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0Abstract
In inductive inference, there exist a number of possible hypothesis spaces and
learning criteria to determine whether an algorithmic learner can successfully learn
an object. The object to be learned can either be a function or a formal language,
and in both cases there are differing forms of presenting the object. A function can
be represented by its graph, which could be given to the learner either in a canonical
or arbitrary order, while a language can be learned from negative and positive
information or just from positive information. For all these learning settings, there
also exist a variety of learning restrictions, limiting when a learner is successful.
The definition of these restrictions is usually bound to the objects to be learned
and how they are labeled, making the transfer of knowledge about the relationship
between learning criteria and the learnability of sets of objects nearly impossible.

In this work, we formalize learning settings and criteria to be universally applica-
ble to the different forms of inductive inference. From there, we define isomorphisms
and embeddings between learning settings and criteria. These mappings between
different settings and criteria now allow for a knowledge transfer between different
areas of inductive inference.

We prove an isomorphism between function learning and learning infinite decid-
able language with C-indices under semantic and delayable learning restrictions.
For these learning restrictions also show various embeddings between learning
settings, among them between learning functions and decidable languages with
C-indices and vice versa. We also show that there cannot exist an isomorphism
between language learning under either C- or W-indices for all semantic learning
restrictions.
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0Zusammenfassung

In der inductive inference gibt es eine Reihe möglicher Hypothesenräume und
Lernkriterien, die bestimmen, ob ein algorithmischer Lerner ein Objekt erfolgreich
erkennen kann. Das zu lernende Objekt kann entweder eine Funktion oder eine
formale Sprache sein, und in beiden Fällen gibt es unterschiedliche Formen der Dar-
stellung des Objekts. Eine Funktion kann durch ihren Graphen dargestellt werden,
der dem Lernenden entweder in einer kanonischen oder beliebigen Reihenfolge
präsentiert werden kann, während eine Sprache aus negativen und positiven Infor-
mationen oder nur aus positiven Informationen gelernt werden kann. Für all diese
Lernsituationen gibt es auch eine Reihe von Lernkriterien, die einschränken, wann
ein Lerner erfolgreich ist. Die Definition dieser Kriterien ist in der Regel an die zu
lernenden Objekte und deren Label gebunden, was den Übertrag von Wissen über
die Beziehung zwischen Lernkriterien und der Lernfähigkeit von Objektmengen
nahezu unmöglich macht.
In dieser Arbeit formalisieren wir die Lernbedingungen und -kriterien so, dass

sie universell auf die verschiedenen Formen der induktiven Inferenz anwendbar
sind. Darauf basierend definieren wir Isomorphismen und Einbettungen zwischen
Lernszenarie und -kriterien. Diese Mappings zwischen verschiedenen Szenarien
und Kriterien ermöglichen nun einen Wissenstransfer zwischen verschiedenen
Bereichen der induktiven Inferenz.

Wir beweisen einen Isomorphismus zwischen Funktionslernen und dem Lernen
unendlicher entscheidbarer Sprache mit C-Indizes unter semantischen und delaya-
ble Lernrestriktionen. Für diese Lernrestriktionen zeigen wir auch verschiedene
Einbettungen zwischen Lernumgebungen, unter anderem zwischen Funktionsler-
nen und entscheidbaren Sprachen mit C-Indizes und umgekehrt. Wir zeigen auch,
dass es für alle semantischen Lernrestriktionen keinen Isomorphismus zwischen
Sprachenlernen unter C- oderW-Indizes geben kann.
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1 Introduction

Inductive inference is a branch of algorithmic learning theory investigating which
functions or formal languages, that is, subsets of the natural numbers, can be
recognized by an algorithmic learner. Regardless of whether the learner should
learn functions or formal languages, it successively gets presented information
about these items. The learner should then recognize the presented item and output
a description, ideally for the target itself [Gol67].
Gold gave a first criterion for the successful learning of an item. Explanatory

learning short Ex, is successful if a learner, given information about an item, even-
tually outputs a correct label for the target item and stops changing the output.
With this first definition of successful learning, it becomes apparent that we can
always build a learner to learn a certain item, it just has to constantly output a label
of the item. This is why we focus on learning classes of items.

Learning settings describe which kind of items should be learned, how informa-
tion about these items is given and to which extent the learner can access said
information. To describe Ex-learning of languages a possible setting would be
InfGEx-learning. In this setting the learner has full access to all the information it
has seen at this point. This is denoted by G, which stands for Gold-style learning.
The learner gets presented information about a language by an informant, denoted
by Inf . Informants are sequences of tuples containing positive and negative infor-
mation about the language. Recently, some work has been done investigating the
relationships between certain success criteria for learning from informants [AKS18;
KKS21; Moh22].
Another setting for Ex-learning would be ArbGEx. Here we learn classes of

computable functions. The function to be learned will be presented by an unordered
sequence over the graph of the function, we call this an arbitrary presentation and
denote it by Arb [Gol67].
There are numerous additional criteria for successful learning, and different

settings to learn in. The "building-blocks"-approach introduced by Kötzing [Köt09]
allows for a modular definition and combination of learning settings and criteria. In
this thesis, we present a unified definition of learning settings and learning criteria,
which is universally applicable to different forms of inductive inference. This allows
for a further generalization of the maps used to portray the relationships between
different settings and criteria, as seen in Kötzing and Schirneck [KS16].
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Chapter 1 Introduction

A learning task is a set of objects, of which we aim to learn subsets using a single
learner. The presentation system determines how a learner receives information
about the item to be learned, while the hypothesis space fixes a mapping of natural
numbers to the items of the learning task.

These abstract definitions of learning setting do not only allow us to generalize
learning restrictions to be defined independently of the hypothesis space, in which
the restriction is used, but also to investigate the structural relations between
different learning settings and learning criteria. For this, we define embeddings
and isomorphisms of learning settings and learning criteria. Now we can deduce
relations between the learning restriction in one setting from their relations in
another setting, allowing us to generalize knowledge about the restrictions gained
in one setting.

To use the insights gained from embeddings and isomorphisms between different
learning tasks and hypothesis spaces we generalize definitions for some commonly
used learning restrictions. Traditionally, a learning restriction is defined separately
for each task, presentation system and hypothesis space with equivalent intention,
but differing syntax. Learning restrictions themselves can fulfil certain criteria, such
as being semantic [Köt17; KSS17]. If a learner successfully learns a language under
a certain semantic restriction, another learner outputting semantically equivalent
labels also successfully learns the language under this restriction. We show that
the new definitions preserve the semantic properties of learning restrictions. This
allows to transfer assumptions about the success of learners even across different
settings.
These properties for restrictions quickly become important, as we go on to

show isomorphisms between different learning settings. We show an isomorphism
between all total functions and total functions with a range limited to 1 and 0
that map to 1 infinitely often for all delayable and semantic learning restrictions.
Moreover, we prove an isomorphism between all total functions with a range limited
to 1 and 0 and decidable languages for all semantic learning restrictions. From this,
we can also deduce an isomorphism between total functions with a range limited to
1 and 0 that map to 1 infinitely often and infinite decidable languages. We use these
theorems to conclude that there exists an isomorphism between total functions and
infinite decidable languages for all delayable and semantic learning restrictions.
We further show embeddings for both directions between decidable languages and
infinite decidable languages for delayable learning restrictions. This allows for the
conclusion that total functions and decidable languages embed each other.
Finally, we show an example of non-isomorphic learning settings. Depending

on how we map the hypotheses given out by a learner to decidable languages and
the learning restriction the relation between the set of learnable classed within the
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Introduction Chapter 1

different hypothesis spaces differ. We use this to conclude that there cannot exist
an isomorphism between these hypothesis spaces.
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2 Preliminaries

We first introduce the mathematical and computability theory notation used in this
thesis. Then we formally introduce our settings for learning in the limit and related
notation.

2.1 Mathematical and computability theory
notation

With ℕ we denote the set of natural numbers, namely ℕ = {0, 1, 2, ..}. With ⊆, ⊇, ⊊
and ⊋ we denote the subset, superset, proper subset and proper superset relation.
By ∅ and 𝜖 we denote the empty set and the empty sequence, respectively. The
quantifier ∀∞𝑥 means "for all but infinitely many 𝑥". We use ⟨ ., . ⟩ as a bijective
computable pairing function ℕ × ℕ → ℕ. We use 𝜋1 and 𝜋2 as decoding functions,
so that for any 𝑥,𝑦 ∈ ℕ we have 𝜋1(⟨𝑥,𝑦 ⟩) = 𝑥 and 𝜋2(⟨𝑥,𝑦 ⟩) = 𝑦.

Let P define the set of all partial computable functions and R the set of all total
computable functions. Further P0,1 and R0,1 denote the set of all partial and total
computable functions ℕ → {0, 1}. If a function 𝑓 is not defined on 𝑥 we write
𝑓 (𝑥) ↑ or 𝑓 (𝑥) = ⊥. We fix a programming system 𝜑 for P and let 𝜑𝑒 denote
the function computed by the program with the number 𝑒 . We also fix a Blum
complexity measure𝛷 for 𝜑 , so that for all 𝑒, 𝑥 ∈ ℕ,𝛷 (𝑒, 𝑥) describes the number
of steps 𝜑𝑒 takes on input 𝑥 to halt [Blu67].
A formal language 𝐿 ⊆ ℕ is computably enumerable if its is the domain of a

computable function. Let E define the set of all computably enumerable sets. A set
𝐿 ⊆ ℕ is computable if there is a 𝑓 ∈ R so that for all 𝑥 ∈ ℕ we have

𝑓 (𝑥) =
{
1, if 𝑥 ∈ 𝐿,
0, otherwise.

We call this function the characteristic function of 𝐿 and denote it by 𝜒𝐿 . Let E𝑐
denote the set of all computable sets.

For a function 𝑓 and an 𝑛 ∈ ℕ, 𝑓 [𝑛] is the finite sequence of the 𝑛 first elements
of 𝑓 . We denote the empty sequence as 𝜖 . The concatenation of to finite sequences
𝜎, 𝜏 is denoted by 𝜎⌢𝜏 .
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Chapter 2 Preliminaries

2.2 Inductive inference

A text 𝑇 is a function 𝑇 : ℕ → ℕ ∪ {#}, where # resembles a break symbol. The
content of a text 𝑇 is defined as content(𝑇 ) = range(𝑇 ) \ {#}. A text is a text for a
language 𝐿 if and only if content(𝑇 ) = 𝐿, we say 𝑇 ∈ Txt(𝐿).

For any set 𝑆 ⊆ ℕ × {0, 1} we define

pos(𝑆) = {𝑥 | ⟨𝑥, 1 ⟩ ∈ 𝑆 }
neg(𝑆) = {𝑥 | ⟨𝑥, 0 ⟩ ∈ 𝑆 }

An informant is as function 𝐼 : ℕ → ℕ × {0, 1}. The content of an informant 𝐼
is defined as content(𝐼 ) = range(𝐼 ). If pos(𝐼 ) = 𝐿 and neg(𝐼 ) = 𝐿, then 𝐼 is an
informant for a language 𝐿 [KKS21]. For any language 𝐿 we denote the set of all
informants for the language by Inf (𝐿). An informant 𝐼 is canoncial if and only if for
all 𝑛 ∈ ℕ, we have 𝑦 ∈ {0, 1}, so that 𝐼 : 𝑛 ↦→ ⟨𝑛,𝑦 ⟩. We write the set of canonical
informants for a language 𝐿 as InfCan(𝐿).

We define the graph of a function 𝑓 as a set graph(𝑓 ) = {⟨𝑥, 𝑓 (𝑥) ⟩ | 𝑥 ∈ ℕ }. A
function is presented to a learner by a surjection 𝐴 : ℕ → graph(𝑓 ). We denote
the set of arbitrary presentations for a function 𝑓 by Arb(𝑓 ). The canonical rep-
resentation of a function is defined by a bijection 𝑏 so that for all 𝑛 ∈ ℕ we have
𝑏 (𝑛) = ⟨𝑛, 𝑓 (𝑛) ⟩. The set of canonical presentations for a function 𝑓 is denoted by
Can(𝑓 ). For 𝑒 ∈ ℕwe denote theW-hypothesis of 𝑒 as𝑊𝑒 = dom(𝜑𝑒). Furthermore,
in reference to𝛷 , for all 𝑒, 𝑡 ∈ ℕ we let W𝑡

𝑒 = {𝑥 ≤ 𝑡 | 𝛷𝑒 (𝑥) ≤ 𝑡 }, so W𝑡
𝑒 describes

the decidable set of all number smaller or equal to 𝑡 , on which 𝜑𝑒 halts in less than
or exactly 𝑡 steps. If we have 𝜑𝑒 ∈ R we say that 𝑒 is a C-index and define the
C-hypothesis of 𝑒 as C𝑒 = {𝑥 ∈ ℕ | 𝜑𝑒 (𝑥) = 1 }[Ber+21]. To allow hypothesis not
only for languages but also for computable functions we define the 𝜑-hypothesis
of 𝑒 as 𝜑𝑒 .

