:

1. P ← Qn.

2. for m← n + 1 to m∗ do:
P ← (P ∧Qm ∧Rm)

3. return Z∗ that P (Z∗) = 1.

On the other hand, iteration continues until Pm∗ has only
one assignment z∗ ∈ {0, 1}m that P (Z∗) = 1.

3.2 Reduction of FBDD-based Cryptanalysis
With OBDD-Based Cryptanalysis

The algorithm described by Krause is generic and needs
to be adapted for use on E0, Shaked and Wool [9] made
reductions and changes to the algorithm about E0, by using
OBDD instead of FBDD. Krause in [5] generalized OBDD
attack to oblivious key stream generator.

Figure 2. a) OBDD representing and b)ZDD
representing which check bit z100

OBDD attack marked the output bits of L(k), for exam-
ple, Z = (..., z4j , z4j+1, z4j+2, z4j+3, ...), where z4j+i ∈
Li(ki). This bit ordering leads to following equations for
linear key stream generator L:

∀i = 4j : zi = zi−32 ⊕ zi−48 ⊕ zi−80 ⊕ zi−100 (1)

∀i = 4j + 1 : zi = zi−48 ⊕ zi−64 ⊕ zi−96 ⊕ zi−124

∀i = 4j + 2 : zi = zi−16 ⊕ zi−96 ⊕ zi−112 ⊕ zi−132

∀i = 4j + 3 : zi = zi−16 ⊕ zi−112 ⊕ zi−144 ⊕ zi−156

Then based on these equations, Rm graph is produced by
building OBDD for every zi. Figure 2 shows an OBDD rep-
resenting which checks bit z100. In building OBDDs which
check bits of each Li, algorithm calls the first |Li| bits in its
bit stream. The goal of the algorithm is to compute these
first bits of all Li. According to the above equations, an al-
gorithm must build OBDD for zj : |L| ≤ j ≤ 4|L|. Each
synthetic OBDD contains 5 variables and 11 vertices, there-
fore, it requires 4224 vertices. To compute the Qm graph,
they used a BDD structure called basic chain, to represent
sum of 4 bit, refer to Figure 3. For each state and each of the
5 possible sums, Table 1 shows what the output bit should
be. If it matches the bit given in known key stream Y , it
can advance to the next chain, and test the next four bits;
otherwise, this path will lead to 0 − T . The Qm graph is
built from blocks, each consisting of 16 basic chain corre-
sponding with 16 states of FSM. According to 2, each chain
contains 4 variables and 10 vertices, therefore, a sequence
of 128 blocks requires 20,480 vertices. Indeed, Shaked and
Wool [9] demonstrated that the reduction rule of BDD re-
duces this size to 14,500 vertices rather than 20,480.

Figure 3. Basic chain representing sum of 4
bits

3.3 ZDD-Based Cryptanalysis Of E0

Initially we stated the main motivation for using ZDD in
relation to this probelm. Considering the structure and prop-
erties of BDD and ZDD, while BDDs are better suited for
representing Boolean functions, ZDDs are better for rep-
resenting sets. In fact, using ZDD is more efficient than
using OBDD in problems that need to manipulate a set of
combination [7]. A combination of ”n” items can be repre-
sented by an n-bit binary vector, (x1, ...xn), where each bit
xi ∈ {0, 1} expresses whether or not the item is included
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in the combination, so a set of combination can be shown
with a Boolean function by n-input variables. This Boolean
function determines which combination are possible in a so-
lution set of problem. Such Boolean functions are called
characteristic functions. The set operations such as union,
intersection, and difference can be performed on these func-
tions.

OBDDs are more efficient in compression representing
characteristic function of combinatorial set, than other data
structures. Despite the efficiency of OBDDs, there is one
severe defect in combinatorial sets, because of inappropri-
ate reduction rules. Indeed, ZDD is a variant of BDD,
where one of the reduction rules have been changed in a
way which leads to more efficient representations for com-
binatorial sets. In a ZDD, each path from root to the 1-T
corresponds to one of the combinations [6].

