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0Abstract
In inductive inference, we investigate the learnability of classes of formal languages.
We are interested in what classes of languages are learnable in certain learning
settings. A class of languages is learnable, if there is a learner that can identify all
of its languages and satisfies the constraints of the learning setting. To identify
a language, a learner is presented with information about this very language.
When learning from informants, this information consists of examples for numbers
that are, and numbers that are not included in the target language. As more
and more examples are presented, the learner outputs a hypothesis sequence. To
satisfy behaviorally correct identification, this hypothesis sequence must eventually
only list correct labels for the target language. In this thesis, we compare the
effects of a number of semantic learning restrictions on the learning capabilities
for behaviorally correct learning from informants.
To start, we collect and combine some known theorems to show that we can

assume learners to be set-driven and total. Additionally, learners only need to
identify languages by their canonical informant, an informant that is particularly
well-formed. We then investigate the effects of a number of learning restrictions
on the inference capabilities of learners. Most importantly, we specify all rela-
tions between monotonic and strong monotonic restrictions, including dual and
combined versions. Monotonicity restrictions require that a learner outputs better
generalizations (or, for the dual variants, specializations) over time. Similarly to
what has been found in the setting of learning indexed families, these restrictions
form a strict hierarchy. We show that weak monotonicity does not restrict learners.
We reprove that cautiousness is a proper restriction by investigating three weaker
variants. Interestingly, while infinite cautiousness does not lessen learning power
in full-information text-learning, the setting they were introduced in, we show
that all three decrease the set of learnable classes in our setting. Finally, we show
that we can assume global consistency for learners satisfying any of the monotonic
restrictions we investigate, with the exception of combined weak monotonicity.
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0Zusammenfassung

In der induktiven Inferenz untersuchen wir die Lernbarkeit von Klassen formaler
Sprachen. Wir sind daran interessiert, welche Klassen von Sprachen in bestimmten
Lernumgebungen lernbar sind. Eine Klasse von Sprachen ist lernbar, wenn es einen
Lerner gibt, der alle enthaltenen Sprachen identifizieren kann und die Bedingungen
der Lernumgebung erfüllt. Um eine Sprache zu identifizieren, erhält der Lerner
Informationen über ebendiese Sprache. Beim Lernen von Informanten bestehen
diese Informationen aus Beispielen für Zahlen, die in der Zielsprache enthalten
sind, und für Zahlen, die in der Zielsprache nicht enthalten sind. Während mehr
und mehr Beispiele präsentiert werden, gibt der Lerner eine Hypothesenfolge aus.
Für verhaltenskorrekte Identifikation muss diese Hypothesenfolge irgendwann
nur noch die Zielsprache beschreiben. In dieser Arbeit vergleichen wir die Aus-
wirkungen einer Reihe semantischer Lernrestriktionen auf die Lernfähigkeit für
verhaltenskorrektes Lernen von Informanten.

Zu Beginn sammeln und kombinieren wir einige bekannte Theoreme, um zu zei-
gen, dass wir davon ausgehen können, dass Lerner mengengetrieben und total sind.
Außerdem müssen Lerner Sprachen nur anhand ihres kanonischen Informanten
identifizieren, also eines Informanten, der besonders wohlgeformt ist. Anschlie-
ßend untersuchen wir die Auswirkungen einer Reihe von Lernrestriktionen auf
die Inferenzfähigkeiten des Lerners. Vor allem spezifizieren wir alle Beziehungen
zwischen monotonen und stark monotonen Restriktionen, einschließlich dualer
und kombinierter Varianten. Monotonitätsrestriktionen setzen voraus, dass ein
Lerner im Laufe der Zeit bessere Verallgemeinerungen (oder, bei den dualen Va-
rianten, Spezialisierungen) liefert. Ähnlich wie beim Lernen indizierter Familien
bilden diese Einschränkungen eine strenge Hierarchie. Wir zeigen, dass schwache
Monotonität Lerner nicht einschränkt. Wir beweisen, dass Behutsamkeit eine tat-
sächliche Einschränkung ist, indem wir drei schwächere Varianten untersuchen.
Obwohl unendliche Behutsamkeit die Lernfähigkeit beim Text-Lernen mit voll-
ständiger Information nicht verringert, zeigen wir, dass alle drei die Menge der
lernbaren Klassen in unserer Konfiguration verringern. Schließlich zeigen wir, dass
wir globale Konsistenz für Lerner annehmen können, die alle von uns untersuchten
monotonen Restriktionen erfüllen, mit Ausnahme der kombinierten schwachen
Monotonität.
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1 Introduction

Inductive inference, also called language learning in the limit, is a branch of recursion
theory and was introduced by Gold [Gol67]. The model was initially designed to
draw parallels to how humans learn natural languages. Nowadays we are more
interested into its implications for computability theory, machine learning and
binary classification [Sei21]. Inductive inference is about the learnability of classes
of recursively enumerable formal languages, i.e. subsets of the natural numbers. A
class of languages is learnable, if there is an algorithmic learner that can correctly
identify all of its languages. To identify a language, the learner has to recognize it
when given some hints about it. We study what classes of languages are learnable
when varying our requirements for admissible learners. For example, the content
of the given information depends on the presentation system. The two presentation
systems for language learning are text (Txt) and informant (Inf ), both of which have
been introduced by Gold [Gol67]. A text contains elements of the target language,
whereas an informant also gives counter-examples.

Convergence criteria define what it means to correctly identify a language. The
default convergence criterion is explanatory learning (Ex) and was introduced by
Gold [Gol67]. Ex requires that the learner converges to one output that correctly
explains the target language. A relaxed version of Ex is behaviorally correct (Bc)
identification [CS83]. Bc-learners are allowed to output different explanations as
long as they all explain the correct language. Out of the four combinations of text-
and informant-learning and explanatory and behaviorally correct identification,
Bc-learning from informants has been studied the least. In this thesis we collect
known theorems in this area and fill some of the gaps.

Fixing Inf and Bc, we compare the effect of learning restrictions on the inference
capabilities of learners. As they are given more and more information, learners
output a hypothesis sequence. Learning restrictions are predicates over the hypothe-
sis sequence and give a formal model for requiring learners to, for example, come
up with better generalizations over time, come up with better specializations over
time or just not contradict the input data. Learning restrictions can be grouped by
some properties. A learning restriction is called semantic, if it is only concerned
about a learner’s conjectured languages, not the labels used to encode those [Köt17].
Another property of learning restrictions is delayability, which requires that the
restriction is preserved when shifting or skipping hypotheses [KP16].
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Chapter 1 Introduction

1.1 Contributions

We arrange our results in four chapters: The first for general observations and the
other three for cautiousness, monotonicity and consistency.
The general observations are collected and combined theorems for groups of

restrictions.
• For delayable restrictions, it is sufficient that learners identify languages
by their canonical (a particularly well-formed) informant and that we can
assume them to be set-driven and total (see Theorem 3.2).

• For restrictions that are both delayable and semantic, we can additionally
limit the interaction with a learner to be iterative (see Theorem 3.4).

Using these findings, we show that the relaxation of Bc from Ex actually increases
inference capabilities of learners (see Theorem 3.6).

We reprove that cautiousness is a proper restriction by investigating three weaker
variants. We find that all three properly restrict learners in our setting (see The-
orem 4.1). This is in contrast to explanatory learning form text, where infinite
cautiousness does not weaken learners [KP16].

We provide an initial map for behaviorally correct learning from informants that
covers monotonic and strong monotonic restrictions and their dual and combined
counterparts (see Figure 1.1). We find that these restrictions form a strict hierarchy,
analogous to what has been observed in the adjacent setting of learning indexed
families by Lange and Zeugmann [LZ94]. This is due to the fact that most of their
separations can be transferred while the inclusions hold by definition. We observe
that weak monotonicity, like with Ex, does not pose a proper restriction on learners.
However, our approach is very different from constructions for similar theorems in
explanatory learning or learning indexed families. Additionally, our constructed
learner behaves globally consistent (see Theorem 5.1).

In Theorem 6.7, Theorem 6.9 and Theorem 6.11, we construct globally consistent
learners that preserve

• behaviorally correct identification,
• classic, dual and combined monotonicity,
• classic, dual and combined strong monotonicity and
• dual weak monotonicity.

Throughout the thesis, we employ established proof techniques such as separa-
tion using the Operator Recursion Theorem [Cas94] (see Theorem 3.6) and poisoning
(see Theorem 5.1).
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Related work Section 1.2

InfBc
T

WMon

Mon Mon𝑑
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Figure 1.1: Relations between monotonicity constraints in InfBc-learning. Black lines
indicate inclusions. Two learning restrictions are equivalent if and only if they lie in the
same gray box. For all displayed restrictions, learners can additionally be assumed to be
set-driven, total and globally consistent.

1.2 Related work

The most exhaustive work on learning from informants is by Aschenbach et
al. [AKS18], where a map for a lot of common learning restrictions in the Ex
setting is provided. Although they did not explicitly consider Bc, some of their
separations transfer directly into our setting. Interestingly, they found that only
Mon, Caut and SMon impose a proper restriction on learners. Furthermore, they
observed that learners may be assumed to be set-driven. This is in contrast to text
learning, where set-drivenness is a strong restriction. Their map does not include
dual monotonic learning or the weak and strong counterparts. For learning indexed
families, Lange et al. [LZK96] built a map for all monotonic restrictions in an InfEx
learning scenario. Monotonic learning has also been studied in other research, for
example by Doskoč and Kötzing [DK21a].
Concerning behaviorally correct learning, most findings are included in more

general theorems about delayable or semantic restrictions. As an example, Aschen-
bach et al. [AKS18] showed that totality is not a restrictive assumption for delayable
learning restrictions. Totality can be assumed for all semantic restrictions too, as
shown by Kötzing et al. [KSS17].