We use learning criteria as formalized by Kötzing [Köt09]. A learner is a partial
function ℎ ∈ P. An interaction operator takes a learner ℎ ∈ P and a presentation
𝑃 and outputs a function 𝑝 . In Gold-style learning [Gol67] a learner has access to
the full information given by a presentation, so for ℎ ∈ P, 𝑃 ∈ Inf ∪Arb∪ Txt and
𝑖 ∈ ℕ we have

G(ℎ, 𝑃 [𝑖]) = ℎ(𝑃 [𝑖]).
We call 𝑝 (𝑖) = G(ℎ, 𝑃 [𝑖]) the hypothesis sequence of ℎ on 𝑃 .

Learning restrictions are predicates on learners and presentations and determine
when a learner is successful on a presentation. The set of classes of items of type X
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Inductive inference Section 2.2

which can be learned under an interaction operator 𝛽 and a learning restriction 𝛿X
is denoted by [(𝛽, 𝛿X)]X .

In Section 3.2 we suggest definitions for learning restrictions which are indepen-
dent from the hypothesis space in which the restrictions are used.
We define delayable learning restrictions as introduced by Kötzing and Pa-

lenta [KP16]. Let ®𝑅 be the set of all non-decreasing 𝑟 : ℕ → ℕ with infinite limite
inferior, i.e. for all𝑚 we have ∀∞𝑛 : 𝑟 (𝑛) ≥ 𝑚. A learning restriction 𝛿 is delayable
if and only if, for all presentations 𝑃 and 𝑃 ′ with content(𝑃) = content(𝑃 ′), all
𝑝 and all 𝑟 ∈ ®𝑅, if (𝑝,𝑇 ) ∈ 𝛿 and ∀𝑛 : content(𝑃 [𝑟 (𝑛)]) ⊆ content(𝑃 ′[𝑛]), then
(𝑝 ◦ 𝑟, 𝑃 ′) ∈ 𝛿 .

7





3 Generalized learning settings

3.1 Abstract definitions of learning settings

We start with some abstract definitions, culminating in the definition of isomorphic
learning tasks. First, we define learning tasks, presentations, hypothesis spaces and
learning settings.

▶ Definition 3.1. Let a set of objects X be given. We call a set of objects from X a
set of learning tasks; we aim to learn sets L ⊆ X by single learners ℎ. A presentation
system for X is a function 𝑃 such that, for all 𝑥 ∈ X, 𝑃 (𝑥) is a set of sequences over
ℕ. For each 𝑥 ∈ X, we call the elements of 𝑃 (𝑥) the presentations of 𝑥 . If, for all
𝑥,𝑦 ∈ X, we have, if 𝑃 (𝑥) ∩ 𝑃 (𝑦) ≠ ∅, then 𝑥 = 𝑦, then we call 𝑃 accurate. In this
case we write, for each 𝑥 ∈ X and each 𝑇 ∈ 𝑃 (𝑥), obj(𝑇 ) for 𝑥 , the object described
by the presentation 𝑇 in the presentations system 𝑃 . A hypothesis space for X is a
function 𝐻 : ℕ → X. We call 𝑒 a hypothesis for 𝐻 (𝑒). A learning setting is a triple
X = (X, 𝑃X, 𝐻X) with X a set of learning tasks, 𝑃 a presentation system for X and
𝐻 a hypothesis space for X. ◀

Intuitively, given an object 𝑥 ∈ X, each sequence of 𝑃 (𝑥) gives more and more
information about 𝑥 . We will only consider accurate presentations systems, where
no presentation is a presentation for two different objects.
Now we define learning criteria in dependence of learning settings, especially

the learning task of a setting.

▶Definition 3.2 (Learning criterion). Given a learning settingX = (X, 𝑃X, 𝐻X),
a learning criterion 𝐼 is a pair (𝛽, 𝛿X), where 𝛽 is an interaction operator and 𝛿X is a
learning restriction defined in dependence on X. ◀

To allow for mappings between learning criteria and settings we first define
embeddings and later isomorphisms on learning settings.

▶ Definition 3.3 (Embeddings of learning settings). Let 𝐼 , 𝐽 be two learning
criteria over two learning settings (X, 𝑃X, 𝐻X) and (Y, 𝑃Y, 𝐻Y), respectively. Sup-

9



Chapter 3 Generalized learning settings

pose there is a injection𝛩 : X → Y such that, for all L ⊆ X,1

L ∈ [𝐼 ]X ⇔ 𝛩 (L) ∈ [𝐽 ]Y .

We then write 𝐼 ↩→ 𝐽 and say that 𝐼 embeds 𝐽 . ◀

▶ Theorem 3.4. A preorder relation over the set of all learning criteria is defined
by ↩→. ◀

Proof. Let 𝐼 be a learning criteria over a learning setting (X, 𝑃X, 𝐻X). Since 𝑖𝑑 is
injective and for any 𝑋 ⊆ X we have 𝑋 ∈ [𝐼 ]X if and only if 𝑖𝑑 (𝑋 ) ∈ [𝐼 ]X , we
conclude 𝐼 ↩→ 𝐼 , so ↩→ is reflexive.
Given three learning criteria 𝐼 , 𝐽 and 𝐾 over the learning settings (X, 𝑃X, 𝐻X),

(Y, 𝑃Y, 𝐻Y) and (Z, 𝑃Z, 𝐻Z) so that 𝐼 ↩→ 𝐽 and 𝐽 ↩→ 𝐾 . This means we have two
injective functions 𝛩 : X → Y and 𝛺 : Y → Z, so that for all 𝑋 ⊆ X we have
𝑋 ∈ [𝐼 ]X if and only if 𝛩 (𝑋 ) ∈ [𝐽 ]Y and for all 𝑌 ⊆ Y we have 𝑌 ∈ [𝐽 ]Y , if and
only if 𝛺 (𝑌 ) ∈ [𝐾]Z . Since 𝛺 ◦ 𝛩 is also injective and 𝑋 ∈ [𝐼 ]Z if and only if
𝛺 ◦𝛩 (𝑋 ) ∈ [𝐾]Z , we have 𝐼 ↩→ 𝐾 . This means that ↩→ is transitive and thus ↩→
is a preorder relation on the set of all learning criteria. ■

Analogously to embeddings, we define isomorphisms between learning settings.

▶ Definition 3.5 (Isomorphic learning settings). Let 𝐼 , 𝐽 be two learning crite-
ria over two learning settings (X, 𝑃X, 𝐻X) and (Y, 𝑃Y, 𝐻Y), respectively. Suppose
there is a bijection𝛩 : X → Y such that, for all L ⊆ X,

L ∈ [𝐼 ]X ⇔ 𝛩 (L) ∈ [𝐽 ]Y .

Then we write 𝐼 � 𝐽 and call the learning settings isomorphic.
If, furthermore, there are computable operators𝛹,𝛹′ such that any learner ℎ for

L is mapped to a learner𝛹 (ℎ) for𝛩 (L), and any learnerℎ′ for𝛩 (L) is mapped to a
learner𝛹′(ℎ′) for L, then we write 𝐼 �𝑐 𝐽 and call the learning settings computably
isomorphic. ◀

▶ Theorem 3.6. The �-relation is a equivalence relation over the set of all learning
criteria and settings. ◀

1 We use the common notation of element-wise application of a function to a set, that is𝛩 (L) =
{𝛩 (𝐿) | 𝐿 ∈ L }.

10



Definitions of learning restrictions Section 3.2

Proof. We get that � is transitive and reflexive analogously to the proof of Theo-
rem 3.4. We show that � is symmetric. Let the learning criteria 𝐼 and 𝐽 over the the
learning settings (X, 𝑃X, 𝐻X) and (Y, 𝑃Y, 𝐻Y) be given so that we have 𝐼 � 𝐽 . This
means we have a bijection𝛩 : X → Y so that for 𝑋 ⊆ X we have 𝑋 ∈ [𝐼 ]X if and
only if𝛩 (𝑋 ) ∈ [𝐽 ]Y . Since𝛩 is a bijection, so is its inverse function𝛩−1 : Y → X.
For an 𝑌 ∈ Y we now have 𝑌 ∈ [𝐽 ]Y if and only if𝛩−1(𝑌 ) ∈ [𝐼 ]X , so 𝐽 � 𝐼 . This
shows that � is symmetric and thus a equivalence relation. ■

▶ Corollary 3.7. For any learning criteria 𝐼 , 𝐽 , if we have 𝐼 � 𝐽 we also have
𝐼 ↩→ 𝐽 . ◀

Proof. This follows directly from Definition 3.3and Definition 3.5 ■

3.2 Definitions of learning restrictions
Learning restrictions are typically given for a concrete hypothesis space and a
concrete application. In this section we generalize learning restrictions to the
abstract setting. Let X = (X, 𝑃, 𝐻 ) be a learning setting.

▶ Definition 3.8 (Consistency). Given an object 𝑥 ∈ X and information given
so far 𝜎 , we say that 𝑥 is consistent with 𝜎 , denoted as Cons(𝑥, 𝜎) if and only if

∃𝑇 ∈ 𝑃 (𝑥) : 𝑇 [|𝜎 |] = 𝜎.

Overloading notation, given a hypothesis 𝑒 and and information given so far 𝜎 , we
say that 𝑒 is consistent with 𝜎 , denoted as Cons(𝑒, 𝜎), if and only if Cons(𝐻 (𝑒), 𝜎).

◀

Intuitively, a conjecture is consistent if it is a conjecture for an object which
might be the target object, given the information 𝜎 . With this definition we can
now generalize notions based on consistency as follows.

We define the consistency of hypothesis sequences 𝑝 on a presentation 𝑇 so that

Cons(𝑝,𝑇 ) ⇔ ∀𝑖 ∈ ℕ : Cons(𝑝 (𝑖),𝑇 [𝑖]).

If this claim holds for 𝑝 , we call 𝑝 consistent. Intuitively every hypothesis is consis-
tent with the data seen so far [Ang80].

We define the learning restriction Conv so that for a hypothesis sequence 𝑝 on a
presentation 𝑇 we have

Conv(𝑝,𝑇 ) ⇔ ∀𝑖, 𝑗 ∈ ℕ : 𝑖 < 𝑗 ∧ Cons(𝑝 (𝑖),𝑇 [ 𝑗]) → 𝑝 (𝑖) = 𝑝 ( 𝑗).

11



Chapter 3 Generalized learning settings

We say 𝑝 is conservative on 𝑇 , intuitively the learner never changes a consistent
hypothesis [Ang80].

For each object 𝑥 ∈ X, we let 𝑃 seq(𝑥) be the set of possible starting sequences of
presentations for 𝑥 , that is

𝑃 seq(𝑥) = {𝑇 [𝑖] | 𝑇 ∈ 𝑃 (𝑥), 𝑖 ∈ ℕ }.

We call an presentation system finitely accurate, if and only if for all 𝑥,𝑦 ∈ X if
𝑃 seq(𝑥) = 𝑃 seq(𝑦) then 𝑥 = 𝑦.

We define an order on objects of a learning task, depending on their presentations.

▶ Definition 3.9 (Information Order). For 𝑥,𝑦 ∈ X, we define

𝑥 ⪯X 𝑦 ⇔ 𝑃
seq
X (𝑥) ⊆ 𝑃

seq
X (𝑦).

◀

Whenever it is clear from the context, we might omit the X and just write ⪯.
Intuitively, any finite information given about 𝑥 might as well be information about
𝑦.

▶ Theorem 3.10. Given a set of objects X and a finitely accurate presentation
system, then ⪯X is a partial order relation on X. ◀

Proof. Since for any 𝑥 ∈ X we have 𝑃 seqX (𝑥) = 𝑃
seq
X (𝑥), so 𝑥 ⪯X 𝑥 , showing that

⪯X is reflexive. Given 𝑥,𝑦 ∈ X so that 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥 we have 𝑃 seqX (𝑥) = 𝑃 seqX (𝑦).
Since 𝑃 is finitely accurate we have 𝑥 = 𝑦, so ⪯ is antisymmetric. Given 𝑥,𝑦, 𝑧 ∈ X
so that 𝑥 ⪯X 𝑦 and 𝑦 ⪯X 𝑥 we have 𝑃 seqX (𝑥) ⊆ 𝑃

seq
X (𝑦) and 𝑃 seqX (𝑦) ⊆ 𝑃

seq
X (𝑥). The

transitivity of the ⊆ relation gives us 𝑃 seqX (𝑥) ⊆ 𝑃
seq
X (𝑧) and with this 𝑥 ⪯X 𝑧, so

⪯X is also transitive and thus a partial order relation. ■

With this definition we can now generalize a lot of notions typically based on
set inclusion, which are based on Jain et al. [Jai+99] and Jantke [Jan91], as follows.

We define the learning restriction of strong monotonicity, so that for a hypothesis
sequence 𝑝 on a presentation 𝑇 , we have

SMon(𝑝,𝑇 ) ⇔ ∀𝑖, 𝑗 ∈ ℕ : 𝑖 ≤ 𝑗 → 𝐻 (𝑝 (𝑖)) ⪯ 𝐻 (𝑝 ( 𝑗)).

We call 𝑝 strongly monotone. Intuitively the hypothesis given out by a learner never
get smaller.

12
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We define weak monotonicity so that for a hypothesis sequence 𝑝 on a presenta-
tion 𝑇 , we have

WMon(𝑝,𝑇 ) ⇔ ∀𝑖, 𝑗 ∈ ℕ : 𝑖 ≤ 𝑗 ∧ Cons(𝑝 (𝑖),𝑇 [ 𝑗]) → 𝐻 (𝑝 (𝑖)) ⪯ 𝐻 (𝑝 ( 𝑗)).

