Efficiently Enumerating Hitting Sets of Hypergraphs Arising in Data Profiling

Martin Schirneck

Joint work with Thomas Bläsius, Tobias Friedrich, Julius Lischeid, and Kitty Meeks, to appear at ALENEX 2019.

Dagstuhl - 16 October 2018

Data profiling is the gathering of metadata from databases.

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145
		•		

Data profiling is the gathering of metadata from databases.

<	Age	Name	Address	City	Area Code
	47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
	47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
	76	Doe, John	South Street 8	London	UK-W1K
	90	Nightingale, Florence	South Street 8	London	UK-W1K
	25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
	33	Doe, John	South Street 8	Philadelphia	US-PA-19145

· Relational database: schema,

Data profiling is the gathering of metadata from databases.

	\cap	1	1		
1	Age	Name	Address	City	Area Code
Τ	47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
ı	47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
l	76	Doe, John	South Street 8	London	UK-W1K
	90	Nightingale, Florence	South Street 8	London	UK-W1K
١	25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
١	33/	Doe, John	South Street 8	Philadelphia	US-PA-19145
	\ /		'		'

Relational database: schema, attributes (columns),

Data profiling is the gathering of metadata from databases.

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

Relational database: schema, attributes (columns), tuples (rows),

Data profiling is the gathering of metadata from databases.

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

Relational database: schema, attributes (columns), tuples (rows), values.

Data profiling is the gathering of metadata from databases.

Age Name Add	ess	City	Area Code
47 Mustermann, Max Mit	elstraße 125	Potsdam	D-14467
47 Mustermann, Max Okt	vie-Allee 1	Wadern	D-66687
76 Doe, John Sou	h Street 8	London	UK-W1K
90 Nightingale, Florence Sou	h Street 8	London	UK-W1K
25 Menigmand, Morten Trø	burgvej 24	Aarhus	DK-8200
33 Doe, John Sou	h Street 8	Philadelphia	US-PA-19145

- Relational database: schema, attributes (columns), tuples (rows), values.
- Metadata: dependencies between attributes.

Data profiling is the gathering of metadata from databases.

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

- Relational database: schema, attributes (columns), tuples (rows), values.
- Metadata: dependencies between attributes.
- Unique column combination (UCC): entries identify full tuple.

Data profiling is the gathering of metadata from databases.

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

- Relational database: schema, attributes (columns), tuples (rows), values.
- Metadata: dependencies between attributes.
- Unique column combination (UCC): entries identify full tuple.

Task: Enumerate all inclusion-wise minimal UCCs.

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145
			•	

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145
	1			1

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

47 Mustermann, Max Mittelstraße 125 Potsdam D-14467 47 Mustermann, Max Oktavie-Allee 1 Wadern D-66687 76 Doe, John South Street 8 London UK-WiK 90 Nightingale, Florence South Street 8 London UK-WiK 25 Menigmand, Morten Trøjburgvej 24 Aarhus DK-8200	Age	Name	Address	City	Area Code
76 Doe, John South Street 8 London UK-WiK South Street 8 London UK-WiK UK-WiK	47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
90 Nightingale, Florence South Street 8 London UK-W1K	47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
8 8 7	76	Doe, John	South Street 8	London	UK-W1K
25 Menigmand, Morten Trøjburgvej 24 Aarhus DK-8200	90	Nightingale, Florence	South Street 8	London	UK-W1K
	25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33 Doe, John South Street 8 Philadelphia US-PA-19148	33	Doe, John	South Street 8	Philadelphia	US-PA-19145

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

 $\label{eq:ccs} \mbox{Minimal UCCs} = \mbox{minimal transversals of the hypergraph of difference sets.}$

			I	
Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

Minimal UCCs = minimal transversals of the hypergraph of difference sets.

UCCs and the Transversal Hypergraph

There is a parsimonious polynomial reduction that preserves inclusions...

• ...from UCC to HITTINGSET. [Folklore]

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	Oktavie-Allee 1	Wadern	D-66687
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

Minimal UCCs = minimal transversals of the hypergraph of difference sets.

UCCs and the Transversal Hypergraph

There is a parsimonious polynomial reduction that preserves inclusions...

- ...from UCC to HITTINGSET. [Folklore]
- ...from HITTINGSET to UCC. [Bläsius, Friedrich & Sch. 2016]

Notation:

- n = number of vertices/attributes.
- m = number of hyperedges/minimal difference sets.
- $k^* = \text{size of the largest minimal hitting set/UCC}$.

Notation:

- *n* = number of vertices/attributes.
- m = number of hyperedges/minimal difference sets.
- $k^* = \text{size of the largest minimal hitting set/UCC}$.

There is an enumeration algorithm for minimal hitting sets/UCCs that...

• ...has delay $O(m^{k^*+1}n^2)$, polynomial delay if k^* is a constant.