3



Chapter 1 Introduction

Since most of the learning restrictions were built with Ex-learning in mind, there
has been work to develop equivalent restrictions that are semantic. Kötzing et
al. [KSS17] introduced the concept of a semantic closure to better classify restrictions
and to find semantic equivalents of known restrictions. Following that, Doskoč and
Kötzing [DK21b] investigated a number of semantic restrictions.
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2 Preliminaries

We refer the reader to the textbook by Rogers Jr [Rog87] for a more thorough
introduction to computability theory. We denote the set of natural numbers by
N = {0, 1, 2, . . .} and the empty set by ∅. For some set 𝑆 , the cardinality of 𝑆 is
written as |𝑆 |. By ⊆, ⊇, ⊊ and ⊋ we denote the relations subset, superset, proper
subset and proper superset. If two sets𝐴, 𝐵 are incomparable, i.e. there are 𝑥 ∈ 𝐴\𝐵
and 𝑦 ∈ 𝐵 \𝐴, we write 𝐴#𝐵. By min(𝐴) and max(𝐴), we denote the minimum and
maximum of 𝐴. By sup(𝐴), we refer to the supremum of the set 𝐴, i.e. the smallest
upper bound of 𝐴. For convenience, we suppose that sup(∅) = −∞. For some set
𝑆 , we denote the set of all sequences over 𝑆 by 𝕊eq(𝑆). By ⊑ and ⊑p we denote the
relations subsequence and proper subsequence. The notation ∀∞𝑛 ∈ N means “for
all but finitely many 𝑛 ∈ N”.

If a partial function 𝑓 is undefined for some input 𝑥 , we write 𝑓 (𝑥)↑ or 𝑓 (𝑥) = ⊥
and say 𝑓 diverges on input 𝑥 . Otherwise, 𝑓 converges on 𝑥 , denoted by 𝑓 (𝑥)↓. If a
function 𝑓 converges on all inputs 𝑥 ∈ N, we say that 𝑓 is total. By𝔓, P, ℜ and R,
we denote the set of all functions, all computable functions, all total functions and
all total computable functions respectively. For some function 𝑓 and some number
𝑛 ∈ N, we denote the finite sequence of the first 𝑛 outputs of 𝑓 by 𝑓 [𝑛].

We assume a numbering system 𝜑 for the set of computable functions. For each
𝑓 ∈ P, there is 𝑒 ∈ N with 𝜑𝑒 = 𝑓 . By 𝜙 , we denote a Blum complexity measure
for 𝜑 [Blu67]. For example, for 𝑒, 𝑥 ∈ N, 𝜙𝑒 (𝑥) could equal the number of steps the
program coded by 𝑒 takes on input 𝑥 . By dom(𝑓 ) and range(𝑓 ), we refer to the
domain and range of a function 𝑓 . A language is a set of natural numbers. By E,
we denote the set of all recursively enumerable languages, i.e. all languages 𝐿 ⊆ N
for which there exists some 𝑓 ∈ P with 𝐿 = dom(𝑓 ). To describe languages using
natural numbers we use the𝑊 -indices system as our hypothesis space. For all
𝑒 ∈ N, we define𝑊𝑒 = dom(𝜑𝑒), 𝑒 is called a label for the language𝑊𝑒 . Furthermore,
for 𝑒, 𝑡 ∈ N, we define𝑊 𝑡

𝑒 = {𝑥 ∈ N | 𝑥 ≤ 𝑡 ∧ 𝜙𝑒 (𝑥) ≤ 𝑡}. Notably,𝑊 𝑡
𝑒 is finite

and its construction is total and computable. We define two numbers 𝑎, 𝑏 ∈ N to
be semantically equivalent, denoted by 𝑎 ≡𝑊 𝑏, if and only if𝑊𝑎 = 𝑊𝑏 . We use
established theorems from computability theory, such as s-m-n, Kleene’s Recursion
Theorem (KRT) [Kle52] and the Operator Recursion Theorem (ORT) [Cas94].
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Chapter 2 Preliminaries

2.1 Informants

Before we define what an informant is, we fix an interpretation for its output and
introduce some useful vocabulary. For any set 𝐷 ⊆ N × {0, 1} we define positive
information, negative information and outline of 𝐷 as

pos(𝐷) = {𝑥 ∈ N | (𝑥, 1) ∈ 𝐷},
neg(𝐷) = {𝑥 ∈ N | (𝑥, 0) ∈ 𝐷},

outline(𝐷) = pos(𝐷) ∪ neg(𝐷).

For any finite or infinite sequence 𝜎 , we define

content(𝜎) = range(𝜎).

We define pos(𝜎), neg(𝜎) and outline(𝜎) analogously to the definition on sets.
A function 𝐼 :N→ N × {0, 1} is an informant for a language 𝐿 ⊆ N if pos(𝐼 ) = 𝐿

and neg(𝐼 ) = N \ 𝐿. By Inf , we denote the set of all informants and for some
language 𝐿 we define Inf (𝐿) to be the set of informants for 𝐿. An informant 𝐼 is
canonical, if and only if for all 𝑥 ∈ N, we have 𝐼 (𝑥) = (𝑥, 0) or 𝐼 (𝑥) = (𝑥, 1). For
all languages 𝐿, we define 𝐼𝐿 to be the canonical informant for 𝐿. Furthermore, we
define Infcan to be set of all canonical informants.

2.2 Interaction operators

According to an interaction operator, the output of an informant 𝐼 may be presented
to a learner ℎ in different formats. For a learner ℎ ∈ 𝔓 and informant 𝐼 ∈ Inf we
define the interaction operators G (Gold / full-information, [Gol67]), Psd (partially
set-driven, [Sch84]), Sd (set-driven, [WC80]) and It (iterative, [WC80]) that generate
the hypothesis sequence of a learner ℎ such that for all 𝑖 ∈ N we have

G(ℎ, 𝐼 ) (𝑖) = ℎ(𝐼 [𝑖]),
Psd(ℎ, 𝐼 ) (𝑖) = ℎ(content(𝐼 [𝑖]), 𝑖),
Sd(ℎ, 𝐼 ) (𝑖) = ℎ(content(𝐼 [𝑖])),
It(ℎ, 𝐼 ) (𝑖) = ℎ(It(ℎ, 𝐼 ) (𝑖 − 1), 𝐼 [𝑖]).

Furthermore, we define the interaction operator CflIt (confluently iterative, [KS16]),
which is equivalent to It, but also requires that the order and quantity in which the
content is presented does not matter.

6



Learning restrictions Section 2.3

It is immediate that some operators pass strictly more information to the learner.
Case and Kötzing [CK10] manifest this notion by introducing a partial ordering of
the interaction operators. For two interaction operators 𝛽, 𝛽′ we define the relation
≼ such that

𝛽 ≼ 𝛽′ ⇐⇒ [∀ℎ ∈ 𝔓∃ℎ′ ∈ 𝔓∀𝐼 ∈ Inf : 𝛽 (ℎ, 𝐼 ) = 𝛽′(ℎ′, 𝐼 )] .

Intuitively, 𝛽-learners can be translated into 𝛽′-learners. A slightly weakened
version of this relation has been introduced by Kötzing et al. [KSS17] that only
requires semantic equivalence of the hypothesis sequences. For two interaction
operators 𝛽, 𝛽′ we define the relation ≼sem such that

𝛽 ≼sem 𝛽′ ⇐⇒ [∀ℎ ∈ 𝔓∃ℎ′ ∈ 𝔓∀𝐼 ∈ Inf, 𝑛 ∈ N: 𝛽 (ℎ, 𝐼 ) (𝑛) ≡𝑊 𝛽′(ℎ′, 𝐼 ) (𝑛)] .

Intuitively, 𝛽-learners can be translated into semantically equivalent 𝛽′-learners.
Additionally, if the relation goes both ways, we say 𝛽 �sem 𝛽′.

While CflIt is standing out of line in our definition above, it is of great use for
generalizing over interaction operators. This is because it is a lower bound for all
other interaction operators in the ≼ relation. We have

CflIt ≼ Sd ≼ Psd ≼ G,
CflIt ≼ It ≼ G,
It �sem G,

CflIt �sem Sd.

2.3 Learning restrictions
Now that we know how hypothesis sequences are generated, we define some re-
strictions on them. Our restrictions are defined as predicates over the hypothesis
sequence and the informant that generated that sequence. When using the restric-
tions, we view them as predicates or sets containing all the elements satisfying the
predicate interchangeably. Let T be the predicate that is always true. To start, we
define two convergence criteria.

For a hypothesis sequence 𝑝 ∈ 𝔓 generated from an informant 𝐼 ∈ Inf , we define
the convergence criteria explanatory and behaviorally correct such that

Ex(𝑝, 𝐼 ) ⇐⇒ [∃𝑞∀∞𝑛:𝑝 (𝑛) = 𝑞 ∧𝑊𝑞 = pos(𝐼 )],
Bc(𝑝, 𝐼 ) ⇐⇒ [∀∞𝑛:𝑊𝑝 (𝑛) = pos(𝐼 )] .

7



Chapter 2 Preliminaries

Of course, Ex ⊆ Bc. Next, we define the concept of consistency as first intro-
duced by Angluin [Ang80]. Consistency of a hypothesis 𝑒 ∈ N with information
𝐷 ⊆ N × {0, 1} is defined such that

Cons(𝑒, 𝐷) ⇐⇒ [pos(𝐷) ⊆𝑊𝑒 ∧ neg(𝐷) ∩𝑊𝑒 = ∅] .

We define this analogously for languages described by their label 𝑒 and for other
information formats, such as sequences. Furthermore, we define consistency of a
hypothesis sequence 𝑝 ∈ 𝔓 with an informant 𝐼 ∈ Inf such that

Cons(𝑝, 𝐼 ) ⇐⇒ [∀𝑛 ∈ N:Cons(𝑝 (𝑛), 𝐼 [𝑛])] .

Monotonicity restrictions are organized into three groups: strong monotonicity,
monotonicity and weak monotonicity. In each group, we have one variant that
requires better generalizations, one that requires better specializations and one
that is the conjunction of the two. The generalization variants were all introduced
first. The dual (and combined) variants were all introduced by Lange et al. [LZK96].
Strong monotonicity [Jan91] is the most strict of the there groups. For all hypothesis
sequences 𝑝:N→ N and informants 𝐼 ∈ Inf , we define the restrictions strongly
monotone, dual strongly monotone and combined strongly monotone, such that

SMon(𝑝, 𝐼 ) ⇐⇒ [∀𝑠, 𝑡 : 𝑠 ≤ 𝑡 ⇒𝑊𝑝 (𝑠) ⊆𝑊𝑝 (𝑡)],
SMon𝑑 (𝑝, 𝐼 ) ⇐⇒ [∀𝑠, 𝑡 : 𝑠 ≤ 𝑡 ⇒𝑊𝑝 (𝑠) ⊇𝑊𝑝 (𝑡)],
SMon&(𝑝, 𝐼 ) ⇐⇒ [SMon(𝑝, 𝐼 ) ∧ SMon𝑑 (𝑝, 𝐼 )] .