If a hypothesis sequence 𝑝 with presentation𝑇 fulfills this criterion we call itweakly
monotone, intuitively the learner can only enlarge consistent hypotheses.

We define cautiousness so that for a hypothesis sequence 𝑝 on a presentation 𝑇
we have

Caut(𝑝,𝑇 ) ⇔ ∀𝑖, 𝑗 ∈ ℕ : 𝑖 ≤ 𝑗 → ¬(𝐻 (𝑝 ( 𝑗)) ≺ 𝐻 (𝑝 (𝑖))).

We call 𝑝 cautious, intuitively the learner never proceeds to a conjecture with
strictly less finite information.
We now get to an important property of learning restrictions, namely being

semantic. For a sequence 𝜎 we let

obj(𝜎) = {𝑥 ∈ X | Cons(𝑥, 𝜎) }

be the set of objects consistent with 𝜎 .

▶Definition 3.11 (SemanticRestriction). Let learning settingsX = (X, 𝑃X, 𝐻X)
and Y = (Y, 𝑃Y, 𝐻Y) be given. Let 𝑓 : X → Y be a mapping of objects from X
to objects from Y. A learning restriction 𝛿 is called 𝑓 -semantic if and only if the
following holds. For all hypothesis sequences 𝑝 , presentations 𝑇 for some object
𝑥 ∈ X, presentation 𝑇 ′ for 𝑓 (𝑥) and hypothesis sequence 𝑝′, if

S1: ∀𝑖 ∈ ℕ : 𝑓 (𝐻X (𝑝 (𝑖))) = 𝐻Y (𝑝′(𝑖)),

S2: ∀𝑖 ∈ ℕ : 𝑓 (objX (𝑇 [𝑖])) = objY (𝑇 ′[𝑖]), and

S3: 𝛿X (𝑝,𝑇 );
then 𝛿Y (𝑝′,𝑇 ′).

Furthermore, if this implication holds with the following additional antecedent,
then 𝛿 is called 𝑓 -pseudo-semantic.

PS4: ∀𝑖 ∈ ℕ : 𝑝 (𝑖) = 𝑝 (𝑖 + 1) ⇒ 𝑝′(𝑖) = 𝑝′(𝑖 + 1).
If, for any given learning settings (X, 𝑃X, 𝐻X) and (Y, 𝑃Y, 𝐻Y) and any 𝑓 : X →

Y we have that 𝛿 is 𝑓 -(pseudo-)semantic, then we call 𝛿 fully (pseudo-)semantic.
If, for any given learning settings (X, 𝑃X, 𝐻X) and (Y, 𝑃Y, 𝐻Y) and any 𝑓 : X →

Y such that, for all 𝑥,𝑦 ∈ X we have 𝑥 ⪯X 𝑦 ⇔ 𝑓 (𝑥) ⪯Y 𝑓 (𝑦), we have that 𝛿 is
𝑓 -semantic, then we call 𝛿 monotone-(pseudo-)semantic. ◀

13
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Intuitively, semantic learning restrictions only make requirements on the seman-
tic characteristic of a hypothesis sequence, while pseudo-semantic restrictions can
also require the hypothesis sequence to stay exactly the same. Monotone semantic
restrictions also require the translations used to maintain the information order.
We go on to define further learning restrictions. Ex and Bc, as introduced by

Gold [Gol67], require the convergence of the learner to a semantically correct
hypothesis. Ex also requires the convergence to a single hypothesis. Bcc requires
the semantic convergence to a hypothesis, which describes the complement of
the object that should be learned. Non-U-shaped, short NU, learning requires the
learner to never change to a wrong hypothesis after adapting a correct hypothesis
and later changing changing back to a semantically equivalent hypothesis [Bal+08].
For strongly non-U-shaped, short SNU, learning the learner can never abandon
and come back to a correct hypothesis [CM11; Wie90]. For decisive learning, short
Dec, the learner can never come back to a semantically equivalent hypothesis
[OSW86]. In strong decisive, short SDec, learning the learner can never come back
to a semantically equivalent hypothesis and cannot output two different hypothesis
that are semantically equivalent [KP16].
Given a learning setting X = (X, 𝑃, 𝐻 ) and a sequence of hypothesis 𝑝 and

presentations 𝑇 we define

ExX (𝑝,𝑇 ) ⇔ ∃𝑞∀∞𝑛 : 𝐻 (𝑞) = obj(𝑇 ) ∧ 𝑝 (𝑛) = 𝑞
BcX (𝑝,𝑇 ) ⇔ ∀∞𝑛 : 𝐻 (𝑝 (𝑛)) = obj(𝑇 )
BccX (𝑝,𝑇 ) ⇔ ∀∞𝑛 : 𝐻 (𝑝 (𝑛)) = obj(𝑇 )
NUX (𝑝,𝑇 ) ⇔ ∀𝑟, 𝑠, 𝑡 : 𝑟 ≤ 𝑠 ≤ 𝑡 ∧ 𝐻 (𝑝 (𝑟 )) = 𝐻 (𝑝 (𝑡)) = obj(𝑇 ) ⇒ 𝐻 (𝑝 (𝑟 )) =

𝐻 (𝑝 (𝑠))
SNUX (𝑝,𝑇 ) ⇔ ∀𝑟, 𝑠, 𝑡 : 𝑟 ≤ 𝑠 ≤ 𝑡 ∧ 𝐻 (𝑝 (𝑟 )) = 𝐻 (𝑝 (𝑡)) = obj(𝑇 ) ⇒ 𝑝 (𝑟 ) = 𝑝 (𝑠)
DecX (𝑝,𝑇 ) ⇔ ∀𝑟, 𝑠, 𝑡 : 𝑟 ≤ 𝑠 ≤ ∧ 𝐻 (𝑝 (𝑟 )) = 𝐻 (𝑝 (𝑡)) ⇒ 𝐻 (𝑝 (𝑟 )) = 𝐻 (𝑝 (𝑠))
SDecX (𝑝,𝑇 ) ⇔ ∀𝑟, 𝑠, 𝑡 : 𝑟 ≤ 𝑠 ≤ ∧ 𝐻 (𝑝 (𝑟 )) = 𝐻 (𝑝 (𝑡)) ⇒ 𝑝 (𝑟 ) = 𝑝 (𝑠).

3.3 Semantic learning restrictions
▶ Theorem 3.12. We have that

1. Bc, Bcc and Cons are fully semantic;

2. Ex is fully pseudo-semantic;

3. SMon and Caut are monotone-semantic;

14
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4. For all injective functions 𝑓 Conv is 𝑓 -pseudo-semantic;

5. For all injective funtions 𝑓 WMon is 𝑓 -monotone-semantic.

6. For all injective functions 𝑓 Dec and NU are 𝑓 -semantic;

7. For all injective functions 𝑓 SDec andSNU are 𝑓 -pseudo-semantic.

◀

Proof. Let learning settings X = (X, 𝑃X, 𝐻X) and Y = (Y, 𝑃Y, 𝐻Y) be given. Let
𝑓 : X → Y be a arbitrary translation of objects from X to objects from Y. Let 𝑝, 𝑝′
be hypothesis sequences, 𝑇 a presentation for some object 𝑥 ∈ X, so 𝑥 = objX (𝑇 ),
𝑇 ′ a presentation for 𝑓 (𝑥), so 𝑓 (𝑥) = objY (𝑇 ′), so that

SR1 ∀𝑖 ∈ ℕ : 𝑓 (𝐻X (𝑝 (𝑖))) = 𝐻Y (𝑝′(𝑖)),

SR2 ∀ ∈ ℕ : 𝑓 (objX (𝑇 [𝑖])) = objY (𝑇 ′[𝑖]), and

SR3 𝛿X (𝑝,𝑇 ).

We now show all claimed characteristics.

1. We start with Bc. We want to show BcY (𝑝′,𝑇 ′). Let 𝑛0 ∈ ℕ so that for
all 𝑛 ≥ 𝑛0 we have 𝐻X (𝑝 (𝑛)) = objX (𝑇 ). We now show that we also have
𝐻Y (𝑝′(𝑛)) = objY (𝑇 ′). As𝐻X (𝑝 (𝑛)) = objX (𝑇 ) we also have 𝑓 (𝐻X (𝑝 (𝑛))) =
𝑓 (objX (𝑇 )). With SR1 and SR2 we now have 𝐻Y (𝑝′(𝑛)) = objY (𝑇 ′). We
have BcY (𝑝′,𝑇 ′), so Bc is fully semantic.
Next, we show the claim for Bcc. We want to show BccY (𝑝′,𝑇 ′). Let 𝑛0 ∈ ℕ

so that for all 𝑛 ≥ 𝑛0 we have 𝐻X (𝑝 (𝑛)) = objX (𝑇 ). We now show that
we also have 𝐻Y (𝑝′(𝑛)) = objY (𝑇 ′). As 𝐻X (𝑝 (𝑛)) = objX (𝑇 ) we also have
𝑓 (𝐻X (𝑝 (𝑛))) = 𝑓 (objX (𝑇 )). With SR1 and SR2 we now have 𝐻Y (𝑝′(𝑛)) =
objY (𝑇 ′). We have BccY (𝑝′,𝑇 ′), so Bcc is fully semantic.
We now show that Cons is semantic. We want to show ConsY (𝑝′,𝑇 ′).
We have ConsX (𝑝,𝑇 ), so for all 𝑖 ∈ ℕ we have Cons(𝑝 (𝑖),𝑇 [𝑖]). This
means that there exist an 𝐼 ∈ 𝑃 (𝐻X (𝑝 (𝑖))) for which we have 𝐼 [𝑖] = 𝑇 [𝑖],
so 𝐻X (𝑝 (𝑖)) ∈ objX (𝑇 [𝑖]). By condition SR1, for any 𝑖 ∈ ℕ, we have
𝐻Y (𝑝′(𝑖)) = 𝑓 (𝐻X (𝑝 (𝑖))) and, by condition SR2 we get that objY (𝑇 ′[𝑖]) =
𝑓 (objX (𝑇 ( [𝑖]))). This leads us to the conclusion that we have 𝐻Y (𝑝′(𝑖)) ∈
objY (𝑇 ′[𝑖]) for any 𝑖 ∈ ℕ, so there exists an 𝐼 ′ ∈ 𝑃 (𝐻Y (𝑝′(𝑖))) so that
𝐼 ′[𝑖] = 𝑇 ′[𝑖]. We have ConsY (𝑝′,𝑇 ′), so Cons is semantic.
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2. In addition to the conditions SR1, SR2 and SR3, let the following also hold

PS ∀𝑖 ∈ ℕ : 𝑝 (𝑖) = 𝑝 (𝑖 + 1) ⇒ 𝑝′(𝑖) = 𝑝′(𝑖 + 1).
We start with Ex. We have ExX (𝑝,𝑇 ), let 𝑛0 ∈ ℕ so that for all 𝑛 ≥ 𝑛0
we have 𝑝 (𝑛0) = 𝑝 (𝑛) and 𝐻X (𝑝 (𝑛0)) = objX (𝑇 ). We now show that we
also have 𝐻Y (𝑝′(𝑛0)) = objY (𝑇 ′). We have 𝐻X (𝑝 (𝑛0)) = objX (𝑇 ) and thus
𝑓 (𝐻X (𝑝 (𝑛0))) = 𝑓 (objX (𝑇 )), by conditions SR1 we also have 𝐻Y (𝑝′(𝑛0)) =
𝑜𝑏 𝑗 (𝑇 ′). Since for any 𝑛 ≥ 𝑛0 we have 𝑝 (𝑛) = 𝑝 (𝑛 + 1) we also conclude
𝑝′(𝑛) = 𝑝′(𝑛+1). So we have 𝑝′(𝑛0) = 𝑝′(𝑛). This lets us conclude ExY (𝑝′,𝑇 ′),
Ex is fully pseudo-semantic.

3. Let 𝑓 : X → Y be so that, for all 𝑥,𝑦 ∈ X we have 𝑥 ⪯X 𝑦 ⇔ 𝑓 (𝑥) ⪯Y 𝑓 (𝑦).
We show that SMon is monotone-semantic. We have SMonX (𝑝,𝑇 ), so for all
𝑖, 𝑗 ∈ ℕ with 𝑖 ≤ 𝑗 we have 𝐻X (𝑝 (𝑖)) ⪯X 𝐻X (𝑝 ( 𝑗)). By the characteristics of
𝑓 we now have 𝑓 (𝐻X (𝑝 (𝑖))) ⪯Y 𝑓 (𝐻X (𝑝 ( 𝑗))). By condition SR1 we have
𝐻Y (𝑝′(𝑖)) ⪯Y 𝐻Y (𝑝′( 𝑗)) so we have SMonY (𝑝′,𝑇 ′). SMon is monotone-
semantic.