Notation:

- n = number of vertices/attributes.
- m = number of hyperedges/minimal difference sets.
- $k^* = \text{size of the largest minimal hitting set/UCC}$.

There is an enumeration algorithm for minimal hitting sets/UCCs that...

- ...has delay $O(m^{k^*+1}n^2)$, polynomial delay if k^* is a constant.
 - Known: $k^* = O(1) \Rightarrow$ incremental-polynomial algorithm. [Eiter & Gottlob 1995]

Notation:

- n = number of vertices/attributes.
- m = number of hyperedges/minimal difference sets.
- $k^* = \text{size of the largest minimal hitting set/UCC}$.

There is an enumeration algorithm for minimal hitting sets/UCCs that...

- ...has delay $O(m^{k^*+1}n^2)$, polynomial delay if k^* is a constant.
 - Known: $k^* = O(1) \Rightarrow$ incremental-polynomial algorithm. [Eiter & Gottlob 1995]
- ...uses space O(mn).

Notation:

- n = number of vertices/attributes.
- m = number of hyperedges/minimal difference sets.
- $k^* = \text{size of the largest minimal hitting set/UCC}$.

There is an enumeration algorithm for minimal hitting sets/UCCs that...

- ...has delay $O(m^{k^*+1}n^2)$, polynomial delay if k^* is a constant.
 - Known: $k^* = O(1) \Rightarrow$ incremental-polynomial algorithm. [Eiter & Gottlob 1995]
- ...uses space O(mn).
- …is fast in practice!

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

Idea: decision tree pruned by an extension oracle.

Disjoint sets: partial solution X, excluded vertices Y

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

$$\emptyset,\emptyset$$

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?
- Answers: EXTENDABLE, MINIMAL, or NOT EXTENDABLE

Backtracking Enumeration

a.k.a. the flashlight technique. [Mary & Strozecki 2016]

Idea: decision tree pruned by an extension oracle.

- Disjoint sets: partial solution X, excluded vertices Y
- Can X be extended to a minimal hitting set avoiding Y?
- Answers: EXTENDABLE, MINIMAL, or NOT EXTENDABLE

Extension Problem for Minimal Hitting Sets

Let X, Y be disjoint set of vertices, $X \cap Y = \emptyset$.

- (i) Is there a minimal hitting set H s.t. $X \subseteq H$ and $H \cap Y = \emptyset$?
- (ii) If so, is H = X?

Extension Problem for Minimal Hitting Sets

Let X, Y be disjoint set of vertices, $X \cap Y = \emptyset$.

- (i) Is there a minimal hitting set H s.t. $X \subseteq H$ and $H \cap Y = \emptyset$?
- (ii) If so, is H = X?

NP-complete in general, but tractable if |X| is small. [Boros, Gurvich & Hammer 1998]

Extension Problem for Minimal Hitting Sets

Let X, Y be disjoint set of vertices, $X \cap Y = \emptyset$.

- (i) Is there a minimal hitting set H s.t. $X \subseteq H$ and $H \cap Y = \emptyset$?
- (ii) If so, is H = X?

NP-complete in general, but tractable if |X| is small. [Boros, Gurvich & Hammer 1998]

No hope for an FPT-algorithm:

• W[3]-complete when parameterized by |X|.

Extension Problem for Minimal Hitting Sets

Let X, Y be disjoint set of vertices, $X \cap Y = \emptyset$.

- (i) Is there a minimal hitting set H s.t. $X \subseteq H$ and $H \cap Y = \emptyset$?
- (ii) If so, is H = X?

NP-complete in general, but tractable if |X| is small. [Boros, Gurvich & Hammer 1998]

No hope for an FPT-algorithm:

- W[3]-complete when parameterized by |X|.
- Under ETH: not solvable in time $f(|X|) \cdot (m+n)^{o(|X|)}$ for any f.

(a) b (c) d

 $X = \{a,c\}$

a b e

(bef)

(c) d e

(a) d

b c d

(bde

- (a b c d
 - (a) h e
 - b e f
 - © d e
 - (a) d
 - $b \odot d$
 - (b d €

- $X = \{a,c\}$
- $Y = \{b\}$

e f

HPI

Finding the True Witnesses

c d

d e

- Exactly one element of X: potential witness.
- X is extendable iff there are potential witnesses (E_x)_{x∈X} s.t. the union ⋃_{x∈X} E_x does not contain an unhit edge.