Shortly after that, Wiehagen [Wie90] introduced the concept of (what we today
call) monotonicity, which requires this behavior only on correct elements. For all
hypothesis sequences 𝑝 :N→ N and informants 𝐼 ∈ Inf , we define the restrictions
monotone, dual monotone and combined monotone, such that

Mon(𝑝, 𝐼 ) ⇐⇒ [∀𝑠, 𝑡 : 𝑠 ≤ 𝑡 ⇒𝑊𝑝 (𝑠) ∩ pos(𝐼 ) ⊆𝑊𝑝 (𝑡) ∩ pos(𝐼 )],
Mon𝑑 (𝑝, 𝐼 ) ⇐⇒ [∀𝑠, 𝑡 : 𝑠 ≤ 𝑡 ⇒𝑊𝑝 (𝑠) ∩ neg(𝐼 ) ⊆𝑊𝑝 (𝑡) ∩ neg(𝐼 )],
Mon&(𝑝, 𝐼 ) ⇐⇒ [Mon(𝑝, 𝐼 ) ∧Mon𝑑 (𝑝, 𝐼 )] .

Finally, Jantke [Jan91] also introduced weak monotonicity where better gener-
alizations are only required as long as new information does not contradict old
hypotheses. For all hypothesis sequences 𝑝:N → N and informants 𝐼 ∈ Inf , we
define the restrictions weakly monotone, dual weakly monotone and combined

8



Learning restrictions Section 2.3

weakly monotone, such that

WMon(𝑝, 𝐼 ) ⇐⇒ [∀𝑠, 𝑡 : 𝑠 ≤ 𝑡 ∧ Cons(𝑝 (𝑠), 𝐼 [𝑡]) ⇒𝑊𝑝 (𝑠) ⊆𝑊𝑝 (𝑡)],
WMon𝑑 (𝑝, 𝐼 ) ⇐⇒ [∀𝑠, 𝑡 : 𝑠 ≤ 𝑡 ∧ Cons(𝑝 (𝑠), 𝐼 [𝑡]) ⇒𝑊𝑝 (𝑠) ⊇𝑊𝑝 (𝑡)],
WMon&(𝑝, 𝐼 ) ⇐⇒ [WMon(𝑝, 𝐼 ) ∧WMon𝑑 (𝑝, 𝐼 )] .

Note that, SMon ⊆ Mon ∩ WMon. This holds analogously for SMon𝑑 and
SMon&. Furthermore, combined weak monotonicity is equivalent to semantic
conservativeness [KSS17].
The restriction of cautiousness was introduced by Osherson et al. [OSW82].

For a learner to be cautious, we require it to never conjecture a proper subset of
a previous hypothesis. For explanatory learning, this poses a proper restriction
as shown for example by Kötzing and Palenta [KP16] for text-learning and by
Aschenbach et al. [AKS18] for informant-learning. To investigate the restriction
of cautiousness more closely, Kötzing and Palenta [KP16] introduced three new
variants of cautiousness. For all hypothesis sequences 𝑝:N→ N and informants
𝐼 ∈ Inf , we define the restrictions cautious, target cautious, finitely cautious and
infinitely cautious, such that

Caut(𝑝, 𝐼 ) ⇐⇒ [∀𝑠 < 𝑡 :¬(𝑊𝑝 (𝑠) ⊋𝑊𝑝 (𝑡))],
CautTar(𝑝, 𝐼 ) ⇐⇒ [∀𝑠:¬(𝑊𝑝 (𝑠) ⊋ pos(𝐼 ))],
CautFin(𝑝, 𝐼 ) ⇐⇒ [∀𝑠 < 𝑡 :𝑊𝑝 (𝑠) ⊋𝑊𝑝 (𝑡) ⇒𝑊𝑝 (𝑡) is infinite],
Caut∞(𝑝, 𝐼 ) ⇐⇒ [∀𝑠 < 𝑡 :𝑊𝑝 (𝑠) ⊋𝑊𝑝 (𝑡) ⇒𝑊𝑝 (𝑡) is finite] .

Note that, Caut = CautFin ∩ Caut∞ and that SMon ⊆ Caut ⊆ CautTar.
Learning restrictions can be combined. For example, to require both consistency

and behavioral correctness, we use the restriction ConsBc. We can require learning
restrictions locally or globally. A local restriction only has to be fulfilled when
an informant for a target language is presented, global restriction must hold for
any informant. By 𝛥, we denote the set of all learning restrictions (excluding
convergence criteria) defined above, i.e.

𝛥 =

{
Cons, SMon, SMon𝑑 , SMon&,Mon,Mon𝑑 ,Mon&,
WMon,WMon𝑑 ,WMon&,Caut,CautTar,CautFin,Caut∞

}
.

In total, a learning setting consists of five elements: The set of allowed learners
𝐶 , the set of inputs used 𝑃 , the interaction operator 𝛽 , the global restriction 𝛼 and
the local restriction 𝛿 . A setting 𝑆 is thus defined as 𝑆 = (𝛼, 𝑃,𝐶, 𝛽, 𝛿). We refer to
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Chapter 2 Preliminaries

it as 𝐶𝜏 (𝛼)𝑃𝛽𝛿 , for example R𝜏 (Cons)InfGBc. If 𝐶 = P or 𝛼 = T, we omit writing
the respective part.
Given some learning setting 𝑆 = (𝛼, 𝑃,𝐶, 𝛽, 𝛿), we say that a learner ℎ 𝑆-learns

the empty set, if ℎ ∉ 𝐶 or if there is some 𝐼 ∈ 𝑃 for which 𝛼 (𝛽 (ℎ, 𝐼 ), 𝐼 ) is false.
Otherwise, it learns the set of languages

𝑆 (ℎ) = {𝐿 ∈ E | ∀𝐼 ∈ 𝑃 (𝐿):𝛿 (𝛽 (ℎ, 𝐼 ), 𝐼 )}.

By [𝑆], we denote the set of all 𝑆-learnable sets of languages (by any learner).

2.4 Properties of learning restrictions
First, we introduce the concept of delayability [KP16]. Let𝔖 denote the set of all
non-decreasing, unbounded functions N→ N. A learning restriction 𝛿 is called
delayable, if and only if for all informants 𝐼 , 𝐼 ′ ∈ Inf with content(𝐼 ) = content(𝐼 ′),
hypothesis sequences 𝑝 and functions 𝑠 ∈ 𝔖 the following implication holds. If
we have (𝑝, 𝐼 ) ∈ 𝛿 and for all 𝑛 ∈ N that content(𝐼 [𝑠 (𝑛)]) ⊆ content(𝐼 ′[𝑛]), then
(𝑝 ◦ 𝑠, 𝐼 ′) ∈ 𝛿 . Intuitively, a learning restriction is delayable, if we can skip or
duplicate hypotheses in the hypothesis sequence, but the restriction still holds. The
second grouping we investigate is the one of semantic restrictions. The concept was
first defined in Kötzing [Köt17], we follow the definitions by Kötzing et al. [KSS17]
though. For all 𝑝 ∈ 𝔓, we fix the set

Sem(𝑝) = {𝑝′ ∈ 𝔓 | ∀𝑖: (𝑝 (𝑖)↓ ⇔ 𝑝′(𝑖)↓) ∧ (𝑝 (𝑖)↓ ⇒ 𝑝 (𝑖) ≡𝑊 𝑝′(𝑖))}.

A learning restriction 𝛿 is said to be semantic, if for any sequence 𝑝 and informant
𝐼 , we can conclude from (𝑝, 𝐼 ) ∈ 𝛿 and 𝑝′ ∈ Sem(𝑝) that (𝑝′, 𝐼 ) ∈ 𝛿 . Intuitively,
a semantic restriction is indifferent about semantically equivalent hypothesis se-
quences. Out of all restrictions defined above, only Cons is not delayable and only
Ex is not semantic. Note that the combination of delayable restrictions is again
delayable and the combination of semantic restrictions is again semantic.
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3 General observations

In this chapter, we collect some theorems for delayable and for semantic restrictions.
In particular, we find that learning power is not dependent on the interaction opera-
tor (see Theorem 3.4). At the end of the chapter, we use our findings about delayable
restrictions to motivate the case for behaviorally correct learning by showing that
it is strictly more powerful than explanatory learning (see Theorem 3.6).

3.1 Delayable restrictions
We first look at delayable restrictions and observe that correct identification from
canonical informants suffices and that we can assume learners to be set-driven and
total. To do so, we combine two theorems by Aschenbach et al. [AKS18]. As our
new theorem builds on one of the proofs, we also include it here.

▶ Theorem 3.1 ([AKS18]). For any delayable 𝛿 , we have [InfcanG𝛿] = [InfSd𝛿].
◀

Proof. By definition, [InfcanG𝛿] ⊇ [InfSd𝛿]. Let ℎ be a InfcanG𝛿-learner and
L = InfcanG𝛿 (ℎ). We construct a learner 𝑔 that builds the longest possible prefix
of a canonical informant from the information it has. It then passes this prefix to ℎ.
Recall that for any language 𝐿, 𝐼𝐿 is the canonical informant for 𝐿.
For any finite set 𝐷 ⊆ N × {0, 1}, we define the length of the prefix as

ℓ (𝐷) = max{𝑛 ∈ N | ∀𝑖 < 𝑛: 𝑖 ∈ outline(𝐷)}. Next, the prefix itself is defined
as 𝑐 (𝐷) = 𝐼pos(𝐷) [ℓ (𝐷)]. Finally, our prediction is 𝑔(𝐷) = ℎ(𝑐 (𝐷)).

Let 𝐿 ∈ L and let 𝐼 ∈ Inf (𝐿) be any informant for 𝐿. In order to apply delayability
we need a simulating function 𝑠 ∈ 𝔖. We pick 𝑠:𝑛 ↦→ ℓ (content(𝐼 [𝑛])). By
definition of ℓ , 𝑠 is non-decreasing. Since 𝐼 is an informant, 𝑠 must also be unbounded.
Therefore, 𝑠 ∈ 𝔖.

Let 𝑛 ∈ N. By definition of 𝑐 and 𝑠 , we have 𝐼𝐿 [𝑠 (𝑛)] = 𝐼𝐿 [ℓ (content(𝐼 [𝑛]))] =
𝑐 (content(𝐼 [𝑛])). Thus, content(𝐼𝐿 [𝑠 (𝑛)]) ⊆ content(𝐼 [𝑛]) and

𝑔(content(𝐼 [𝑛])) = ℎ(𝑐 (content(𝐼 [𝑛]))) = ℎ(𝐼𝐿 [𝑠 (𝑛)]).