We continue with Caut. We have CautX (𝑝,𝑇 ), so for any 𝑖, 𝑗 ∈ ℕ with
𝑖 ≤ 𝑗 we have ¬(𝐻 (𝑝 ( 𝑗)) ⪯ 𝐻 (𝑝 (𝑖))). By the characteristics of 𝑓 we
now have ¬(𝑓 (𝐻X (𝑝 ( 𝑗))) ⪯ 𝑓 (𝐻X (𝑝 (𝑖)))) and by condition SR1 we have
¬(𝐻Y (𝑝′( 𝑗)) ⪯Y 𝐻Y (𝑝′(𝑖))), so CautY (𝑝′,𝑇 ′) holds. Caut is monotone-
semantic.

4. In addition to the conditions SR1, SR2 and SR3, let the following also hold

PS ∀𝑖 ∈ ℕ : 𝑝 (𝑖) = 𝑝 (𝑖 + 1) ⇒ 𝑝′(𝑖) = 𝑝′(𝑖 + 1)
and let 𝑓 be injective.

We continue by showing the claimed characteristics for Conv We have
ConvX (𝑝,𝑇 ). Let 𝑖, 𝑗 ∈ ℕ be given, so that 𝑖 < 𝑗 and ConsY (𝑝′(𝑖),𝑇 ′[ 𝑗]).
This means that there exist an 𝐼 ′ ∈ 𝑃 (𝐻Y (𝑝′(𝑖))) for which we have 𝐼 ′[𝑖] =
𝑇 [𝑖′], so 𝐻Y (𝑝′(𝑖)) ∈ objY (𝑇 ′[𝑖]). By SR1 and SR2 we get 𝑓 (𝐻X (𝑝 (𝑖))) ∈
𝑓 (objY (𝑇 [𝑖])), since 𝑓 is injective we get 𝐻X (𝑝 (𝑖)) ∈ objY (𝑇 [𝑖]), we have
ConsX (𝑝 (𝑖),𝑇 [ 𝑗]). For all 𝑥 ∈ ℕ with 𝑖 ≤ 𝑥 < 𝑗 we have ConsX (𝑝 (𝑖),𝑇 [𝑥])
and, by ConvX (𝑝,𝑇 ) and induction, 𝑝 (𝑥) = 𝑝 (𝑥 + 1). By PS we now get
𝑝′(𝑥) = 𝑝′(𝑥 + 1), so 𝑝′(𝑖) = 𝑝′( 𝑗). We have that ConvY (𝑝′,𝑇 ′), Conv is
𝑓 -pseudo-semantic.

5. Let 𝑓 : X → Y be so that, for all 𝑥,𝑦 ∈ X we have 𝑥 ⪯X 𝑦 ⇔ 𝑓 (𝑥) ⪯Y 𝑓 (𝑦)
and let 𝑓 be injective.
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We continue by showing the claim is also true for WMon. Given 𝑖, 𝑗 ∈ ℕ

with 𝑖 ≤ 𝑗 and ConsY (𝑝′(𝑖),𝑇 ′[ 𝑗]). Analogously to the proof that Conv is
f-pseudo-semantic, we have ConsX (𝑝 (𝑖),𝑇 [ 𝑗]). Thus, we have 𝐻X (𝑝 (𝑖)) ⪯
𝐻X (𝑝 ( 𝑗)), so we also have 𝑓 (𝐻X (𝑝 (𝑖))) ⪯ 𝑓 (𝐻X (𝑝 ( 𝑗))). By condition SR1
we can conclude 𝐻Y (𝑝 (𝑖)) ⪯ 𝐻Y (𝑝 ( 𝑗)), so WMonY (𝑝′,𝑇 ′). WMon is f-
monotone-semantic.

6. Let 𝑓 be injective.
Now we show the claim for Dec. We have DecX (𝑝,𝑇 ), so for any 𝑟, 𝑠, 𝑡 ∈ ℕ

with 𝑟 ≤ 𝑠 ≤ 𝑡 we get that if 𝐻X (𝑝 (𝑟 )) = 𝐻X (𝑝 (𝑡)) then 𝐻X (𝑝 (𝑟 )) =

𝐻X (𝑝 (𝑠)). Given 𝑟, 𝑠, 𝑡 with 𝑟 ≤ 𝑠 ≤ 𝑡 so that 𝐻Y (𝑝′(𝑟 )) = 𝐻Y (𝑝′(𝑡)),
by condition SR1 we get 𝑓 (𝐻X (𝑝 (𝑟 ))) = 𝑓 (𝐻X (𝑝 (𝑡))) and by the defini-
tion of DEC we have 𝐻X (𝑝 (𝑟 )) = 𝐻X (𝑝 (𝑠)). By condition SR1 this gives
us 𝐻Y (𝑝 (𝑟 )) = 𝐻Y (𝑝 (𝑠)). From this we conclude DecY (𝑝′,𝑇 ′), so for all
injective functions 𝑓 we have that Dec is 𝑓 -semantic.
We continue by showing the claim for NU. We have NUX (𝑝,𝑇 ), so for
any 𝑟, 𝑠, 𝑡 ∈ ℕ with 𝑟 ≤ 𝑠 ≤ 𝑡 we get that if 𝐻X (𝑝 (𝑟 )) = 𝐻X (𝑝 (𝑡)) =

objX (𝑇 ) then we also have 𝐻X (𝑝 (𝑟 )) = 𝐻X (𝑝 (𝑠)). Let 𝑟, 𝑠, 𝑡 ∈ ℕ with
𝑟 ≤ 𝑠 ≤ 𝑡 so that 𝐻Y (𝑝′(𝑟 )) = 𝐻Y (𝑝′(𝑡)) = objY (𝑇 ′). By conditions
SR1 we have 𝑓 (𝐻X (𝑝 (𝑟 ))) = 𝑓 (𝐻X (𝑝 (𝑡))) = objX (𝑇 ) and since 𝑓 is in-
jective 𝐻X (𝑝 (𝑟 )) = 𝐻X (𝑝 (𝑡)) = objX (𝑇 ). Because of NUY (𝑝,𝑇 ) this gives us
𝐻X (𝑝 (𝑟 )) = 𝐻X (𝑝 (𝑠)), and by condition SR1 𝐻Y (𝑝′(𝑟 )) = 𝐻Y (𝑝′(𝑠)). So we
have NUY (𝑝′,𝑇 ′) and, thus, for all injective functions 𝑓 NU is 𝑓 -semantic.

7. In addition to the conditions SR1, SR2 and SR3, let the following also hold
PS ∀𝑖 ∈ ℕ : 𝑝 (𝑖) = 𝑝 (𝑖 + 1) ⇒ 𝑝′(𝑖) = 𝑝′(𝑖 + 1)

and let 𝑓 be injective. We now show that SNU is 𝑓 -pseudo-semantic. We have
SNUX (𝑝,𝑇 ), so for any 𝑟, 𝑠, 𝑡 ∈ ℕ with 𝑟 ≤ 𝑠 ≤ 𝑡 we get that if 𝐻X (𝑝 (𝑟 )) =
𝐻X (𝑝 (𝑡)) = objX (𝑇 ) then we also have 𝑝 (𝑟 ) = 𝑝 (𝑠). Let 𝑟, 𝑠, 𝑡 ∈ ℕ with
𝑟 ≤ 𝑠 ≤ 𝑡 so that 𝐻Y (𝑝′(𝑟 )) = 𝐻Y (𝑝′(𝑡)) = objY (𝑇 ′). By conditions SR1
we have 𝑓 (𝐻X (𝑝 (𝑟 ))) = 𝑓 (𝐻X (𝑝 (𝑡))) = objX (𝑇 ). We have 𝑝 (𝑟 ) = 𝑝 (𝑟 ) and
since 𝑓 is injective for any 𝑛 ∈ ℕ with 𝑟 ≤ 𝑛 ≤ 𝑡 we also have 𝑝 (𝑛) = 𝑝 (𝑟 ).
From this we can conclude that 𝑝′(𝑛) = 𝑝′(𝑟 ), so 𝑝′(𝑠) = 𝑝′(𝑟 ). We have
SNUY (𝑝′,𝑇 ′), so SNU is 𝑓 -pseudo-semantic.
Finally we show that the claim also holds for SDec. We have SDecX (𝑝,𝑇 ),
so for any 𝑟, 𝑠, 𝑡 ∈ ℕ with 𝑟 ≤ 𝑠 ≤ 𝑡 we get that if 𝐻X (𝑝 (𝑟 )) = 𝐻X (𝑝 (𝑡))
then 𝑝 (𝑟 ) = 𝑝 (𝑠). Given 𝑟, 𝑠, 𝑡 with 𝑟 ≤ 𝑠 ≤ 𝑡 so that 𝐻Y (𝑝′(𝑟 )) = 𝐻Y (𝑝′(𝑡)),
by condition SR1 we get 𝑓 (𝐻X (𝑝 (𝑟 ))) = 𝑓 (𝐻X (𝑝 (𝑡))). Since 𝑓 is injective
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we now have 𝐻X (𝑝 (𝑟 )) = 𝐻X (𝑝 (𝑡)) and thus for any 𝑛 ∈ ℕ with 𝑟 ≤ 𝑛 ≤ 𝑡

we also have 𝑝 (𝑛) = 𝑝 (𝑟 ). From this we can conclude that 𝑝′(𝑛) = 𝑝′(𝑟 ), so
𝑝′(𝑠) = 𝑝′(𝑟 ). We have SDecY (𝑝′,𝑇 ′), so SDec is 𝑓 -pseudo semantic.

■
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4 Mappings between
Learning Tasks

In this section we are first going to identify embeddings and isomorphisms between
languages and sets of functions under different learning settings and restrictions.
Later we show that for certain learning settings and restrictions there does not exist
and isomorphism between decidable languages learned underW- and C-indices.

4.1 Isomorphic learning tasks
We begin by showing isomorphisms between sets of functions and sets of functions
and decidable languages. Because of the transitivity of isomorphisms we can show
that total computable functions and infinite decidable languages are isomorph
under semantic and delayable learning criteria and C-indices.

4.1.1 Isomorphism between sets of total functions

Let R∞
0,1 denote the set of total computable functions 𝑓 : ℕ → {0, 1}, where, for

infinitely many 𝑛 ∈ ℕ, we have 𝑓 (𝑛) = 1.
Intuitively, in this section we first show that for delayble function learning the

order of the presentation does not matter, i.e. the same classes of functions can
be learned from arbitrary informants as from canonical informants. We define a
function 𝛩 translating from R to R∞

0,1. We show that this function is a bijection.
We continue by also defining a function transforming a presentation for a 𝑓 ∈ R to
a presentation for𝛩 (𝑓 ) ∈ R∞

0,1. We show that, for delayable learning restrictions, if
a learner can learn a function 𝑓 it can also learn it from the translated presentation
for𝛩 (𝑓 ). From this we go on to show the main theorem of this section, that is, that
we have (ArbR∞

0,1
,G, 𝛿) � (ArbR,G, 𝛿).

▶ Theorem 4.1. For all delayable learning restrictions 𝛿 we have [ArbG𝛿] =

[CanG𝛿]. ◀

Proof. Clearly [ArbG𝛿] ⊆ [CanG𝛿]. To prove the other inclusion, letℎ be aCanG𝛿-
learner. For all sequences 𝜎 we define 𝑐 (𝜎) to return the longest initial sequence of
a canonical representation of coded tuples contained in 𝜎 . We define a learner 𝑔 so
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that, for all finite sequences 𝜎 ,

𝑔(𝜎) = ℎ(𝑐 (𝜎)) .

Let 𝑓 ∈ CanG𝛿 (ℎ). Let 𝑇𝑐 denote the canonical representation of 𝑓 and 𝑝𝑔 the
learning sequence of 𝑔 on 𝑇𝑐 . Since for all 𝑛 ∈ ℕ we have 𝑇𝑐 [𝑛] = 𝑐 (𝑇𝑐 [𝑛]) and ℎ
learns 𝑓 from 𝑇𝑐 , we conclude that 𝑔 also learns 𝑓 from 𝑇𝑐 , so (𝑝𝑔,𝑇𝑐) ∈ 𝛿 . For any
𝑇 ∈ Arb(𝑓 ) we now define 𝑟𝑇 : ℕ → ℕ as

𝑟𝑇 (𝑛) = max{𝑛′ ∈ ℕ | content(𝑇𝑐 [𝑛′]) ⊆ content(𝑇 [𝑛]) }.