Figure 4. ZDD vs. BDD in combinatorial sets
(Adapted from[6])

Minato in [6], for evaluating the ZDD and OBDD using
representative combinatorial set, conducted a statistical ex-
periment and produced a shown diagram in Figure 4. The
diagram shows that ZDDs are much more compact than
OBDD, especially in representing sets of sparse combina-
tions.

The goal of key stream Cryptanalysis is to scan possi-
ble keys and find keys of known key streams. FBDD attack
can be reduced for oblivious key stream generators by us-
ing OBDD data structure. These generators fulfill the same
ordering, in building Rm and Qm graphs, and in conclusion
building Pm graphs. The compression nonlinear function of
these generators can be shown with a finite state machine.

ZDD attack operates on this kind of key stream genera-

tors. We discussed ZDD attack against E0 key stream gen-
erator, and stated that the method can be generalized to all
oblivious key stream generators. ZDD attack is based on
the general theoretical FBDD attack, but with different data
structure and implementation method, which optimizes that
attack. In the ZDD attack against E0 generator, we imple-
mented an Rm graph by similarity technique to OBDD at-
tack, the only difference is using ZDD instead of OBDD.
Figure2 shows a ZDD representing checks bit z100; accord-
ing to this figure, each synthetic ZDD contains 5 variables
and 9 vertices, therefore, it requires 3456 vertices. We com-
puted the Qm graph by the following technique. Since finite
state machine of E0 generator has 16 states, we used 4 vari-
ables 0 ≤ i ≤ 3, qn

i to mark them. So the following function
for Qm can be computed:

F (qm+1
3 , qm+1

2 , qm+1
1 , qm+1

0 , z4m+3, z4m+2, , z4m+1, .., z0)

We can see that the Qm function consists of 4m + 4 vari-
ables. It stands for all the possible paths in the finite state
machine after reading m + 1 input symbols. We imple-
mented the Qm function using the algorithm bleow:

1. If CE0 machine includes transition rule (qm, a) →
qm+1 AND corespondent output rule (qm, a) → b
AND b = bm(bm is m th bit in known key stream
Y):

1.1 Compute qm and qm+1 based on qi
m:

qm = (q3
m)∗ ∧ (q2

m)∗ ∧ (q1
m)∗ ∧ (q0

m)∗

where (qi
m)∗ is qi

m or (qi
m)∗ is (qi

m)′ according to
labels of the states of the machine. For example
in step m, the 5th state is : (q3

m)′∧(q2
m)∧(q1

m)′∧
(q0

m) .

1.2 For all
∑

z4m+i = a, compute:

Xj = (qm+1∧z4m+3∧z4m+2∧z4m+1∧z4m∧qm)

2. Compute Q′
m function based on:

Q′
0 = (X0 ∨ ... ∨Xj)

Q′
m = ((X0 ∧Qm−1) ∨ ... ∨ (Xj ∧Qm−1)

3. Compute Qm by removing (qi
m)∗ from Q′

m.

We need to mention that finally we are interested in com-
puting Q128. The constructed Qm truly decides whether
C(Z) is prefix of Y or not. By scanning all the paths from
root to 1−T , we compute all Zs which produce same prefix
to Y . In our proposed ZDD-based attack, the final states of
machine and bit stream that read for reaching the states are
enough to be maintained with the Qm graph.
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Due to pseudo random sequences requirements, the con-
structed Qm would be a sparse graph. (A pseudo random
sequence must be uniformly distributed, i.e., the probability
of 0 occurrences must be equal to the probability of 1 occur-
rence.) In implementing our proposed attack by ZDD, we
mapped the problem to a combinatorial set problem. In fact,
in each iteration of computing Qm, we checked all possible
combinations of input bits and final states.

Most operation on sets are readily defined and imple-
mented for ZDD, such as union, intersect, difference and
another functions:

• Z.onset(N) selects the subset of the combinations in-
cluding N, and then delete N from each combination.