Therefore, Sd(𝑔, 𝐼 ) = G(ℎ, 𝐼𝐿) ◦ 𝑠 . As 𝛿 is delayable and (G(ℎ, 𝐼𝐿), 𝐼𝐿) ∈ 𝛿 , we can
conclude that (Sd(𝑔, 𝐼 ), 𝐼 ) = (G(ℎ, 𝐼𝐿) ◦ 𝑠, 𝐼 ) ∈ 𝛿 . Hence, L is InfG𝛿-learnable. ■
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▶ Theorem 3.2. For any delayable 𝛿 , we have [InfcanG𝛿] = [RInfSd𝛿]. ◀

Proof. Aschenbach et al. [AKS18] showed that [RInfG𝛿] = [InfG𝛿]. By Theo-
rem 3.1, we have [InfcanG𝛿] = [InfG𝛿] and thus [InfcanG𝛿] = [RInfcanG𝛿]. This
means, that we can assume the G-learner picked in the proof of Theorem 3.1 to be
total, making the constructed Sd-learner total as well. ■

3.2 Semantic restrictions
With delayable restrictions, we get equivalent learning capabilities for interaction
operators until Sd. To include iterative learners, we need to look at semantic re-
strictions. Kötzing et al. [KSS17] showed that G �sem It and Sd �sem CflIt, allowing
us to fill the gap. Firstly, they showed that for semantic 𝛿 and for any interaction
operator 𝛽 , we have [RTxt𝛽𝛿] = [Txt𝛽𝛿]. The same proof they employed may be
used to show that this also holds for informants.

▶ Theorem 3.3. For any interaction operator 𝛽 with CflIt ≼ 𝛽 ≼ G and semantic
restriction 𝛿 holds [RInf𝛽𝛿] = [Inf𝛽𝛿]. ◀

We can combine this with our observations for delayable learning restrictions,
to get the final result.

▶ Theorem 3.4. For all learning restrictions 𝛿 that are delayable and semantic, for
all interaction operators 𝛽 withCflIt ≼ 𝛽 ≼ Gwe have [RInf𝛽𝛿] = [InfcanG𝛿]. ◀

Proof. One inclusion is trivial. Since 𝛿 is delayable, Theorem 3.1 gives us that
[InfcanG𝛿] = [InfSd𝛿]. We can use that 𝛿 is semantic and CflIt �sem Sd to get
[InfSd𝛿] = [InfCflIt𝛿]. By CflIt ≼ 𝛽 we get [InfCflIt𝛿] ⊆ [Inf𝛽𝛿]. Finally,
Theorem 3.3 gives us [Inf𝛽𝛿] = [RInf𝛽𝛿]. ■

▶ Corollary 3.5. For all CflIt ≼ 𝛽 ≼ G and all learning restrictions 𝛿 ∈ 𝛥 \ {Cons}
we have [Inf𝛽𝛿Bc] = [InfcanG𝛿Bc]. ◀

3.3 Separation from explanatory learning
Kötzing and Schirneck [KS16] observed that [TxtSdSMonBc] \ [TxtGEx] ≠ ∅. We
modify this proof to work on informants, giving us a non-constructive proof that
is more direct than the one by Aschenbach et al. [AKS18].

▶ Theorem 3.6 ([AKS18]). We have [InfSdSMonBc] \ [InfGEx] ≠ ∅. ◀
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Separation from explanatory learning Section 3.3

Proof. We consider the following Sd-learnerℎ, whichmaps a finite set𝐷 ⊆ N×{0, 1}
to the hypothesis

𝑊ℎ(𝐷) =

{
∅, if pos(𝐷) = ∅,
𝑊max(pos(𝐷)), otherwise.

Let L = InfSdSMonBc(ℎ). By Theorem 3.2 we have [InfGEx] = [RInfSdEx].
By way of contradiction, assume that L ∈ [RInfSdEx] as witnessed by some
learner 𝑔 ∈ R. Using ORT, we get a computable sequence (𝐷𝑖)𝑖∈N of sets as well
as a total recursive function 𝑝 ∈ R strongly monotone satisfying for all finite
𝐷 ⊆ N × {0, 1} and 𝑏 ∈ {0, 1}, 𝑖, 𝑡 ∈ N 1

𝑝 (𝐷,𝑏) > sup(outline(𝐷)),
𝑊𝑝 (𝐷,𝑏) = {𝑝 (𝐷,𝑏)} ∪

⋃
𝑗∈N;𝐷 𝑗↓

pos(𝐷 𝑗 ),

succ(𝐷,𝑏, 𝑡) = content
(
𝐼pos(𝐷)∪{𝑝 (𝐷,𝑏)} [𝑝 (𝐷,𝑏) + 𝑡]

)
,

𝐷0 = ∅,

𝐷𝑖+1 =

{
succ(𝐷𝑖, 𝑏, 𝑡), if ∃𝑏 ∈ {0, 1}, 𝑡 ∈ N:𝑔(𝐷𝑖) ≠ 𝑔(succ(𝐷𝑖, 0, 𝑡)),
⊥, otherwise.

In every iteration of the (𝐷𝑖)𝑖∈N sequence, the canonical informant describes a
finite language that is one element larger than in the previous iteration. By our
first restriction, the previous set did not include any information about the newly
added element and thus, the new set does not contradict the previous one. The 𝑡
parameter modifies how much additional negative information is included.
As each𝐷𝑖 matches the content of a prefix of a canonical informant,𝐷𝑖 is included

in the input sequence for an Sd-learner that would result from a canonical informant
for a superset of 𝐷𝑖 . Consider the language 𝐿 =

⋃
𝑖∈N;𝐷𝑖↓ pos(𝐷𝑖).

Case 1: 𝑳 is infinite. We have for any 𝑝 (𝐷,𝑏) ∈ 𝐿 that

𝑊𝑝 (𝐷,𝑏) = {𝑝 (𝐷,𝑏)} ∪
⋃
𝑖∈N

pos(𝐷𝑖) = {𝑝 (𝐷,𝑏)} ∪ 𝐿 = 𝐿.

1 For convenience, we suppose that sup(∅) = −∞.

13



Chapter 3 General observations

As ℎ only outputs numbers that are contained in 𝐿, 𝐿 ∈ L. On the other hand, 𝑔
cannot learn 𝐿 from the canonical informant for 𝐿 as it makes infinitely many mind
changes by the construction of (𝐷𝑖)𝑖∈N.

Case 2: 𝑳 is finite. That means, from one point on the sets 𝐷𝑖 are undefined. Let
𝐷𝑘 be the last set defined. As we have for 𝑏 ∈ {0, 1} that

sup(𝐿) = sup(pos(𝐷𝑘)) ≤ sup(outline(𝐷𝑘)) < 𝑝 (𝐷𝑘 , 𝑏),

we know 𝑝 (𝐷𝑘 , 𝑏) ∉ 𝐿. Consider the following two proper supersets of 𝐿:

𝐿0 = {𝑝 (𝐷𝑘 , 0)} ∪ 𝐿,

𝐿1 = {𝑝 (𝐷𝑘 , 1)} ∪ 𝐿.

For 𝑏 ∈ {0, 1}, let 𝐼 ∈ Inf (𝐿𝑏) be an informant for 𝐿𝑏 . When 𝐼 shows its first
positive information, ℎ conjectures the set 𝐿 until the positive information about
max(𝐿𝑏) = 𝑝 (𝐷𝑘 , 𝑏) is presented. Now ℎ switches to its final and correct guess
𝑊𝑝 (𝐷𝑘 ,𝑏) = 𝐿𝑏 . This sequence of hypotheses fulfills SMon, so 𝐿0, 𝐿1 ∈ L.

From the definition of the sequence (𝐷𝑖)𝑖∈N, we know that 𝑔 converges on the
canonical informants for 𝐿0 and 𝐿1 to the same hypothesis, namely 𝑔(𝐷𝑘). Hence,
𝑔 cannot learn both languages 𝐿0 and 𝐿1 as they are different, a contradiction. ■
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4 Cautiousness

In this section, we observe that, for learning from informants, requiring learners to
be cautious poses a proper restriction. In particular, we find that all three reduced
variants of cautiousness properly restrict learners. This is in contrast to what has
been found for text-learning by Kötzing and Palenta [KP16] where Caut∞ does not
lessen learning power.

▶ Theorem 4.1. We have [InfGMonBc] \ [InfGCautTarBc] ≠ ∅ and
[InfGMonBc] \ [InfGCaut∞Bc] ≠ ∅. ◀

Proof. This proof is analogous to the separation of Caut from Mon by Aschenbach
et al. [AKS18]. Consider L = {N \ 𝐷 | 𝐷 ⊆ N and 𝐷 is finite}. It is easy to
see that L is InfGMonBc-learnable by the learner ℎ that maps a finite sequence
𝜎 ∈ 𝕊eq(N × {0, 1}) to the hypothesis𝑊ℎ(𝜎) = N \ neg(𝜎).

Let 𝑔 be a InfGBc-learner for L. As N ∈ L, there is 𝑛0 such that for all 𝑛 ≥ 𝑛0
we have𝑊𝑔(𝐼N [𝑛0]) = N. Let 𝐿 = N \ {𝑛0 + 1}. Then, 𝐼𝐿 [𝑛0] = 𝐼N [𝑛0] and thus
𝑊𝑔(𝐼𝐿 [𝑛0]) = N ⊋ 𝐿. As 𝐿 = pos(𝐼𝐿) and as 𝐿 is infinite, 𝑔 cannot learn L while
preserving CautTar or Caut∞. ■

▶ Corollary 4.2. We have [InfGMonBc] \ [InfGCautBc] ≠ ∅. ◀

▶ Theorem 4.3. We have [InfGBc] \ [InfGCautFinBc] ≠ ∅. ◀

Proof. Consider L = {N} ∪ {𝐷 ⊆ N | 𝐷 is finite}. L is InfGBc-learnable by the
leaner ℎ that maps a finite sequence 𝜎 ∈ 𝕊eq(N × {0, 1}) to the hypothesis

𝑊ℎ(𝜎) =

{
N, if neg(𝜎) = ∅,
pos(𝜎), otherwise.