Intuitively 𝑟𝑇 always returns the length of the longest initial sequence of a canonical
representation contained in content(𝑇 [𝑛]). We show that 𝑟𝑇 ∈ ®𝑅. As 𝑟𝑇 is the
maximum of a set which grows monotonically in regards to the ⊆-relation, 𝑟𝑇
is non-decreasing. To show that 𝑟𝑇 has an infinite limit inferior, we show that
for all 𝑖 ∈ ℕ there exists an 𝑚 ∈ ℕ so that 𝑟𝑇 (𝑚) ≥ 𝑖 by induction. Since 𝑟𝑇 is
non-decreasing this suffices to show that for all 𝑖 ∈ ℕ there exists an𝑚 ∈ ℕ so
that for all 𝑛 ≥ 𝑚 we have 𝑟𝑇 (𝑛) ≥ 𝑖 . For 𝑖 = 0 this claim holds, as any sequence
contains the empty sequence. Let the claim be true for an arbitrary 𝑖 . We show
that it holds for 𝑖 + 1 as well. Let 𝑚′ so that 𝑟𝑇 (𝑚′) ≥ 𝑖 . If 𝑟𝑇 (𝑚′) > 𝑖 we have
𝑟𝑇 (𝑚′) ≥ 𝑖 + 1. If 𝑟𝑇 (𝑚′) = 𝑖 there exists an𝑚′′ ≥ 𝑚′ with𝑇 (𝑚′′) = ⟨ 𝑖 + 1, 𝑓 (𝑖 + 1) ⟩,
so 𝑟𝑇 (𝑚′′) ≥ 𝑖 + 1. So the claim holds in both cases, 𝑟𝑇 has an infinite limit inferior.
Following the definition of 𝑟𝑇 we have that, for all 𝑛 ∈ ℕ, content(𝑇𝑐 [𝑟𝑇 (𝑛)]) ⊆

content(𝑇 [𝑛]). Since 𝛿 is a delayable learning restriction this leads us to the con-
clusion that (𝑝𝑔 ◦ 𝑟𝑇 ,𝑇 ) ∈ 𝛿 , so ℎ ArbG𝛿-learns 𝑓 . ■

We define a function 𝑢 : ℕ → ℕ which translates a Gödel number of a function
𝑓 ∈ R into the Gödel number of a function 𝑓 ′ ∈ R∞

0,1. With the 𝑠-𝑚-𝑛 Theorem we
can define 𝑢 : ℕ → ℕ so that, for all 𝑒, 𝑥 ∈ ℕ, we have

𝜑𝑢 (𝑒) (𝑥) =


⊥, if ∃𝑡 ≤ 𝑥 : 𝜑𝑒 (𝑡) = ⊥,
1, if ∃𝑡 ≤ 𝑥 :

∑𝑡−1
𝑖=0 (𝜑𝑒 (𝑖) + 1) + 𝜑𝑒 (𝑡) = 𝑥,

0, otherwise.

Intuitively, 𝑢 maps every Gödel number 𝑒 of a total computable function to a
total function which first returns 𝜑𝑒 (0) many 0s, then a 1 as a separator, 𝜑𝑒 (1) many
0s, a 1 as a separator, and so on.
We define 𝑢′ : ℕ → ℕ so that for any 𝑒′ with 𝜑𝑒 ′ ∈ R∞

0,1 and 𝑛 ∈ ℕ we have that
𝜑𝑢 ′(𝑒 ′) (𝑛) is undefined if 𝜑𝑒 ′ is undefined for any value before the 𝑛 + 1th occurrence
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of 1. Otherwise it maps to the number of 0s between the 𝑛th and 𝑛 + 1th occurrence
of 1 in 𝜑𝑒 ′ . So 𝑢′ is the computable inverse function of 𝑢 with regards to 𝑒′.
For this section we define another function𝛩 : R → R∞

0,1 on the basis of 𝑢, but
working on functions instead of Gödel numbers. So for any 𝜑𝑒 ∈ R we have

𝛩 (𝜑𝑒) = 𝜑𝑢 (𝑒) .

Since 𝑢 (𝑒) only depends on the semantic meaning of the program encoded in 𝑒 , not
the syntactic meaning of the number 𝑒 itself,𝛩 is a well-defined function. For any
𝑓 ∈ R, there are never infinitely many 0s in a row in𝛩 (𝑓 ), meaning that there are
infinitely many 𝑛 ∈ ℕ so that𝛩 (𝑓 ) (𝑛) = 1. This results in𝛩 (𝑓 ) ∈ R∞

0,1.
To show that 𝛩 is injective we take two functions 𝑓 , 𝑔 ∈ R with 𝑓 ≠ 𝑔. We

take 𝑥 ∈ ℕ to be the smallest number so that 𝑓 (𝑥) ≠ 𝑔(𝑥) and assume without
loss of generality that 𝑓 (𝑥) ≤ 𝑔(𝑥). Let 𝑛0 ≔

∑𝑥−1
𝑖=0 (𝑓 (𝑖) + 1) + 𝑓 (𝑥). Since, up

until 𝑥 , 𝑓 and 𝑔 map to the same result and 𝑓 (𝑥) < 𝑔(𝑥) for any 𝑛′ ≤ 𝑛0 we
have 𝛩 (𝑓 ) (𝑛′) = 𝛩 (𝑔) (𝑛′). However 𝛩 (𝑓 ) (𝑛 + 1) = 1, but 𝛩 (𝑔) (𝑛 + 1) = 0 so
𝛩 (𝑓 ) ≠ 𝛩 (𝑔). Thus,𝛩 is injective. To show that𝛩 is also surjective we take any
𝑓 ′ ∈ R∞

0,1. Since 𝑓
′ maps to 1 at infinitely many points, we can create a new function

𝑓 ∈ R for which 𝑓 (0) maps the number of 0s before the first 1 appears as a function
value for 𝑓 ′(0), 𝑓 (1) is the number of 0s between the first and second occurrence
of 1 as a function value, and so on. By the definition of 𝛩 it becomes clear that
𝛩 (𝑓 ) = 𝑓 ′.

So𝛩 is injective and surjective and thus bijective. This implies the existence of
the inverse function of𝛩 , denoted by𝛩−1.
Intuitively, 𝛩−1 translates each function 𝜑𝑒 ′ ∈ R∞

0,1 into a function 𝜑𝑒 , so that
𝜑𝑒 (0) is the number of 0s before the first occurrence of 1 in 𝜑𝑒 ′ and for any 𝑛 ∈ ℕ+

𝜑𝑒 (𝑛) is the number of 0s between the 𝑛th and 𝑛 + 1th occurrence of 1. So𝛩−1 uses
the same principle of translation for functions as 𝑢′ does on Gödel numbers. For
any 𝜑𝑒 ′ ∈ R∞

0,1 we have
𝛩−1(𝜑𝑒 ′) = 𝜑𝑢 ′(𝑒 ′) .

For this section we define a translator function 𝜗 : Can(R) → Can(R∞
0,1), which

translates canonical presentations for functions 𝑓 ∈ R into canonical presentations
for𝛩 (𝑓 ) ∈ R∞

0,1. Given 𝐶 ∈ Can(R) and 𝑛 ∈ ℕ, for all 𝑛′ ≤ 𝑛 we have

𝜗 (𝐶 [𝑛]) [0] = 𝜖

𝑥𝑛′ =

{
1, if ∃𝑡 ≤ 𝑛′ : ∑𝑡−1

𝑖=0 (𝜋1(𝐶 [𝑖]) + 1) + 𝜋1(𝐶 [𝑡]) = 𝑛′,
0, else.
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𝜗 (𝐶 [𝑛]) (𝑛′ + 1) = ⟨𝑛′, 𝑥′𝑛 ⟩.

Since every value in 𝐶 [𝑛] will be encoded with at least on value in 𝜗 (𝐶 [𝑛]) it is
ensured that 𝜗 always builds a sequence of length 𝑛 and 𝜗 ∈ R. Since 𝜗 uses the
same principle of translation as 𝑢 and 𝛩 , it maps presentations for a 𝑓 ∈ R to
presentations for𝛩 (𝑓 ) ∈ R∞

0,1.
The counterpart function 𝜗′ : Can(R∞

0,1) → Can(R) translates the canonical pre-
sentations for functions 𝑓 ′ ∈ R∞

0,1 to the canonical presentation for𝛩−1(𝑓 ′) ∈ R. So,
for any given𝐶′ ∈ Can(R∞

0,1) and𝑛 ∈ ℕ, let 𝑖 ≔ |{𝑥 ∈ ℕ | ⟨𝑥, 1 ⟩ ∈ content(𝐶′[𝑛]) }|.
For 0 ≤ 𝑖′ < 𝑖 , let 𝑥′𝑖 denote the amount of 0s between the 𝑖′th and 𝑖′+1th occurrence
of 1, or before the first 1 for 𝑥0. For all 𝑖′ ∈ ℕ with 0 ≤ 𝑖′ < 𝑖 we have

𝜗′(𝐶′[𝑛]) [0] = 𝜖,
𝜗′(𝐶′[𝑛]) [𝑖′ + 1] = 𝜗′(𝐶 [𝑛]) [𝑖′]⌢⟨ 𝑖′, 𝑥𝑖 ′ ⟩.

Analogously to 𝜗 , 𝜗′ computably maps presentations of 𝑓 ′ ∈ R∞
0,1 to presentations

for𝛩−1(𝑓 ′) ∈ R as it uses the same principle of translation as 𝑢′ and𝛩−1, just on
sequences instead of functions or Gödel numbers.
In the following lemma we show that for delayable learning criteria a learner

which can learn a function 𝑓 ∈ R from its canonical presentation can also learn 𝑓
from a canonical presentation for𝛩 (𝑓 ) that is translated using 𝜗′.

▶ Lemma 4.2. Let 𝛿 be a delayable learning restriction. Given 𝑓 ∈ R,𝐶 ∈ Can(𝑓 ),
𝐶′ ∈ Can(𝛩 (𝑓 )) and a learner ℎ. Let 𝑝𝐶 and 𝑝𝜗 ′ be the hypothesis sequences of ℎ
on 𝐶 and 𝜗′(𝐶′), respectively. Then we have

(𝑝𝐶,𝐶) ∈ 𝛿 ⇒ (𝑝𝜗 ′, 𝜗′(𝐶′)) ∈ 𝛿.

◀

Proof. First, we define a delaying function 𝑟𝐶 and show 𝑟𝐶 ∈ ®𝑅. Then, we use the
delayability of 𝛿 to show (𝑝𝐶 ◦ 𝑟𝐶,𝐶 ◦ 𝑟𝐶) ∈ 𝛿 and finally conclude (𝑝𝜗 ′, 𝜗′(𝐶′)) ∈ 𝛿 .
We define 𝑟𝐶 : ℕ → ℕ so that for all 𝑛 ∈ ℕ we have

𝑟𝐶 (𝑛) = |{𝑥 ∈ 𝜗 (𝐶 [𝑛]) | 𝜋2(𝑥) = 1 }|.

Intuitively, 𝑟𝐶 returns the length of the longest sequence of a canonical represen-
tation for 𝑓 that can be reconstructed from 𝜗 (𝐶). We show that 𝑟𝐶 ∈ ®𝑅. As 𝑟𝐶
returns the size of a set growing monotonically in regards to the ⊆-relation, it is
non-decreasing. Since 𝜗 (𝐶) is a presentation for a function𝛩 (𝑓 ) ∈ R∞

0,1, it contains
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infinitely many pairs with ⟨𝑥, 1 ⟩ ∈ ℕ × {1} which encode arguments 𝑥 for which
𝛩 (𝑓 ) (𝑥) = 1 Since 𝑟𝐶 counts the 1s appearing in 𝜗 (𝐶) and every function value of
𝛩 (𝑓 ) appears in 𝐶 , 𝑟𝐶 also has an infinite limit inferior. We have 𝑟𝐶 ∈ ®𝑅. Because
𝜗 (𝐶) ∈ Can(R∞

0,1), we have that there exists no 𝑛 ∈ ℕ so that 𝑟𝐶 (𝑥) + 1 < 𝑟𝐶 (𝑥 + 1),
so we have content(𝐶) = content(𝐶 ◦ 𝑟𝐶). Following the definition of 𝑟𝐶 for all
𝑛 ∈ ℕ we have content(𝐶 [𝑟𝐶 (𝑛)]) = content(𝐶 ◦ 𝑟𝐶 [𝑛]). Since 𝛿 is delayable we
have (𝑝𝐶 ◦ 𝑟𝐶,𝐶 ◦ 𝑟𝐶) ∈ 𝛿 .

Both 𝑝𝐶 and 𝑝𝜗 ′ are hypothesis sequences of the same learner ℎ on 𝐶 and 𝜗′(𝐶′).
Since𝐶′ ∈ Can(𝛩 (𝑓 )) and since, by definition, 𝜗′ translates canonical presentations
for𝛩 (𝑓 ) to canonical presentations for 𝑓 , we have that𝐶 = 𝜗′(𝐶′). The delay caused
by 𝑟𝐶 is also the length of the subsequence of 𝐶 that can be reconstructed from 𝐶′

with the use of 𝜗 (𝐶′). This leads us to the conclusion, that for all 𝑛 ∈ ℕ we have
𝐶 ◦ 𝑟𝐶 [𝑛] = 𝜗′(𝐶′[𝑛]) and 𝑝𝐶 ◦ 𝑟𝐶 = 𝑝𝜗 ′ . So we have (𝑝𝜗 ′, 𝜗′(𝐶′)) ∈ 𝛿 . ■

▶ Theorem 4.3. Let 𝛿 be𝛩 -𝛩−1-semantic and delayable. Then we have

(ArbR∞
0,1
,G, 𝛿) � (ArbR,G, 𝛿).

◀

Proof. We use 𝛩 as the bijection between R and R∞
0,1. Since 𝛿 is delayable, by

Theorem 4.1 it suffices to show that for all F ⊆ R we have F ∈ [CanG𝛿R] if and
only if𝛩 (F ) ∈ [CanG𝛿R∞

0,1
].