• Z.count the number of combinations in Z.

and so on. We ran our algorithm in C along with the CUDD
package[10]; Our algorithm can be displayed with the fol-
lowing pseudo codes:

For ∀ element ∈ δ

If ((qm, a)→ qm+1 ∧ (qm, a)→ b ∧ (b = bm))
{

qm = ZDDIntersect(q3
m)∗, (q2

m)∗, (q1
m)∗, (q0

m)∗)
qm+1 = ZDDIntersect((q3

m+1)
∗, (q2

m+1)
∗,

(q1
m+1)

∗, (q0
m+1)

∗)
For ∀Z4j+i, 0 ≤ i ≤ 3
{
if

∑
Z4j+i = a

Xj = ZDDIntersect(qm+1, z4m+3,

z4m+2, z4m+1, z4m, qm)
}

}
Q′

m ← ZDDUnion(∀j, ZDDIntersct(Xj ,

Qm−1.Oneset(qm), if((qm)Xj
== (qm)Qm−1)

For every qm Qm ← Q.Oneset(qm)

4 Theoretical Complexity Analysis

The time complexity of the algorithm is determined by
the space complexity of the constructed ZDD during the en-
tire process of construction. First, review the complexity of
functions which are used in the algorithm:

• Time complexity of producing ZDD which is rep-
resenting function F (x0, ..., xn) is O(|GF |), where
|GF | denotes the number of vertexes in constructed
graph.

• Time complexity of each set operation such as union
and intersect of two graph F,G is O(|GF |.|GG|)

In the algorithm, during the |L0| steps,it introduces 4
new variables, and one constraint

∑
z4j+i = a, then the

number of assignments is multiplied by 23. After |L1|−|L0|
steps it has two constraints, z4j ∈ L0 is determined ,then the
number of assignments is multiplied by 22. After |L2|−|L1|
steps it has three constraints, z4j ∈ L0 and z4j+1 ∈ L1 are
determined ,then the number of assignments is multiplied
by 21. After |L3|−|L2| step it has four constraints and there
are no more choices, then the number of assignments will
be constant. In the other steps, the number of assignments
start to decrease to half. On the other hand, due to ZDD
properties, the average number of vertices in each path are:∑

C(4, i).i.m
24

= 2m

Therefor, considering the above arguments, we can com-
pute the higher bound as(m : 0→ 128):

m ≤ |L0| : |Pm| = 2m× 23m

|L0| ≤ m ≤ |L1| : |Pm| = 2m× 23|L0| × 22(m−|L0|)

|L1| ≤ m ≤ |L2| : |Pm| = 2m × 23|L0| × 22(|L1|−|L0|) ×
2m−|L1|

|L2| ≤ m ≤ |L3| : |Pm| = 2m × 23|L0| × 22(|L1|−|L0|) ×
22(|L2|−|L1|)

|L3| ≤ m : |Pm| = 2m × 23|L0| × 22(|L1|−|L0|) ×
2|L2|−|L1| × 2|L3|−m

On the other hand, Pm is obtained by intersection of Qm

and Rm, then we can compute the other higher bound:

m ≤ |L0| : Time(Pm) = |Qm| × |R4m| = |Qm|
|L0| ≤ m ≤ |L1| : Time(Pm) = |Qm| × (m− |L0)× 23

|L1| ≤ m ≤ |L2| : Time(Pm) = |Qm| × (m − |L0| −
|L1|)× 23

|L2| ≤ m ≤ |L3| : Time(Pm) = |Qm| × (m − |L0| −
|L1| − |L2|)× 23

|L3| ≤ m : Time(Pm) = |Qm|×(m−|L0|−|L1|−|L2|−
|L3|)× 23 = |Qm| × (m− 128)× 23

In practice |Qm| is approximately 214. The overall
higher bound of complexity can be obtained from intersec-
tion of the two calculated bounds, which will give a space
complexity of 223, and with a time complexity of 282. we
need to mention that this is a non-refined approximation
bound, accurate analysis would give even better complex-
ity. The theoretical bound of ZDD attack showed it made
O(28) reduction to OBDD attack.

5 Conclusion

This research shows how ZDD can be used to construct
an attacker to the key stream generators. A formal proof
shows that for E0 generator attack it needs 28 nodes less
than the former BDD based method.
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