The proof that L ∉ [InfGCautFinBc] is analogous to Theorem 4.1, with the modifi-
cation that we return to the finite set of all the positive information shown so far
after the learner conjectures N. ■
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5 Monotonicity

In this section, we investigate the nine variants of monotonicity. We start by finding
that weak monotonicity does not properly restrict learners. This is in line with what
has been found for explanatory learning. For example, Aschenbach et al. [AKS18]
showed that [InfGEx] = [InfGWMonEx]. In Theorem 5.1 we present a new
construction for a weakly monotonic learner that is also globally consistent.

Afterwards, we compare the classic and dual versions of monotonicity and strong
monotonicity. We find that in both cases, the sets of learnable language classes are
incomparable (see Theorem 5.4 and Theorem 5.7). Then, we separate the classic
versions from one another (see Corollary 5.8 and Corollary 5.12) and show that
strong monotonicity and dual strong monotonicity imply combined monotonicity
(see Theorem 5.11). For a map of all relations, see Figure 1.1.

▶ Theorem 5.1. We have [InfGBc] = [𝜏 (Cons)InfGWMonBc]. ◀

Proof. One inclusion holds by definition. For the other, let ℎ be a G-learner and
L ⊆ InfGBc(ℎ). By Theorem 3.2, we can assume that ℎ is total. Consider the
learner 𝑔 that maps a finite sequence 𝜎 ∈ 𝕊eq(N × {0, 1}) to the hypothesis

𝐸 (𝜎) = {ℎ(𝜎)} ∪ {𝑔(𝜏) | 𝜏 ⊑p 𝜎},

𝑊𝑔(𝜎) = pos(𝜎) ∪
⋃

𝑒∈𝐸 (𝜎)

⋃
𝑡∈N

{
𝑊 𝑡

𝑒 , if Cons(𝑊 𝑡
𝑒 , 𝜎),

∅, otherwise.

Intuitively, we use ℎ’s hypothesis and, in order to remain weakly monotonic, collect
all our previous hypotheses which are consistent with our current information.
Clearly, 𝑔 is globally consistent. Let 𝐿 ∈ L and 𝐼 ∈ Inf (𝐿). To show weak

monotonicity, let 𝑖, 𝑗 ∈ N with 𝑖 < 𝑗 and suppose Cons(𝑔(𝐼 [𝑖]), 𝐼 [ 𝑗]). Then, for all
but finitely many 𝑡 ∈ N, we have Cons(𝑊 𝑡

𝑔(𝐼 [𝑖]), 𝐼 [ 𝑗]) and, as 𝑔(𝐼 [𝑖]) ∈ 𝐸 (𝐼 [ 𝑗]), we
have𝑊𝑔(𝐼 [𝑖]) ⊆𝑊𝑔(𝐼 [ 𝑗]) .
Finally, we show that 𝑔 Bc-identifies 𝐿. Let 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0

we have𝑊ℎ(𝐼 [𝑛]) = 𝐿. As we include ℎ’s hypotheses, we have for all 𝑛 ≥ 𝑛0 that
𝐿 ⊆𝑊𝑔(𝐼 [𝑛]) . It remains to show that the possibly infinitely many wrong elements
included in𝑊𝑔(𝐼 [𝑛0]) are sorted out at some point. To do so, we first observe that
there is a point 𝑛2 at which all wrong hypotheses among the first 𝑛0 hypotheses
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are sorted out. Then, assuming the hypothesis is still incorrect, we show that when
new negative information is shown, there is some wrong element that is included
in all remaining wrong hypotheses. As the enumeration of the wrong previous
hypotheses stops once this element is found, only finitely many wrong elements
can remain. Those are removed once they appear in the negative information of 𝐼 .
We proceed with the formal proof.

Since we have, for all 𝑛 ≥ 𝑛0, that𝑊ℎ(𝐼 [𝑛]) = 𝐿, no new wrong elements are intro-
duced after the first𝑛0 hypotheses. Thus for all𝑛 ≥ 𝑛0 we have𝑊𝑔(𝐼 [𝑛]) ⊇ 𝑊𝑔(𝐼 [𝑛+1]) .
Firstly, let 𝑛1 ≥ 𝑛0 be such that for all 𝑛 < 𝑛0 with𝑊𝑔(𝐼 [𝑛]) ⊈ 𝐿 there is an element
contradicting the consistency of 𝑔(𝐼 [𝑛]) in neg(𝐼 [𝑛1]). As enumeration of these
hypotheses stops once the wrong elements are witnessed, only finitely many wrong
elements from guesses before 𝑛0 remain in hypotheses𝑊𝑔(𝐼 [𝑛]) for 𝑛 ≥ 𝑛1. Let
𝑛2 be such that all of those are contained in neg(𝐼 [𝑛2]). If𝑊𝑔(𝐼 [𝑛2]) = 𝐿, we are
done. Otherwise, it remains to show that the wrong elements from𝑊𝑔(𝐼 [𝑛]) for
𝑛1 ≤ 𝑛 < 𝑛2 that are still included in𝑊𝑔(𝐼 [𝑛2]) are eventually removed.

Since 𝐼 presents each element from 𝐿 at some point, there is 𝑛3 > 𝑛2 with
𝑊𝑔(𝐼 [𝑛3−1]) ⊋ 𝑊𝑔(𝐼 [𝑛3]) . As 𝑔 is weakly monotonic, this implies that
𝑔(𝐼 [𝑛3 − 1]) is not consistent with 𝐼 [𝑛3]. Since pos(𝐼 [𝑛3]) ⊆ 𝐿 ⊆ 𝑊𝑔(𝐼 [𝑛3−1]) ,
there is 𝑥 ∈ neg(𝐼 [𝑛3]) ∩𝑊𝑔(𝐼 [𝑛3−1]) . Since we have for all 𝑛 with 𝑛0 ≤ 𝑛 that
𝑊𝑔(𝐼 [𝑛]) ⊇𝑊𝑔(𝐼 [𝑛+1]) , we have for all 𝑛 with 𝑛0 ≤ 𝑛 < 𝑛3 that 𝑥 ∈𝑊𝑔(𝐼 [𝑛]) . Let

𝑡𝑥 = max{min{𝑡 ∈ N | 𝑥 ∈𝑊 𝑡
𝑔(𝐼 [𝑛])} | 𝑛0 ≤ 𝑛 < 𝑛3}.

Then, for 𝑡 ≥ 𝑡𝑥 and 𝜏 ⊑p 𝐼 [𝑛3], all 𝑊 𝑡
𝑔(𝜏) are inconsistent with 𝐼 [𝑛3]. Hence,

𝑊𝑔(𝐼 [𝑛3]) consists of only𝑊ℎ(𝐼 [𝑛3]) = 𝐿 and at most 𝑡𝑥 many wrong elements from
previous guesses. Let 𝑛4 > 𝑛3 such that all of those wrong elements are included in
neg(𝐼 [𝑛4]), then for all 𝑛 ≥ 𝑛4 we have𝑊𝑔(𝐼 [𝑛]) = 𝐿. Therefore, 𝑔 identifies 𝐿 and
Bc-learns L. ■

5.1 Separation of classic and dual variants
In this section, we show that for both monotonicity and strong monotonicity, the
set of learnable languages classes by the classic and dual variants are incomparable.
This is a key observation, as it suffices to conclude the complete map. All separations
presented in this section are topological and transferred from analogous proofs by
Lange and Zeugmann [LZ94] where they occurred in the setting of explanatory
learning of indexed families.

▶ Lemma 5.2. We have [InfGSMonBc] \ [InfGSMon𝑑Bc] ≠ ∅. ◀
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Proof. Consider L = {𝐷 ⊆ N | 𝐷 finite}. The set can be learned by the strong
monotonic learner ℎ = pos. It cannot be learned by a dual strong monotonic learner.
Intuitively, to infer a language 𝐿 ∈ L, a learner has to conjecture a label for 𝐿 at
some point. When making this guess, there is some element 𝑥 ∉ 𝐿 for which no
information has been given so far. Under dual strong monotonicity, the learner
cannot include 𝑥 in its later hypotheses. Thus, it cannot learn 𝐿 ∪ {𝑥} ∈ L. ■

▶ Lemma 5.3. We have [InfGSMon𝑑Bc] \ [InfGSMonBc] ≠ ∅. ◀

Proof. Consider L = {N}∪ {{0, 1, . . . , 𝑛} | 𝑛 ∈ N}. The learner ℎ, that maps a finite
sequence 𝜎 ∈ 𝕊eq(N × {0, 1}) to the hypothesis

𝑊ℎ(𝜎) =

{
N, if neg(𝜎) = ∅,
{0, 1, . . . ,min(neg(𝜎)) − 1}, otherwise

learns L dual strong monotonically.
L cannot be learned strong monotonically though. Suppose there is a learner

𝑔 that InfSMonBc-learns L. Let 𝑛 ∈ N be such that𝑊𝑔(𝐼N [𝑛]) = N. Then 𝑔 cannot
infer {0, 1, . . . , 𝑛 + 1} from its canonical informant, because it guesses a program
for N after seeing the first 𝑛 elements. Hence, L ∉ [InfSMonBc]. ■

▶ Theorem 5.4. We have [InfSMonBc]#[InfSMon𝑑Bc]. ◀

Proof. By 𝐿𝑒𝑚𝑚𝑎 5.2 and 𝐿𝑒𝑚𝑚𝑎 5.3. ■

▶ Lemma 5.5. We have [InfGMonBc] \ [InfGMon𝑑Bc] ≠ ∅. ◀

Proof. For all 𝑖 ∈ N, let 𝑎𝑖 = 3𝑖 , 𝑏𝑖 = 3𝑖 + 1 and 𝑐𝑖 = 3𝑖 + 2. For all 𝑛,𝑚 ∈ N with
𝑛 < 𝑚, consider the languages

𝑋 = {𝑎𝑖 | 𝑖 ∈ N},
𝑌𝑛 = {𝑎𝑖 | 𝑖 ≤ 𝑛} ∪ {𝑏𝑖 | 𝑛 < 𝑖},

𝑍𝑛,𝑚 = {𝑎𝑖 | 𝑖 ≤ 𝑛} ∪ {𝑏𝑖 | 𝑛 < 𝑖 ≤ 𝑚} ∪ {𝑐𝑚}.