To show that if F ∈ [CanG𝛿R] then𝛩 (F ) ∈ [CanG𝛿R∞
0,1
], let ℎ be a learner and

F = CanG𝛿R (ℎ). We define the learner 𝑔 so that for any 𝐶 ∈ Can(𝛩 (F )) and all
𝑛 ∈ ℕ we have

𝑔(𝐶 [𝑛]) = 𝑢 (ℎ(𝜗′(𝐶 [𝑛]))).
Let 𝑝ℎ be the learning sequence of ℎ on 𝜗′(𝐶). Because of Lemma 4.2 we have
(𝑝ℎ, 𝜗′(𝐶)) ∈ 𝛿 . Let 𝑝𝑔 be the hypothesis sequence of 𝑔 on 𝐶 . For any 𝑖 ∈ ℕ

we now have 𝑝𝑔 (𝑖) = 𝑢 (ℎ(𝜗′(𝐶 [𝑛]))) = 𝑢 (𝑝ℎ (𝑖)). Since 𝑢 and 𝛩 apply the same
transformation to Gödel numbers and function respectively, this means that we
have 𝜑𝑝𝑔 (𝑖) = 𝜑𝑢 (𝑝ℎ (𝑖)) = 𝛩 (𝜑𝑝ℎ (𝑖)). We also have𝛩 (obj(𝑝ℎ (𝑖))) = obj(𝑝𝑔 (𝑖)). Since
𝛿 is𝛩 -semantic we conclude (𝑝𝑔,𝐶) ∈ 𝛿 and, thus, 𝑔 CanG𝛿R-learns𝛩 (F ).

To show that if𝛩 (F ) ∈ [CanG𝛿R∞
0,1
] we have F ∈ [CanG𝛿R] let 𝑔 be a learner

andF = CanG𝛿R∞
0,1
(𝑔). We now define a learnerℎ so that for any𝐶 ∈ Can(𝛩−1(F ))

and all 𝑛 ∈ ℕ we have
ℎ(𝐶 [𝑛]) = 𝑢′(𝑔(𝜗 (𝐶 [𝑛]))).

Let 𝑝𝑔 be the learning sequence of 𝑔 on 𝜗 (𝐶). By the definition of 𝜗 and since
𝑔 learns F we have (𝑝𝑔, 𝜗 (𝐶 [𝑛])) ∈ 𝛿 . Let 𝑝ℎ be the learning sequence of ℎ on
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𝐶 . For any 𝑖 ∈ ℕ, we now have 𝑝ℎ (𝑖) = 𝑢′(ℎ(𝜗 (𝐶 [𝑛]))) = 𝑢′(𝑝𝑔 (𝑖)). This gives
us 𝜑𝑝ℎ (𝑖) = 𝜑𝑢 ′(𝑝𝑔 (𝑖)) = 𝛩

−1(𝜑𝑝 (𝑖)). We also have 𝛩−1(obj(𝑝𝑔 (𝑖))) = obj(𝑝ℎ (𝑖)) .We
conclude that (𝑝ℎ,𝐶) ∈ 𝛿 and, thus, ℎ CanG𝛿-learns𝛩−1(F ). ■

4.1.2 Isomorphism between total functions and decidable
languages

We first define a function translating between R0,1 and E𝑐 an then go on to show an
isomorphism between these sets for all semantic learning restrictions. Finally we use
this isomorphism to also build an isomorphism between the set of infinite decidable
languages, denoted by E∞

𝑐 , and R∞
0,1, allowing us to generalize the theorems from

this section into an isomorphism between R and E∞
𝑐 .

In this section we define the function𝛩 : R0,1 → E𝑐 , so that for all 𝑓 ∈ R0,1 we
have

𝛩 (𝑓 ) = {𝑥 ∈ ℕ | 𝑓 (𝑥) = 1 }. (4.1)

Intuitively𝛩 interprets 𝑓 as the characteristic function for a language and maps it
to this language. Since for any 𝑓 , 𝑔 ∈ R0,1 with 𝑓 ≠ 𝑔 there exists an 𝑥 ∈ ℕ so that
𝑓 (𝑥) ≠ 𝑔(𝑥), we have, without loss of generality, 𝑥 ∈ 𝛩 (𝑓 ) and 𝑥 ∉ 𝛩 (𝑔) and thus
𝛩 (𝑓 ) ≠ 𝛩 (𝑔), so𝛩 is injective. For any 𝐿 ∈ E𝑐 there exists a characteristic function
𝜒𝐿 ∈ R0,1 for 𝐿 and by definition 𝛩 (𝜒𝐿) = 𝐿. Thus, 𝛩 is surjective and bijective.
So there exists an inverse function for𝛩 translating decidable languages to their
characteristic function, which we denote by𝛩−1.

▶ Theorem 4.4. Let 𝛿 be𝛩 -𝛩−1-semantic. Then we have

(ArbR0,1,G, 𝛿) � (InfE𝑐
,G, 𝛿)C.

◀

Proof. We observe that by the definition of informants and presentations for func-
tions for any 𝑓 ∈ R0,1 we have ArbR0,1 (𝑓 ) = InfE𝑐

(𝛩 (𝑓 )). So an arbitrary pre-
sentations for a 𝑓 ∈ R0,1 is always also an informant for 𝛩 (𝑓 ) ∈ E𝑐 and vice
versa.

We first show that for any F ⊆ R0,1, if F ∈ [ArbR0,1G𝛿] then we have that
𝛩 (F ) ∈ [InfE𝑐

G𝛿]C. Let ℎ be a learner and F = ArbR0,1G𝛿 (ℎ). We now define the
learner 𝑔 so that for any 𝐼 ∈ InfE𝑐

(𝛩 (F )) and 𝑛 ∈ ℕ we have

𝑔(𝐼 [𝑛]) = ℎ(𝐼 [𝑛]) .
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So the learner 𝑔 forwards the 𝜑-hypothesis given by ℎ, which is now interpreted as
a C-hypothesis.
Let 𝑝ℎ and 𝑝𝑔 be the learning sequences of ℎ and 𝑔 on 𝐼 respectively. Since

𝐼 ∈ ArbR0,1 (F ) and ℎ ArbR0,1G𝛿-learns F , we have (𝑝ℎ, 𝐼 ) ∈ 𝛿 . For all 𝑖 ∈ ℕ, by the
definition of𝛩 , we now have𝛩 (𝜑𝑝ℎ (𝑖)) = C𝑝𝑔 (𝑖) and𝛩 (objR0,1

(𝐼 [𝑖])) = objE𝑐
(𝐼 [𝑖]).

Since 𝛿 is𝛩 -semantic we conclude (𝑝𝑔, 𝐼 ) ∈ 𝛿 . So 𝑔 InfE𝑐
G𝛿C-learns𝛩 (F ).

We now show the other implication, that is if 𝛩 (L) ∈ [InfE𝑐
G𝛿C] then F ∈

[ArbR0,1G𝛿]. Given a learner 𝑔 and L = InfE𝑐
G𝛿 (𝑔), for any 𝐴 ∈ ArbR0,1 (𝛩−1(L))

and 𝑛 ∈ ℕ we define an new learner ℎ so that

ℎ(𝐴[𝑛]) = 𝑔(𝐴[𝑛]).

So ℎ takes any C-hypothesis made by 𝑔 and returns it as an 𝜑-hypothesis.
Let 𝑝𝑔 and 𝑝ℎ be the learning sequences of 𝑔 and ℎ on 𝐴 respectively. Since

𝐴 ∈ 𝐼𝑛𝑓E𝑐
(L) we have (𝑝𝑔, 𝐴) ∈ 𝛿 . For all 𝑖 ∈ ℕ we have 𝛩−1(𝐶𝑝𝑔 (𝑖)) = 𝜑𝑝ℎ (𝑖) and

𝛩−1(objE𝑐
(𝐴[𝑖])) = objR0,1

(𝐴[𝑖]). Since 𝛿 is𝛩−1-semantic, we conclude (𝑝ℎ, 𝐴) ∈ 𝛿 .
So ℎ ArbR0,1G𝛿-learns𝛩−1(L). ■

Recall𝛩 from the proof of Equation (4.1). We consider𝛩 |R∞
0,1
: R∞

0,1 → E∞
𝑐 . This

restricted function remains injective. Every 𝐿 ∈ E∞
𝑐 has a characteristic function

𝜒𝐿 which maps to 1 infinitely often, as there are infinitely many elements in 𝐿. So
we have 𝜒𝐿 ∈ R∞

0,1 and by the definition of𝛩 we get𝛩 |R∞
0,1
(𝜒𝐿) = 𝐿. So𝛩 |R∞

0,1
is also

surjective and thus a bijection. This implies the existence of an inverse function
which we denote by (𝛩 |R∞

0,1
)−1.

▶ Corollary 4.5. Let 𝛿 be𝛩 |R∞
0,1
-(𝛩 |R∞

0,1
)−1-semantic. Then we have

(ArbR∞
0,1
,G, 𝛿) � (InfE∞

𝑐
,G, 𝛿)C.

◀

Proof. From Theorem 4.4 we directly conclude that, for all L ⊆ R∞
0,1, we have

that if and only if L ∈ [ArbR0,1G𝛿] then 𝛩 (L) ∈ [InfG𝛿]C. So (ArbR∞
0,1
,G, 𝛿) �

(Inf∞E𝑐
,G, 𝛿)C. ■

▶ Corollary 4.6. Let 𝛿 be semantic and delayable. We have

(ArbR,G, 𝛿) � (Inf∞E𝑐
,G, 𝛿)C

. ◀
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Proof. This follows directly from Theorem 4.3, Corollary 4.5 and the transitivity of
� shown in Theorem 3.6. ■

▶ Corollary 4.7. We have

(ArbR0,1,G, 𝛿) �𝑐 (InfE𝑐
,G, 𝛿)C, and

(ArbR∞
0,1
,G, 𝛿) �𝑐 (Inf∞E𝑐

,G, 𝛿)C.

◀

Proof. This follows directly from the proofs for Theorem 4.4 and Corollary 4.5. ■

4.2 Embeddings
In this section we show that E𝑐 embeds E∞

𝑐 and vice versa.

▶ Theorem 4.8. Let 𝛿 be a learning restriction and 𝑃 be either a text or informant
presentation system. Then, we have

(𝑃E∞
𝑐
,G, 𝛿)C ↩→ (𝑃E𝑐

,G, 𝛿)C.

◀

Proof. First, please note that E∞
𝑐 ⊆ E𝑐 . We now consider the function 𝑖𝑑 : E∞

𝑐 → E𝑐 ,
the injective identity function. Given a learner ℎ and L = 𝑃G𝛿E∞

𝑐
(ℎ), ℎ learns every

𝐿 = 𝑖𝑑 (𝐿) ∈ L. Thus, 𝑖𝑑 (𝐿) ∈ 𝑃G𝛿E𝑐
(ℎ) and 𝑃G𝛿E∞

𝑐
(ℎ) ⊆ 𝑃G𝛿E𝑐

(ℎ).
Given a learner 𝑔 and L′ = 𝑃G𝛿E𝑐

(𝑔) ∩ E∞
𝑐 , 𝑔 learns every 𝐿′ ∈ L′. Thus,

𝑖𝑑 (𝐿′) ∈ 𝑃G𝛿E∞
𝑐
(ℎ) and 𝑃G𝛿E∞

𝑐
(ℎ) = 𝑃G𝛿E𝑐

(ℎ) ∩ E∞
𝑐 .

■

▶ Corollary 4.9. For delayable and semantic learning restrictions 𝛿 we have

(ArbR,G, 𝛿) ↩→ (ArbR∞
0,1
,G, 𝛿) ↩→ (Inf∞E𝑐

,G, 𝛿)C

↩→ (InfE𝑐
,G, 𝛿)C ↩→ (ArbR0,1,G, 𝛿)

◀

Proof. This follows directly from Theorem 4.8, the isomorphism shown in Theo-
rem 4.3, Corollary 4.5 and Theorem 4.4 and Corollary 3.7. ■
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To show the that E∞
𝑐 embeds E𝑐 we first define a function translating between

these two sets of functions and a reverse function. Just as in the proof of Theorem 4.3
we also definemethods to translate between the canonical presentations of functions
from E𝑐 and E∞

𝑐 and show that delayable learners which can learn an 𝐿 ∈ E𝑐 or
E∞
𝑐 from its canonical informant can also learn it from the translated presentation.

With this we then show that E𝑐 ↩→ E∞
𝑐 .

In this section we define𝛩 : E𝑐 → E∞
𝑐 so that for all 𝐿 ∈ E𝑐 we have

𝛩 (𝐿) = {2𝑥 + 1 | 𝑥 ∈ 𝐿 } ∪ 2ℕ.

Since 𝐿 is decidable, so is 𝛩 (𝐿). As 2ℕ is infinite, we have 𝛩 (𝐿) ∈ E∞
𝑐 . Given

𝐿,𝑀 ∈ E𝑐 with 𝐿 ≠ 𝑀 without loss of generality there exists an 𝑥 ∈ 𝐿 with 𝑥 ∉ 𝑀 .
This means that 2𝑥 + 1 ∈ 𝛩 (𝐿) but 2𝑥 + 1 ∉ 𝛩 (𝑀), so we have𝛩 (𝐿) ≠ 𝛩 (𝑀). Thus,
𝛩 is also injective.

We define another function 𝛺 : 𝛩 (E𝑐) → E𝑐 so that for all 𝐿′ ∈ range(𝛩 ) we
have

𝛺 (𝐿′) =
{
𝑥 − 1
2

���� 𝑥 ∈ 𝐿 \ 2ℕ
}
.

