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undirected (simple) graph G = (V,E)

set of agents A with partitioning P(A)

placement pG : A→ V (injective)
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swap-/jump-stable:
pG such that no other placement p′G can be reached via swap/jump

improving response cycle (IRC):

sequence of placements p1G, ...,pkG
such that piG can be reached via swap/jump from pi−1G

pkG = p1G (upto type similarity)

not weakly acyclic:
there is an unstable placement pG from which no stable placement p′G
can be reached
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.}
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.}
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Optimal placement
Is there a pacement with at least k content agents?

Surprise: NP-complete in general (reductions for τ = 1
2 and τ ≈ 1)

Proof (sketch): transform it to unary encoded SUBSET SUM

Theorem
There is an O(|V|2) time algorithm for optimal placements in 1−k−SSG
and 1− 1−SSG on 2-regular graphs for |P(A)| = 2 and τ > 1

2.

Theorem
It is NP-complete to decide the optimal placement problem for 1 −
k−SSG and 1 − 1−SSG on 2-regular graphs for τ > 1

2 and an arbitrary
number of types.

Proof (sketch): reduction from 3-PARTITION
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Hardness of optimal placements, even on simple graphs for an ar-
bitrary number of types

Future work
more precisely characterize convergence

existence of stable placements (Elkind et al. IJCAI 2019)

if it converges, how segregated is the stable placement?

Thank you very much and let’s be happy polygons.

https://ncase.me/polygons/
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