Let L = {𝑋 } ∪ {𝑌𝑛 | 𝑛 ∈ N} ∪ {𝑍𝑛,𝑚 | 𝑛 < 𝑚}. Intuitively, the languages in L
describe the contents of streams that start out listing 𝑎s, then switch to 𝑏s and then
end with a 𝑐 . However, these streams may also continue listing 𝑎s or 𝑏s indefinitely.
Consider the learner ℎ that maps a finite sequence 𝜎 ∈ 𝕊eq(N × {0, 1}) to the
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hypothesis

𝑊ℎ(𝜎) =


𝑍𝑛,𝑚, if ∃𝑛,𝑚 ∈ N: {𝑎𝑛, 𝑏𝑛+1, 𝑐𝑚} ⊆ pos(𝜎),
𝑌𝑛, else if ∃𝑛 ∈ N: {𝑎𝑛, 𝑏𝑛+1} ⊆ pos(𝜎),
𝑋, otherwise.

Intuitively, ℎ conjectures 𝑋 until the boundary between the 𝑎s and 𝑏s is included
in the information. Then, it conjectures the according 𝑌𝑛, until a 𝑐𝑚 is presented.
This hypothesis sequence is monotonic, L ∈ [InfGMonBc].

Suppose that L is InfGMon𝑑Bc-learnable as witnessed by some learner 𝑔. For
some 𝑛,𝑚 ∈ N, we let 𝑔 infer 𝑍𝑛,𝑚 , but force it to conjecture 𝑋 and 𝑌𝑛 before 𝑍𝑛,𝑚 .
To break dual monotonicity, we show that there is an element 𝑏 ∉ 𝑍𝑛,𝑚 , which will
be included in 𝑌𝑛 , but not in 𝑋 .
Let 𝐼𝑋 ∈ Inf (𝑋 ). Then there is 𝑛𝑋 ∈ N such that𝑊𝑔(𝐼𝑋 [𝑛𝑋 ]) = 𝑋 . Let 𝑛 ∈ N

be such that for all 𝑖 ≥ 𝑛 we have 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∉ outline(𝐼𝑋 [𝑛𝑋 ]). This means, that 𝑔
conjectures 𝑋 without knowing whether pos(𝐼𝑋 ) really describes an infinite stream
of 𝑎s, or whether it may change to list 𝑏s instead. Let 𝐼𝑌 be an informant for 𝑌𝑛
such that 𝐼𝑋 [𝑛𝑋 ] = 𝐼𝑌 [𝑛𝑋 ]. Such an informant exists, because by definition of 𝑛,
we know pos(𝐼𝑋 [𝑛𝑋 ]) ⊆ {𝑎𝑖 | 𝑖 < 𝑛} and neg(𝐼𝑋 [𝑛𝑋 ]) ∩ {𝑏𝑖 | 𝑖 ∈ N} ⊆ {𝑏𝑖 | 𝑖 < 𝑛}.
Let 𝑛𝑌 ∈ N with 𝑛𝑌 > 𝑛𝑋 be such that𝑊𝑔(𝐼𝑌 [𝑛𝑌 ]) = 𝑌𝑛. Similarly to 𝑛, let𝑚 ∈ N
be such that𝑚 > 𝑛 and for all 𝑖 ≥ 𝑚 we have 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∉ outline(𝐼𝑌 [𝑛𝑌 ]) and let
𝐼𝑍 ∈ Inf (𝑍𝑛,𝑚) with 𝐼𝑌 [𝑛𝑌 ] = 𝐼𝑍 [𝑛𝑌 ]. Given 𝐼𝑍 , 𝑔 first conjectures 𝑋 , then 𝑌 and
finally 𝑍 . We have 𝑏𝑚+1 ∉ 𝑋 and 𝑏 ∈ 𝑌 . As 𝑏𝑚+1 ∉ 𝑍 , dual monotonicity is violated,
a contradiction. ■

▶ Lemma 5.6. We have [InfGMon𝑑Bc] \ [InfGMonBc] ≠ ∅. ◀

Proof. For all 𝑛,𝑚 ∈ N with 𝑛 < 𝑚, consider the languages

𝑋 = 2N,
𝑌𝑛 = {2𝑛 + 1} ∪ {2𝑖 | 𝑖 ≤ 𝑛},

𝑍𝑛,𝑚 = 𝑌𝑛 ∪ {2𝑚}.

Let L = {𝑋 } ∪ {𝑌𝑛 | 𝑛 ∈ N} ∪ {𝑍𝑛,𝑚 | 𝑛,𝑚 ∈ N, 𝑛 < 𝑚}. Consider the learner ℎ that
maps a finite sequence 𝜎 ∈ 𝕊eq(N × {0, 1}) to the hypothesis

𝑊ℎ(𝜎) =


𝑍𝑛,𝑚, if ∃𝑛,𝑚 ∈ N:𝑛 < 𝑚 ∧ {2𝑛, 2𝑛 + 1, 2𝑚} ⊆ pos(𝜎),
𝑌𝑛, else if ∃𝑛 ∈ N: {2𝑛, 2𝑛 + 1} ⊆ pos(𝜎),
𝑋, otherwise.
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Intuitively, ℎ conjectures𝑋 until for some 𝑛 ∈ N, we find 2𝑛+1 in the positive data,
suggesting that the target language is 𝑌𝑛 . Then, if another even number 2𝑚 > 2𝑛+1
is found, ℎ switches to 𝑍𝑛,𝑚 . This hypothesis sequence is dual monotonic, so
L ∈ [InfGMon𝑑Bc].
Suppose that L is InfGMonBc-learnable as witnessed by some learner 𝑔. For

some 𝑛,𝑚 ∈ N, we let 𝑔 infer 𝑍𝑛,𝑚 , but force it to conjecture 𝑋 and 𝑌𝑛 before 𝑍𝑛,𝑚 .
To break monotonicity, we show that the number 2𝑚 ∈ 𝑍𝑛,𝑚 will be included in 𝑋 ,
but not in 𝑌𝑛 .
Let 𝑛𝑋 ∈ N such that𝑊𝑔(𝐼𝑋 [𝑛𝑋 ]) = 𝑋 . Let 𝑛 = 𝑛𝑋 + 1 and 𝑌 = 𝑌𝑛. Now, let

𝑛𝑌 > 𝑛𝑋 such that𝑊𝑔(𝐼𝑌 [𝑛𝑌 ]) = 𝑌 . Note that 𝐼𝑋 [𝑛𝑋 ] = 𝐼𝑌 [𝑛𝑋 ], as both include all
even numbers and exclude all odd numbers up to 2𝑛𝑋 . Finally, let𝑚 = 𝑛𝑌 + 1 and
𝑍 = 𝑍𝑛,𝑚 . Let 𝑛𝑍 > 𝑛𝑌 such that𝑊𝑔(𝐼𝑍 [𝑛𝑍 ]) = 𝑍 . Again, 𝐼𝑌 [𝑛𝑌 ] = 𝐼𝑍 [𝑛𝑌 ]. This
means when inferring 𝑍 ∈ L from its canonical informant, 𝑔 conjectures 𝑋 , then 𝑌
and then 𝑍 . We have 2𝑚 ∈ 𝑋 and 2𝑚 ∉ 𝑌 . As 2𝑚 ∈ 𝑍 , monotonicity is violated, a
contradiction. ■

▶ Theorem 5.7. We have [InfGMonBc]#[InfGMon𝑑Bc]. ◀

Proof. By Lemma 5.5 and Lemma 5.6. ■

5.2 Completing the picture of monotonic
constraints

In this section, we collect all the other relations between monotonic learning
restrictions. In particular, we show that both variants of strong monotonicity
imply combined monotonicity. All other theorems are implied by our previous
separations.

▶ Corollary 5.8. We have [InfGMonBc] ⊊ [InfGBc] as well as
[InfGMon𝑑Bc] ⊊ [InfGBc]. ◀

Proof. By definition, both [InfGMonBc] and [InfGMon𝑑Bc] are subsets of
[InfGBc]. As they are incomparable by Theorem 5.7, neither of them can be
equal to [InfGBc] though. Therefore, both are proper subsets. ■

▶ Corollary 5.9. We have [InfGMon&Bc] ⊊ [InfGMonBc] as well as
[InfGMon&Bc] ⊊ [InfGMon𝑑Bc]. ◀

Proof. The reasoning is the same as for Corollary 5.8. ■
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▶ Corollary 5.10. We have [InfGSMon&Bc] ⊊ [InfGSMonBc] as well as
[InfGSMon&Bc] ⊊ [InfGSMon𝑑Bc]. ◀

Proof. The reasoning is the same as for Corollary 5.8. ■

▶ Theorem 5.11. We have [InfGSMonBc] ⊊ [InfGMon&Bc] as well as
[InfGSMon𝑑Bc] ⊊ [InfGMon&Bc]. ◀

Proof. Consider a G-learner ℎ and L = InfGSMonBc(ℎ). Let 𝐿 ∈ L and 𝐼 ∈ Inf (𝐿).
Since ℎ is strongly monotonic, we have for all 𝑡 ∈ N that𝑊ℎ(𝐼 [𝑡]) ⊆ 𝐿. We get
neg(𝐼 [𝑡]) ⊆ 𝐿 ⊆ 𝑊ℎ(𝐼 [𝑡]) and thus𝑊ℎ(𝐼 [𝑡]) ∩ neg(𝐼 [𝑡]) = neg(𝐼 [𝑡]). For 𝑠, 𝑡 ∈ N
with 𝑠 ≤ 𝑡 we have

𝑊ℎ(𝐼 [𝑠]) ∩ neg(𝐼 [𝑠]) = neg(𝐼 [𝑠]) ⊆ neg(𝐼 [𝑡]) =𝑊ℎ(𝐼 [𝑡]) ∩ neg(𝐼 [𝑡]) .

Hence, SMon not only implies Mon, but also Mon𝑑 and therefore Mon&. For
a dual strong monotonic learner ℎ, we can show that for all 𝑡 ∈ N we have
𝑊ℎ(𝐼 [𝑡])∩pos(𝐼 [𝑡]) = pos(𝐼 [𝑡]) and consequently that ℎ isMon&. In conclusion, we
know that both [InfGSMonBc] and [InfGSMon𝑑Bc] are subsets of [InfGMon&Bc].
Since [InfGSMonBc] and [InfGSMon𝑑Bc] are incomparable by Theorem 5.4, nei-
ther of them can be equal to [InfGMon&Bc], so they are both proper subsets. ■

▶ Corollary 5.12. We have [InfMonBc] \ [InfSMonBc] ≠ ∅. ◀

Proof. As SMon ⊆ Caut, this is a direct consequence of Corollary 4.2. ■

▶ Corollary 5.13. We have [InfGSMon𝑑Bc] ⊊ [InfGMon𝑑Bc]. ◀

Proof. This is a direct consequence of Theorem 5.11 and Corollary 5.10. ■
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In this section, we observe that, on its own, consistency does not restrict InfBc-
learners, as the seen data can easily be patched into hypotheses (see Theorem 6.4).
Using this approach, we can also preserve all variants of monotonicity and strong
monotonicity (see Theorem 6.9). For weak monotonicity, we already observed
that global consistency can be assumed in Theorem 5.1. We conclude the chapter
with Theorem 6.11 where we employ poisoning to add global consistency to a dual
weakly monotonic learner.