Intuitively 𝛺 is the inverse function of 𝛩 . Given 𝐿′, 𝑀′ ∈ 𝛩 (E𝑐) with 𝐿′ ≠ 𝑀′

without loss of generality there exists an 𝑥 ∈ 𝐿′ with 𝑥 ∉ 𝑀′. Since, by the definition
of𝛩 , we have that 2ℕ ⊆ 𝐿′ and 2ℕ ⊆ 𝑀′, so 𝑥 is uneven. So we have 𝑥−1

2 ∈ 𝛺 (𝐿′)
and 𝑥−1

2 ∉ 𝛺 (𝑀′). We conclude that 𝛺 is injective.
We define a function 𝜗 : Inf (E𝑐) → Inf (E∞

𝑐 ) so that for this section for any
𝐼 ∈ Inf (E𝑐) and 𝑛 ∈ ℕ and all 𝑛′ ≤ 2𝑛 we have

𝜗 (𝐼 [𝑛]) [0] = 𝜖,
𝜗 (𝐼 [𝑛]) [2(𝑛′ + 1)] = 𝜗 (𝐼 [𝑛]) [2(𝑛′)]⌢⟨ 2𝜋1(𝐼 [𝑛]) − 1, 𝜋2(𝐼 [𝑛]) ⟩⌢⟨ 2𝜋1(𝐼 [𝑛]), 1 ⟩.

Intuitively, for every 𝐿′ ∈ E∞
𝑐 and 𝐼 ∈ Inf (𝛺 (𝐿′)), 𝜗 constructs a new informant

from 𝐼 . It uses every information ⟨𝑥,𝑦 ⟩ ∈ content(𝐼 ) to include tuples ⟨ 2𝑥, 1 ⟩ and
⟨ 2𝑥 + 1, 𝑦 ⟩ in 𝜗 (𝐼 ). It follows the same translation method as𝛩 , so we have 𝜗 (𝐼 ) ∈
Inf (𝐿′). Further for any 𝐿 ∈ E𝑐 and 𝐼 ∈ InfCan((𝐿)) we have 𝜗 (𝐼 ) ∈ InfCan(𝛩 (𝐿)).

We define another function𝜔 : Inf (E∞
𝑐 ) → Inf (E𝑐) so that for any 𝐼 ′ ∈ Inf (E∞

𝑐 ),
𝑛 ∈ ℕ and 𝑛′ ≤ |{⟨𝑥,𝑦 ⟩ ∈ 𝐼 ′[𝑛] | 𝑥 ∉ 2ℕ }| we have

𝜌 (⟨𝑥,𝑦 ⟩) = ⟨ 𝑥 − 1
2

, 𝑦 ⟩,

𝑛𝑒𝑥𝑡 (𝐼 ′[𝑛], 𝑛′) = {𝑖 ≤ 𝑛 | 𝜋1(𝐼 ′[𝑖]) ∉ 2ℕ ∧ 𝜌 (𝐼 ′[𝑖]) ∉ content(𝜔 (𝐼 ′[𝑛]) [𝑛′]) },
𝜔 (𝐼 ′[𝑛]) [0] = 𝜖,
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𝜔 (𝐼 ′[𝑛]) [𝑛′ + 1] = 𝜔 (𝐼 ′[𝑛]) [𝑛′]⌢
{
𝜌 (min(𝑛𝑒𝑥𝑡 (𝐼 ′[𝑛], 𝑛′))), if 𝑛𝑒𝑥𝑡 (𝐼 ′[𝑛], 𝑛′) ≠ ∅,
𝜖, else.

Intuitively, 𝜌 transforms tuples containing information about uneven number, mim-
icking the translations performed by𝛺 on tuples instead of sets, while𝑛𝑒𝑥𝑡 (𝐼 ′[𝑛], 𝑛′)
gives us a set of the values not yet contained in 𝜔 (𝐼 ′[𝑛 − 1]). This, we use so that
𝜔 (𝐼 ′[𝑛]) gives us a sequence containing information deduced from all uneven
numbers contained in 𝐼 ′[𝑛]. By following the same principles of translation as 𝛺 , it
maps the informant 𝐼 ′ for any 𝐿′ ∈ E∞

𝑐 to an informant for𝛩 (𝐿′). Further for any
𝐼 ′ ∈ InfCan(𝐿′) we have 𝜔 (𝐼 ′) ∈ InfCan(𝛺 (𝐿′)). Especially for any 𝐿′ ∈ range(𝛩 )
and 𝐼 ′ ∈ InfCan(𝐿′) we have 𝜗 (𝜔 (𝐼 ′)) = 𝐼 ′ and for 𝐿 ∈ E𝑐 and 𝐼 ∈ InfCan(𝐿) we
have 𝜔 (𝜗 (𝐼 )) = 𝐼 .

In the following two lemmata we show that, for delayable learning criteria, if a
learner can learn a language 𝐿 ∈ E𝑐 or 𝐿′ ∈ 𝛩 (E𝑐) from a canonical informant for
𝐿 or 𝐿′, it can also learn the language from the canonical informant for 𝛩 (𝐿′) or
𝛺 (𝐿′) which was translated using 𝜔 or 𝜗 , respectively.

▶ Lemma 4.10. Let 𝛿 be a delayable learning restriction. Given any 𝐿 ∈ E𝑐 and
𝐼 ∈ InfCan(𝐿) as well as 𝐼 ′ ∈ InfCan(𝛩 (𝐿)) and a learner ℎ, let 𝑝𝐼 , 𝑝𝜔 (𝐼 ) be the
learning sequences of ℎ on 𝐼 and 𝜔 (𝐼 ′) respectively. We have

(𝑝𝐼 , 𝐼 ) ∈ 𝛿 ⇒ (𝑝𝜔 (𝐼 ), 𝜔 (𝐼 ′)) ∈ 𝛿.

◀

Proof. First we define a delaying function 𝑟𝜔
𝐼,𝐼 ′ and show 𝑟𝜔

𝐼,𝐼 ′ ∈ ®𝑅. We use the
delayability of 𝛿 to show (𝑝𝐼 ◦𝑟𝜔𝐼,𝐼 ′, 𝜔 (𝐼

′)) ∈ 𝛿 and finally conclude (𝑝𝜔 (𝐼 ), 𝜔 (𝐼 ′)) ∈ 𝛿 .
We define 𝑟𝜔

𝐼,𝐼 ′ : ℕ → ℕ so that for all 𝑛 ∈ ℕ we have

𝑟𝜔𝐼,𝐼 ′ (𝑛) = max{𝑛′ ∈ ℕ | content(𝐼 [𝑛′]) ⊆ content(𝜔 (𝐼 [𝑛])) }.

Intuitively 𝑟𝜔
𝐼,𝐼 ′ always returns the length of the longest initial sequence of 𝐼 [𝑛]

which is also contained in content(𝜔 (𝐼 ′[𝑛])). We show that 𝑟𝜔
𝐼,𝐼 ′ ∈ ®𝑅. As 𝑟𝜔

𝐼,𝐼 ′ ist the
maximum of a set which grows monotonically in regards to the ⊆-relation, 𝑟𝜔

𝐼,𝐼 ′ is
non-decreasing. To show that 𝑟𝜔

𝐼,𝐼 ′ has an infinite limit inferior, we show that for all
𝑖 ∈ ℕ there exists an𝑚 ∈ ℕ so that 𝑟𝜔

𝐼,𝐼 ′ (𝑚) ≥ 𝑖 . Since 𝑟𝜔
𝐼,𝐼 ′ is non-decreasing this

suffices to show that for all 𝑖 ∈ ℕ there exists an𝑚 ∈ ℕ so that for all 𝑛 ≥ 𝑚 we
have 𝑟𝜔

𝐼,𝐼 ′ (𝑛) ≥ 𝑖 . For 𝑖 = 0 this claim holds, as any sequence contains the content of
the empty sequence. Let the claim be true for an arbitrary 𝑖 . We show that it holds
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for 𝑖 + 1 as well. Let𝑚′ so that 𝑟𝜔
𝐼,𝐼 ′ (𝑚

′) ≥ 𝑖 . If 𝑟𝜔
𝐼,𝐼 ′ (𝑚

′) > 𝑖 we have 𝑟𝜔
𝐼,𝐼 ′ (𝑚

′) ≥ 𝑖 + 1.
Else, let 𝑥 ≔ 𝜋1(𝐼 [𝑖+1]). Then 𝐼 ′ contains information about 2𝑥 +1, so there exist an
𝑚′′ ≥ 𝑚′ so that without loss of generality 𝐼 ′(𝑚′′) = ⟨ 2𝑥 +1, 0 ⟩. By the construction
of 𝜔 we now have ⟨𝑥, 0 ⟩ ∈ content(𝜔 (𝐼 ′[𝑚′′])). We have 𝑟𝜔

𝐼,𝐼 ′ (𝑚
′′) ≥ 𝑖 + 1. So the

claim holds in both cases, thus, 𝑟𝜔
𝐼,𝐼 ′ has an infinite limit inferior.

Following the definition of 𝑟𝜔
𝐼,𝐼 ′ we have that, for all 𝑛 ∈ ℕ, content(𝐼 [𝑟𝜔

𝐼,𝐼 ′ (𝑛)]) ⊆
content(𝐼 ′(𝑛)). Because 𝜔 (𝐼 ) ∈ InfCan(E∞

𝑐 ) we have that there exists no 𝑛 ∈ ℕ so
that 𝑟𝜔

𝐼,𝐼 ′ (𝑥) + 1 < 𝑟𝜔
𝐼,𝐼 ′ (𝑥 + 1), so we have content(𝐼 ) = content(𝐼 ◦ 𝑟𝜔

𝐼,𝐼 ′). Since 𝛿 is a
delayable learning restriction, this leads us to the conclusion that (𝑝𝐼 ◦ 𝑟𝜔𝐼,𝐼 ′, 𝐼

′) ∈ 𝛿 .
Since, for all 𝑛 ∈ ℕ, 𝑟𝜔

𝐼,𝐼 ′ sets 𝑝𝐼 ◦𝑟
𝜔
𝐼,𝐼 ′ back to only use the information from 𝐼 [𝑛] that

is also available in𝜔 (𝐼 ′[𝑛]) we have 𝑝𝜔 (𝐼 ) = 𝑝𝐼 ◦𝑟𝜔𝐼,𝐼 ′ . This leads us to the conclusion
that (𝑝𝜔 (𝐼 ), 𝜔 (𝐼 ′)) ∈ 𝛿 . ■

▶ Lemma 4.11. Given any 𝐿 ∈ E𝑐 and 𝐼 ′ ∈ InfCan(𝐿) as well as 𝐼 ∈ InfCan(𝛩 (𝐿))
and a learner ℎ. Let 𝑝𝐼 , 𝑝𝜗 (𝐼 ′) be the learning sequences of ℎ on 𝐼 and 𝜗 (𝐼 ′) respec-
tively. We have

(𝑝𝐼 , 𝐼 ) ∈ 𝛿 ⇒ (𝑝𝜗 (𝐼 ′), 𝜗 (𝐼 ′)) ∈ 𝛿.
◀

Proof. We define 𝑟𝜗
𝐼,𝐼 ′ : ℕ → ℕ so that for all 𝑛 ∈ ℕ we have

𝑟𝜗𝐼,𝐼 ′ (𝑛) = max{𝑛′ ∈ ℕ | content(𝐼 [𝑛′]) ⊆ content(𝜗 (𝐼 ′[𝑛])) }.

Analogous to the proof for Lemma 4.10 we see that 𝑟𝜗
𝐼,𝐼 ′ is non-decreasing and has

an infinite limit inferior. Following the definition of 𝑟𝜗
𝐼,𝐼 ′ for all 𝑛 ∈ ℕ we have

content(𝐼 [𝑟𝜗
𝐼,𝐼 ′ (𝑛)]) ⊆ content(𝐼 ′(𝑛)) and, following the arguements used in the

proof for Lemma 4.10, we have content(𝐼 ◦ 𝑟𝜗
𝐼,𝐼 ′) (𝑛) = content(𝐼 ′(𝑛)). Since 𝛿 is a

delayable learning restriction, this leads us to the conclusion, that (𝑝𝐼 ◦ 𝑟𝜗𝐼,𝐼 ′, 𝐼
′) ∈ 𝛿 .

Since, for all 𝑛 ∈ ℕ, 𝑟𝜗
𝐼,𝐼 ′ sets 𝑝𝐼 ◦𝑟

𝜗
𝐼,𝐼 ′ back to only use the information from 𝐼 [𝑛] that

is also available in 𝜔 (𝐼 ′[𝑛]) we have 𝑝𝜗 (𝐼 ′) = 𝑝 ◦𝑟𝜗𝐼,𝐼 ′ . This leads us to the conclusion
that (𝑝𝜗 (𝐼 ′), 𝜔 (𝐼 ′)) ∈ 𝛿 .

■

▶ Theorem 4.12. Let 𝛿 be a 𝛩 -𝛺-semantic and delayable learning restriction.
Then, we have

(InfE𝑐
,G, 𝛿)C ↩→ (InfE∞

𝑐
,G, 𝛿)C.