6.1 Patching learners
When patching hypotheses with the information seen so far, we can achieve con-
sistency, while maintaining correct hypotheses. First, we make some general
observations about patched hypotheses and then use those to add consistency to a
set-driven Bc-learner. Afterwards, we conclude that this suffices to show that all
learners without further restrictions can be assumed to be globally consistent.

▶ Definition 6.1. We define the function patch ∈ R such that for all 𝑒 ∈ N and
finite sets 𝐷 ⊆ N × {0, 1} we have

𝑊patch(𝑒,𝐷) = (𝑊𝑒 ∪ pos(𝐷)) \ neg(𝐷).

◀

▶ Lemma 6.2. For all informants 𝐼 ∈ Inf and numbers 𝑒, 𝑡 ∈ N, we have
Cons(patch(𝑒, content(𝐼 [𝑡])), 𝐼 [𝑡]). ◀

Proof. Let 𝐷 = 𝐼 [𝑡]. As 𝐼 is an informant, we have pos(𝐷) ∩ neg(𝐷) = ∅. Hence,

pos(𝐷) ⊆ (𝑊𝑒 \ neg(𝐷)) ∪ pos(𝐷)
= (𝑊𝑒 ∪ pos(𝐷)) \ neg(𝐷)
=𝑊patch(𝑒,𝐷) .

Furthermore,𝑊patch(𝑒,𝐷) ∩ neg(𝐷) = ((𝑊𝑒 ∪ pos(𝐷)) \ neg(𝐷)) ∩ neg(𝐷) = ∅. ■
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▶ Lemma 6.3. For numbers 𝑒 ∈ N and informants 𝐼 ∈ Inf (𝑊𝑒) we have for all 𝑡
that patch(𝑒, content(𝐼 [𝑡])) ≡𝑊 𝑒 . ◀

Proof. Let 𝑡 ∈ N and 𝐷 = 𝐼 [𝑡]. As 𝐼 is an informant, we have pos(𝐷) ⊆ pos(𝐼 ) and
neg(𝐷) ∩ pos(𝐼 ) = ∅. Then we have

𝑊patch(𝑒,𝐷) = (𝑊𝑒 ∪ pos(𝐷)) \ neg(𝐷)
= (pos(𝐼 ) ∪ pos(𝐷)) \ neg(𝐷)
= pos(𝐼 )
=𝑊𝑒 .

■

▶ Theorem 6.4. We have [𝜏 (Cons)InfSdBc] = [InfSdBc]. ◀

Proof. By definition, [𝜏 (Cons)InfSdBc] ⊆ [InfSdBc]. Let ℎ be a Sd learner and
L = InfSdBc(ℎ). We use the Sd-learner 𝑔:𝐷 ↦→ patch(ℎ(𝐷), 𝐷). Lemma 6.2 yields
that 𝑔 is globally consistent.

Let 𝐿 ∈ L, 𝐼 ∈ Inf (𝐿) and 𝑛 ∈ N with𝑊𝑔(content(𝐼 [𝑛])) = 𝐿. Using Lemma 6.3, we
have 𝑔(content(𝐼 [𝑛])) ≡𝑊 ℎ(content(𝐼 [𝑛])) and thus𝑊𝑔(content(𝐼 [𝑛])) = 𝐿, so 𝑔 is
Bc-learning L. ■

Note that Theorem 6.4 is also a corollary of the far more intricate Theorem 5.1.
We can easily extend Theorem 6.4 to all other interaction operators.

▶ Theorem 6.5. For all 𝛽 with Sd ≼ 𝛽 ≼ Gwe have [𝜏 (Cons)Inf𝛽Bc] = [InfGBc].
◀

Proof. One inclusion holds by definition. Using Corollary 3.5 and Sd ≼ 𝛽 , we have
[InfGBc] = [InfSdBc] = [𝜏 (Cons)InfSdBc] ⊆ [𝜏 (Cons)Inf𝛽Bc]. ■

Using the approach to show CflIt �sem Sd in [KSS17], a confluently iterative
learner can fall back to a globally consistent set-driven learner, yielding the follow-
ing result.

▶ Theorem 6.6. We have [𝜏 (Cons)InfCflItBc] = [𝜏 (Cons)InfSdBc]. ◀

▶ Theorem 6.7. For all interaction operators 𝛽 with CflIt ≼ 𝛽 ≼ G we have
[𝜏 (Cons)Inf𝛽Bc] = [InfGBc]. ◀

Proof. This follows from Theorem 6.5 and Theorem 6.6. ■
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As an aside, this is in contrast to two observations for explanatory learning made
byAschenbach et al. [AKS18] that both [𝜏 (Cons)InfGEx] and [InfcanGConsEx] are
proper subsets of [InfGConsEx]. Their proofs use the fact that global consistency
can force a learner to make syntactic mindchanges that it otherwise would not
have.

▶ Corollary 6.8. We have [𝜏 (Cons)InfGBc] = [InfcanGConsBc] = [InfGBc].
◀

Proof. The statement [𝜏 (Cons)InfGBc] = [InfGBc] follows directly from Theo-
rem 6.7. For the other equality, one inclusion holds by definition and Corollary 3.5
yields [InfcanGConsBc] ⊆ [InfcanGBc] = [InfGBc]. ■

6.2 Preserving monotonicity constraints
We observe that our method of making learners consistent preserves some variants
of monotonicity. In particular, we patch the set of restrictions

𝛥𝑀 = {Mon,Mon𝑑 ,Mon&, SMon, SMon𝑑 , SMon&}.

For weak monotonicity, patching does not suffice, but we come up with another
solution.

▶ Theorem 6.9. For all 𝛿 ∈ 𝛥𝑀 , we have [𝜏 (Cons)InfSd𝛿Bc] = [InfSd𝛿Bc]. ◀

Proof. One inclusion holds by definition. Let ℎ be a InfSd𝛿Bc-learner and
L = InfSd𝛿Bc(ℎ). We use 𝑔:𝐷 ↦→ patch(ℎ(𝐷), 𝐷) as our modified learner. By
Lemma 6.2 and Lemma 6.3, 𝑔 is globally consistent and Bc-learns L.
We proceed to show that the additions and subtractions of the patch-function to

ℎ’s hypotheses do not violate 𝛿 . Let 𝐿 ∈ L, 𝐼 ∈ Inf (𝐿) and 𝑠, 𝑡 ∈ N with 𝑠 ≤ 𝑡 . We
abbreviate 𝑆 = content(𝐼 [𝑠]) and 𝑇 = content(𝐼 [𝑡]).

Case 1: 𝜹 = Mon. We use the fact that the patched-in elements continue to be
patched-in and the patched-out elements are not considered in the definition of
Mon. Since neg(𝑆) ∩ 𝐿 = ∅ and pos(𝑆) ⊆ 𝐿, we get

𝑊𝑔(𝑆) ∩ 𝐿 =𝑊patch(ℎ(𝑆),𝑆) ∩ 𝐿

= ((𝑊ℎ(𝑆) ∪ pos(𝑆)) \ neg(𝑆)) ∩ 𝐿

= (𝑊ℎ(𝑆) ∪ pos(𝑆)) ∩ 𝐿
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= (𝑊ℎ(𝑆) ∩ 𝐿) ∪ pos(𝑆).

The same holds for 𝑇 . Since ℎ is Mon, we know𝑊ℎ(𝑆) ∩ 𝐿 ⊆ 𝑊ℎ(𝑇 ) ∩ 𝐿. Using
pos(𝑆) ⊆ pos(𝑇 ), we have

𝑊𝑔(𝑆) ∩ 𝐿 = (𝑊ℎ(𝑆) ∩ 𝐿) ∪ pos(𝑆) ⊆ (𝑊ℎ(𝑇 ) ∩ 𝐿) ∪ pos(𝑇 ) =𝑊𝑔(𝑇 ) ∩ 𝐿.

Case 2: 𝜹 = Mon𝒅 . For this case, the idea is similar, but we need to do slightly
more work. We use De Morgan’s law and the fact that 𝐿 ∩ neg(𝑆) = ∅ to move the
𝐿 term inside. Since pos(𝑆) ∪ 𝐿 = 𝐿, we can then remove the pos(𝑆) term. Finally,
we use the two inclusions, one from ℎ being Mon𝑑 and the other neg(𝑆) ⊆ neg(𝑇 ).
To get back, the same steps may be applied in reverse.

𝑊𝑔(𝑆) ∩ 𝐿 = (𝑊ℎ(𝑆) ∪ pos(𝑆)) \ neg(𝑆) ∩ 𝐿

= ((𝑊ℎ(𝑆) ∪ pos(𝑆)) \ neg(𝑆)) ∪ 𝐿

= (𝑊ℎ(𝑆) ∪ 𝐿) \ neg(𝑆)
= (𝑊ℎ(𝑆) ∩ 𝐿) ∪ neg(𝑆)
⊆ (𝑊ℎ(𝑇 ) ∩ 𝐿) ∪ neg(𝑇 )
=𝑊𝑔(𝑇 ) ∩ 𝐿.

Case 3: 𝜹 = Mon&. Both restrictions are preserved as proven above.

Case 4: 𝜹 = SMon. For SMon, the argument is similar to case 1. Still, elements
that are patched-in stay patched-in. Since ℎ is strongly monotonic, we have for
all 𝑛 ∈ N that𝑊ℎ(content(𝐼 [𝑛])) ⊆ 𝐿. Given that for any 𝑛 ∈ N, neg(𝐼 [𝑛]) and 𝐿 are
disjoint, there are never any elements to patch out of the hypotheses of ℎ. Formally,
we have

𝑊𝑔(𝑆) =𝑊ℎ(𝑆) ∪ pos(𝑆) ⊆𝑊ℎ(𝑇 ) ∪ pos(𝑇 ) =𝑊𝑔(𝑇 ) .