◀
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Proof. As Aschenbach et al. [AKS18] have shown, it suffices to show that, for an
L ⊆ E𝑐 we haveL ∈ [InfCanG𝛿E𝑐

]C if and only if𝛩 (L) ∈ [InfCanG𝛿E∞
𝑐
]C. We first

show that if L ∈ [InfCanG𝛿E𝑐
]C, then𝛩 (L) ∈ [InfCanG𝛿E∞

𝑐
]C. Let ℎ be a learner

and L = InfCanG𝛿E𝑐C(ℎ). We define a new learner 𝑔 so that for all 𝐼 ′ ∈ Inf (𝛩 (L))
and 𝑥, 𝑛 ∈ ℕ we have

𝜑𝑔(𝐼 ′[𝑛]) (𝑥) =
{
1, if 𝑥 ∈ 2ℕ,
𝜑ℎ(𝜔 (𝐼 ′[𝑛])) ( 𝑥−12 ), else.

So 𝑔 uses the predictions made by ℎ on 𝜔 (𝐼 ′) to predict which elements belong to
𝛩 (𝐿). Let 𝑝ℎ and 𝑝𝑔 be the learning sequence of ℎ on 𝜔 (𝐼 ′) and 𝑔 on 𝐼 ′, respectively.
Since ℎ learns L by Lemma 4.10 we have (𝑝ℎ, 𝜔 (𝐼 ′)) ∈ 𝛿 . By the definition of 𝑔, for
all 𝑖 ∈ ℕ, we have C𝑝𝑔 (𝑖) =

{
𝑥 ∈ ℕ

�� 𝜑ℎ(𝜔 (𝐼 ′[𝑖])) ( 𝑥−12 ) = 1
}
∪ 2ℕ = 𝛺 (C𝑝 (𝑖)). We also

have𝛺 (objE∞
𝑐
(𝜔 (𝐼 ′[𝑖]))) = objE𝑐

(𝐼 ′[𝑖]). Since 𝛿 is𝛺-semantic, we have (𝑝𝑔, 𝐼 ′) ∈ 𝛿 ,
𝑔 InfG𝛿C-learns𝛩 (L).

We now show that for any L ∈ E𝑐 if 𝛩 (L) ∈ [InfCanG𝛿E∞
𝑐
]C then L ∈

[InfCanG𝛿E𝑐
]C. Let 𝑔 be a learner and L so that 𝛩 (L) = InfCanG𝛿E∞

𝑐 C(𝑔) ∩
range(𝛩 ). We define a new learner ℎ so that for all 𝐼 ′ ∈ InfCan(L) and 𝑥, 𝑛 ∈ ℕ we
have

𝜑ℎ(𝐼 ′[𝑛]) (𝑥) = 𝜑𝑔(𝜗 (𝐼 ′[𝑛])) (2𝑥 + 1).
So ℎ modifies and passes on the information contained in 𝐼 ′ and works on the
prediction made by𝑔. Let 𝑝𝑔 and 𝑝ℎ be the learning sequence of𝑔 andℎ on𝜔 (𝐼 ′) and
𝐼 ′, respectively. Since 𝑔 learns𝛩 (L), by Lemma 4.11 we have (𝑝𝑔, 𝜔 (𝐼 ′)) ∈ 𝛿 . For all
𝑖 ∈ ℕ we now have C𝑝ℎ (𝑖) =

{
𝑥 ∈ ℕ

�� 𝜑𝑔(𝜔 (𝐼 ′[𝑖])) (2𝑥 + 1) = 1
}
= 𝛩 (𝐶𝑝𝑔 (𝑖)). We also

have𝛩 (objE𝑐
(𝜔 (𝐼 ′[𝑖]))) = objE∞

𝑐
(𝐼 ′[𝑖]). As 𝛿 is𝛩 -sematic, we have (𝑝ℎ, 𝐼 ′) ∈ 𝛿 , so

ℎ InfCanG𝛿C-learns L. ■

▶ Corollary 4.13. For delayable and semantic learning restriction we have

(ArbR0,1,G, 𝛿) ↩→ (InfE𝑐
,G, 𝛿)C ↩→ (InfE∞

𝑐
,G, 𝛿)C

↩→ (ArbR∞
0,1
,G, 𝛿) ↩→ (ArbR,G, 𝛿)

◀

Proof. This follows directly from Theorem 4.12, the isomorphism shown in Theo-
rem 4.4, Corollary 4.5 and Theorem 4.3 and Corollary 3.7. ■
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Non isomorphic learning tasks Section 4.3

4.3 Non isomorphic learning tasks
In this section we show that there are sets of learning settings between which no
isomorphism exists. We proof this for semantic learning restrictions 𝛿 and InfG𝛿W
and InfG𝛿𝐶 by finding two semantic restrictions with different relationships infW-
and C-index learning.

▶ Lemma 4.14. We have [InfGBc]C = [InfGBcc]C. ◀

Proof. With 𝑠-𝑚-𝑛 we define 𝑓 : ℕ → ℕ so that for all 𝑒, 𝑛′ ∈ ℕ we have

𝜑 𝑓 (𝑒) (𝑛′) =


1, if 𝜑𝑒 (𝑛′) = 0,
0, if 𝜑𝑒 (𝑛′) = 1,
⊥, else.

For an any 𝐿 ∈ E𝑐 and 𝑒 ∈ ℕ for which 𝜑𝑒 = 𝜒𝐿 , we now have 𝜑 𝑓 (𝑒) = 𝜒
𝐿
.

To show [InfGBc]C ⊆ [InfGBcc]C, let a learner ℎ be given. Let L = InfGBc(ℎ).
This means that for all 𝐿 ∈ L, 𝐼 ∈ Inf (𝐿), with 𝑝ℎ denoting the hypothesis sequence
of ℎ on 𝐼 , there exists an 𝑛0 ∈ ℕ so that for all 𝑛 ≥ 𝑛0 we have𝐶𝑝ℎ (𝑛) = 𝐿. We define
a new learner 𝑔 so that for all Informants 𝐼 and 𝑛 ∈ ℕ we have

𝑔(𝐼 ′[𝑛]) = 𝑓 (ℎ(𝐼 ′[𝑛])).

Given an 𝐼 ∈ Inf (L), let 𝑝𝑔 be the hypothesis sequence of 𝑔 on 𝐼 . For all 𝑛 ≥
𝑛0 we now have 𝜑𝑝𝑔 (𝑛) = 𝜒

𝐿
, so C𝑝 (𝑛) = 𝐿. This shows that (𝑝𝑔, 𝐼 ) ∈ Bcc, so

InfGBcc(𝑔) ⊇ InfGBc(ℎ). The other inclusion, that is [InfGBc]C ⊇ [InfGBcc]C,
follows analogously. ■

▶ Lemma 4.15. We have [InfGBc]W \ [InfGBcc]W ≠ ∅. ◀

Proof. We define

L0 =
{
𝑀 ∈ E𝑐

��𝑀 ≠ ∅ ∧Wmin(𝑀) = 𝑀
}
. (4.2)

It is well known that L0 is TxtGExW-learnable [CL82; Jai+99]. We include the
proof, that it is InfGBcW-learnable for completeness. We want to show that there
is a learner ℎ, so that L0 ⊆ InfGBc(ℎ). We define ℎ so that for all Informants 𝐼 and
𝑛 ∈ ℕ we have

ℎ(𝐼 [𝑛]) = min(pos(𝐼 [𝑛])) .
Let 𝐿 ∈ L0, 𝐼 ∈ Inf (𝐿) and 𝑝 be the hypothesis sequence of ℎ on 𝐼 . There is an
𝑛0 ∈ ℕ so that 𝐼 (𝑛0) = ⟨min(𝐿), 1 ⟩. So for all 𝑛 ≥ 𝑛0 we have 𝑝 (𝑛) = min(𝐿). By
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the definition of L0 we have W𝑝 (𝑛) = Wmin(𝐿) = 𝐿. Thus, we have (𝑝, 𝐼 ) ∈ Bc, so ℎ
InfGBc-learns L0.
We show that there is no learner 𝑔 so that L0 ⊆ InfGBcc(𝑔) by contradiction.

Suppose there is such a learner 𝑔. First we define a function so that for a finite
sequence 𝜎𝑛 and 𝑠 ∈ ℕ we have that for an 𝐼 ∈ InfCan(range(𝜎))

𝑐𝑖 (𝜎, 𝑠) = 𝐼 [𝑠] .

So 𝑐𝑖 (𝜎𝑛, 𝑠) gives us a canonical informant of length 𝑠 with pos(𝑐𝑖 (𝜎𝑛, 𝑠)) = range(𝜎𝑛)
if 𝑠 ≥ max(range(𝑛)). Further, for any finite sequence 𝜎𝑛 let

notin(𝜎𝑛) = {0, 1, ...,max(𝜎𝑛)} \ range(𝜎𝑛).

Now the Operator Recursion Theorem [Cas74] yields a computable function 𝜎 and
a Gödel number 𝑒0 so that the following holds for all 𝑎, 𝑛 ∈ ℕ

𝜑𝑒 (0) (𝑎) =
{
𝜎 (𝑎), if ∃𝑏 ∈ ℕ : 𝑎 = 𝜎 (𝑏),
⊥, else.

𝜎 (0) = 𝑒0,

𝜎 (𝑛 + 1) =


𝑥, if ∃𝑠, 𝑡, 𝑥 ∈ ℕ : 𝑥 ≥ 𝑡 ≥ 𝑠 ≥ 𝜎 (𝑛)

∧ 𝑥 ∈ W𝑡
𝑔(𝑐𝑖 (𝜎 [𝑛],𝑠)) \ notin(𝜎 [𝑛]),

⊥, 𝑒𝑙𝑠𝑒.

Not that 𝜎 is either total or only defined for all 𝑛 ∈ ℕ until some 𝑛0 ∈ ℕ. Futhermore
it is strongly monotone for all𝑛 that it is defined on. Let𝐴 = range(𝜎). By definition
of 𝜎 we have 𝜎 (0) = 𝑒0 = min(range(𝜎)) = min(𝐴) and by the definition𝐴we have
W𝑒0 = range(𝜎) = 𝐴. Also𝐴 is either finite or the range of a total strictly monotone
function, so 𝐴 ∈ E𝑐 . Thus, we have 𝐴 ∈ L0. By our assumption 𝑔 InfGBcc-learns
𝐴. Let 𝐼 be the canonical informant for 𝐴, and let 𝑝𝑔 be the hypotheses sequence of
𝑞 on 𝐼 . We have (𝑝𝑔, 𝐼 ) ∈ Bcc. There exists an 𝑛0 ∈ ℕ so that for all 𝑛 ≥ 𝑛0 we have
𝑊𝑝𝑔 (𝑛) = 𝐴.

Suppose 𝜎 is infinite. For 𝑛0 there exists 𝑥, 𝑠, 𝑡 ∈ ℕ with 𝑥 ≥ 𝑠 ≥ 𝑡 , so that
𝑥 ∈ W𝑡

𝑔(𝑐𝑖 (𝜎 (𝑛0),𝑠)) , but by definition of 𝜎 we have 𝑥 ∈ 𝐴. Thus, we have W𝑝 (𝑛0) ≠ 𝐴.
In this case 𝐴 ∉ InfGBcc(𝑔).

In the other case 𝜎 is finite. So there exists an 𝑛′ ∈ ℕ for which we have 𝜎 (𝑛′) ↓,
but 𝜎 (𝑛′+1) ↑. For all 𝑠 ≥ 𝑛′ we now have that𝑊𝑔(𝑐𝑖 (𝜎 (𝑛′),𝑠)) is finite. This especially
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means that W𝑝 (max(𝑛′,𝑛0)) is finite, so we have W𝑝 (max(𝑛′,𝑛0)) ≠ 𝐴, as 𝐴 is finite. So
in this case 𝑔 also can not InfGBcc-learn 𝐴. ■

▶ Theorem 4.16. There does not exist an isomorphism𝛩 : E → E so that for all
semantic learning restrictions 𝛿 and L ⊆ E we have 𝐿 ∈ [InfG𝛿]C if and only if
𝛩 (𝐿) ∈ [InfG𝛿]W. ◀

Proof. We proof this claim by contradiction. Suppose we have such an isomorphism
𝛩 . Then for all 𝐿 ⊆ E we would have 𝐿 ∈ [InfGBc]C ⇔ 𝛩 (𝐿) ∈ [InfGBc]W and
𝐿 ∈ [InfGBcc]C ⇔ 𝛩 (𝐿) ∈ [InfGBcc]W. With Lemma 4.14 we have [InfGBc]C =

[InfGBcc]C, which gives us [InfGBc]W = [InfGBcc]W, a contradiction to Lemma 4.15.
■

▶ Corollary 4.17. There does not exist an isomorphism𝛩 : E → R0,1 so that for
all semantic learning restrictions 𝛿 and L ⊆ E we have 𝐿 ∈ [InfG𝛿]W if and only
if𝛩 (𝐿) ∈ [ArbG𝛿]. ◀

Proof. This follows directly from the isomorphism between (InfE𝑐
,G, 𝛿)W and

(ArbR0,1,G, 𝛿) shown in Theorem 4.4, the trasitivity of � shown in Theorem 3.6
and Theorem 4.16. ■
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