Case 5: 𝜹 = SMon𝒅 . This is analogous to the case 𝛿 = SMon, with only themodifi-
cation that now the added hypotheses are not considered and that neg(𝑆) ⊆ neg(𝑇 ).
Furthermore, since ℎ is dual strongly monotonic and identifies 𝐿 at some point, we
have for all 𝑛 that 𝐿 ⊆𝑊ℎ(content(𝐼 [𝑛])) . This means, that our patching never adds
any more elements to the hypothesis, as they are all in already. We have

𝑊𝑔(𝑆) =𝑊ℎ(𝑆) \ neg(𝑆) ⊇𝑊ℎ(𝑇 ) \ neg(𝑇 ) =𝑊𝑔(𝑇 ) .
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Preserving monotonicity constraints Section 6.2

Case 6: 𝜹 = SMon&. Both restrictions are preserved as proven above. ■

▶ Corollary 6.10. For all interaction operators Sd ≼ 𝛽 ≼ G and 𝛿 ∈ 𝛥𝑀 , we have
[𝜏 (Cons)Inf𝛽𝛿Bc] = [InfcanG𝛿Bc]. ◀

Proof. One inclusion is trivial. Since 𝛿Bc is delayable, we can use Theorem 3.1.
With Theorem 6.9, we get

[InfcanG𝛿Bc] = [InfSd𝛿Bc] = [𝜏 (Cons)InfSd𝛿Bc] ⊆ [𝜏 (Cons)Inf𝛽𝛿Bc] .

■

Finally, we also show that we can provide consistent versions of weakly mono-
tonic learners. In Theorem 5.1 we have already seen that we consistency is no
restriction for weakly monotonic learners, because neither poses a restriction at
all. Making dual weakly monotonic learners consistent is more difficult than the
other variants of monotonicity. Instead of just patching in the seen data, we use a
poisoning approach.

▶ Theorem 6.11. We have [𝜏 (Cons)InfGWMon𝑑Bc] = [InfGWMon𝑑Bc]. ◀

Proof. We know by Theorem 3.2 that [InfGWMon𝑑Bc] = [RInfSdWMon𝑑Bc].
Let ℎ ∈ R be a Sd-learner and L = RInfSdWMon𝑑Bc(ℎ). Consider the G-learner
𝑔 that maps a finite sequence 𝜎 ∈ 𝕊eq(N × {0, 1}) to the hypothesis

𝑊𝑔(𝜎) =


pos(𝜎), if ∃𝜏 ⊑ 𝜎 : pos(𝜏) = pos(𝜎) ∧ pos(𝜎) ⊈𝑊ℎ(content(𝜏)),

𝑊ℎ(content(𝜎)), else if Cons(ℎ(content(𝜎)), 𝜎),
N \ neg(𝜎), otherwise.

Intuitively, we use ℎ’s hypotheses, but poison them if we can prove that they are
wrong. This means that, if we observe that they are inconsistent with our positive
information, we conjecture exactly this positive data, because our hypothesis then
becomes inconsistent when new positive information is presented. We must then
stick to this poisoned conjecture as long as no new positive information is shown.
If ℎ includes wrong elements, we blow up our hypothesis to include everything
but the negative data. This hypothesis becomes inconsistent once new negative
information is presented. Notably, both poisoned hypotheses are already correct if
no new positive or negative information is shown, respectively.
We first show that 𝑔 is actually computable. To enumerate𝑊𝑔(𝜎) , the program

𝑔(𝜎) does the following for some input 𝑥 ∈ N: Firstly, if 𝑥 ∈ pos(𝜎), it returns,
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Chapter 6 Consistency

if 𝑥 ∈ neg(𝜎), it diverges. Then, it verifies that pos(𝜎) is included in ℎ’s hypoth-
esis for each 𝜏 ⊑ 𝜎 , diverging if this is not the case. Finally, it tries to find any
𝑦 ∈ {𝑥} ∪ neg(𝜎) that is also in𝑊ℎ(content(𝜎)) , diverging if there is none. Hence,
𝑔 is computable by the s-m-n theorem.

First, we show that𝑔 Bc-learnsL. Let 𝐿 ∈ L and 𝐼 ∈ Inf (𝐿). Let𝑛0 ∈ N such that
for all 𝑛 ≥ 𝑛0 we have 𝑊ℎ(content(𝐼 [𝑛])) = 𝐿. This implies that
Cons(ℎ(content(𝐼 [𝑛])), 𝐼 [𝑛]) and hence 𝑊𝑔(𝐼 [𝑛]) is either pos(𝐼 [𝑛]) or
𝑊ℎ(content(𝐼 [𝑛])) . If 𝐿 is finite, then there is 𝑛1 ≥ 𝑛0 such that pos(𝐼 [𝑛1]) = 𝐿,
so for all 𝑛 ≥ 𝑛1 we have𝑊𝑔(𝐼 [𝑛]) = 𝐿. If 𝐿 is infinite, let 𝑛2 > 𝑛0 be minimal such
that pos(𝐼 [𝑛0]) ⊊ pos(𝐼 [𝑛2]). Then,𝑊𝑔(𝐼 [𝑛2]) =𝑊ℎ(content(𝐼 [𝑛2])) = 𝐿 and we get by
induction over all 𝑛 ≥ 𝑛2 that𝑊𝑔(𝐼 [𝑛]) = 𝐿.
Clearly, 𝑔 is globally consistent. We proceed to show that 𝑔 is dual weakly

monotonic. Let 𝑠, 𝑡 ∈ N with 𝑠 < 𝑡 . We abbreviate 𝑆 = 𝐼 [𝑠] and 𝑇 = 𝐼 [𝑡]. Suppose
Cons(𝑔(𝑆),𝑇 ).

Case 1: 𝑾𝒈(𝑺) = pos(𝑺) ≠ 𝑾𝒉(content(𝑺)) . Therefore, there is 𝜏 ⊑ 𝑆 with
pos(𝜏) = pos(𝑆) and pos(𝑆) ⊈ 𝑊ℎ(content(𝜏)) . Since Cons(𝑔(𝑆),𝑇 ), we have
pos(𝑇 ) ⊆ 𝑊𝑔(𝑆) = pos(𝑆), so pos(𝑆) = pos(𝑇 ). As 𝜏 ⊑ 𝑆 ⊑ 𝑇 , we have
𝑊𝑔(𝑇 ) = pos(𝑇 ) =𝑊𝑔(𝑆) .

Case 2: 𝑾𝒈(𝑺) = 𝑾𝒉(content(𝑺)) . If 𝑊𝑔(𝑇 ) = pos(𝑇 ), then the assumption
Cons(𝑔(𝑆),𝑇 ) gives us𝑊𝑔(𝑇 ) = pos(𝑇 ) ⊆ 𝑊𝑔(𝑆) . Suppose𝑊𝑔(𝑇 ) ≠ pos(𝑇 ). The
precondition 𝑔(𝑆) ≡𝑊 ℎ(content(𝑆)) implies Cons(ℎ(content(𝑆)),𝑇 ). As ℎ is dual
weakly monotonic, we have𝑊ℎ(content(𝑆)) ⊇ 𝑊ℎ(content(𝑇 )) . Furthermore, we have
𝑊ℎ(content(𝑆)) ∩ neg(𝑇 ) = ∅ and thus𝑊ℎ(content(𝑇 )) ∩ neg(𝑇 ) = ∅. As𝑊𝑔(𝑇 ) ≠ pos(𝑇 ),
we have pos(𝑇 ) ⊆ 𝑊ℎ(content(𝑇 )) and thus Cons(ℎ(content(𝑇 )),𝑇 ). Therefore,
𝑊𝑔(𝑇 ) =𝑊ℎ(content(𝑇 )) ⊆𝑊ℎ(content(𝑆)) =𝑊𝑔(𝑆) .

Case 3: 𝑾𝒈(𝑺) = N \neg(𝑺). Since 𝑔 is consistent and neg(𝑆) ⊆ neg(𝑇 ), we have
𝑊𝑔(𝑇 ) ∩ neg(𝑆) = ∅ and thus𝑊𝑔(𝑇 ) ⊆ N \ neg(𝑆) =𝑊𝑔(𝑆) . ■
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7 Further research

It is still unclear where dual weak monotonicity and combined weak monotonicity,
also known as semantic conservativeness, should be located in our map. Making a
learner dual weakly monotonic appears to require a complete consistency check
with previous hypotheses before enumerating elements. This is why we do not
believe that a modification similar to the one for classic weak monotonicity of
learners can be achieved. The separation of WMon𝑑 would also separate WMon&

from T.

▶ Conjecture 7.1. We have [InfGWMon𝑑Bc] ⊊ [InfGBc]. ◀

For WMon&, we still think that the pattern of adding consistency holds. We
have observed that poisoning approaches work for adding consistency to weakly
monotonic2 and dual weakly monotonic learners. To preserve combined mono-
tonicity, it should be sufficient to add conditions to check whether either of the
poisoned hypotheses has been given before.

▶ Conjecture 7.2. We have [InfGWMon&Bc] = [𝜏 (Cons)InfGWMon&Bc]. ◀

Although it appears that consistency does not further restrict any of the mono-
tonicity constraints and we know that the implications are not as strict as for Ex
(see Corollary 6.8), it is unclear whether an additional requirement for consistency
narrows the learning power of learners under any other common restriction.

The restriction SemWb (semantically witness-based, [KSS17]) could reveal more
about the relationship of monotonic and cautious learners, because it is designed
as a common lower bound of the two. While we showed that all three reduced
variants of cautiousness are properly restricting learners, we do not know how they
relate to each other. Furthermore, we do not know how the variants of cautiousness
relate to other restrictions. In particular, there may be an interesting relation to
the monotonicity restrictions we mapped out in this work, as they all limit subset
relations in the hypothesis sequence.

For semantic learning in general, there are several research directions. There is
very recent work byMarten [Mar22] that investigates semantic learning restrictions
in more abstract settings such as learning functions instead of languages. It would

2 not included, as it is implied by Theorem 5.1
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also be interesting to see if stronger normal forms can be found, similar to what
has been done by Kötzing et al. [KSS17] and Doskoč and Kötzing [DK21b] for
text-learning.
Lastly, there are of course more learning restrictions that are still missing from

our map. For example, the map for explanatory learning provided by Aschenbach
et al. [AKS18] includes the semantic restrictions Dec (decisive) and NU (non-U-
shaped).
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