- Exactly one element of X: potential witness.
- X is extendable iff there are potential witnesses (E_x)_{x∈X} s.t. the union ⋃_{x∈X} E_x does not contain an unhit edge.


```
1 if X = \emptyset then
      if V \setminus Y is a hitting set then return EXTEND.;
     else return NOT EXTEND.;
```



```
4 initialise set system \mathcal{U} = \emptyset;
5 foreach x \in X do initialise set system \mathcal{W}_x = \emptyset;
6 foreach edge E do
       if E \cap X = \{x\} then add E \setminus Y to W_x;
   if E \cap X = \emptyset then add E \setminus Y to \mathcal{U};
```



```
9 if \exists x \in X : \mathcal{W}_x = \emptyset then return NOT EXTEND.;
```



```
9 if \exists x \in X : \mathcal{W}_x = \emptyset then return NOT EXTEND.;
10 if \mathcal{U} = \emptyset then return MINIMAL;
```



```
11 foreach (E_{x_1}, \ldots, E_{x_{|X|}}) \in \mathcal{W}_{x_1} \times \cdots \times \mathcal{W}_{x_{|X|}} do
      W \leftarrow \bigcup_{i=1}^{|X|} E_{x_i};
      if \forall U \in \mathcal{U} : U \nsubseteq W then return EXTEND.;
14 return NOT EXTEND.:
```

HPI

From Run Time...

• Dominant brute-force phase: $O(m^{|X|} \cdot mn)$.

HPI

From Run Time...

- Dominant brute-force phase: $O(m^{|X|} \cdot mn)$.
- · Matches conditional lower bound.

From Run Time...

- Dominant brute-force phase: $O(m^{|X|} \cdot mn)$.
- Matches conditional lower bound.

...to Delay

Claim: Largest solution has constant size $k^* \Rightarrow$ polynomial delay.

From Run Time...

- Dominant brute-force phase: $O(m^{|X|} \cdot mn)$.
- Matches conditional lower bound.

...to Delay

Claim: Largest solution has constant size $k^* \Rightarrow$ polynomial delay.

• Maximum distance between leaves in O(n).

НРІ

From Run Time...

- Dominant brute-force phase: $O(m^{|X|} \cdot mn)$.
- Matches conditional lower bound.

...to Delay

Claim: Largest solution has constant size $k^* \Rightarrow$ polynomial delay.

- Maximum distance between leaves in O(n).
- If |X| ≥ k*, oracle answer is either
 NOT EXTENDABLE or MINIMAL.

HPI

From Run Time...

- Dominant brute-force phase: $O(m^{|X|} \cdot mn)$.
- Matches conditional lower bound.

...to Delay

Claim: Largest solution has constant size $k^* \Rightarrow$ polynomial delay.

- Maximum distance between leaves in O(n).
- If |X| ≥ k*, oracle answer is either NOT EXTENDABLE or MINIMAL.
- Maximum delay of $O(n) \cdot O(m^{k^*+1}n)$.

Setup: 10+2 databases on 2x 2.60GHz CPUs & 256GB RAM.

Setup: 10+2 databases on 2x 2.60GHz CPUs & 256GB RAM.

• 23 to 200k solutions = enumeration times 0.25ms to 27min.

Setup: 10+2 databases on 2x 2.60GHz CPUs & 256GB RAM.

• 23 to 200k solutions = enumeration times 0.25ms to 27min.

Setup: 10+2 databases on 2x 2.60GHz CPUs & 256GB RAM.

- 23 to 200k solutions = enumeration times 0.25ms to 27min.
- ncvoter_allc (88 cols., 100k rows): n = 82, m = 448, $k^* = 15$.

HPI

Theory and Practice

Setup: 10+2 databases on 2x 2.60GHz CPUs & 256GB RAM.

- 23 to 200k solutions = enumeration times 0.25ms to 27min.
- ncvoter_allc (88 cols., 100k rows): n = 82, m = 448, $k^* = 15$.
 - Maximum delay of 1.6s, but median at 0.35ms.

• Half the calls are trivial $(X = \emptyset)$ or easy $(\mathcal{W}_x = \emptyset)$ or $\mathcal{U} = \emptyset$.

• Half the calls are trivial $(X = \emptyset)$ or easy $(\mathcal{W}_x = \emptyset)$ or $\mathcal{U} = \emptyset$.

- Half the calls are trivial $(X = \emptyset)$ or easy $(\mathcal{W}_x = \emptyset)$ or $\mathcal{U} = \emptyset$.
- Brute-force calls exhibit power-law behavior.

- Half the calls are trivial $(X = \emptyset)$ or easy $(\mathcal{W}_x = \emptyset)$ or $\mathcal{U} = \emptyset$.
- Brute-force calls exhibit power-law behavior.

Practice: The algorithm rarely hits the worst case.

- 1. Hitting set enumeration with polynomial delay is possible if the largest solution has constant size.
- 2. The extension oracle is a natural W[3]-complete problem.
- 3. Enumeration is fast on hypergraphs arising in data profiling.

- Hitting set enumeration with polynomial delay is possible
 if the largest solution has constant size.
- 2. The extension oracle is a natural W[3]-complete problem.
- 3. Enumeration is fast on hypergraphs arising in data profiling.

Future Work

Preprocessing seems to be the real bottleneck.

- Hitting set enumeration with polynomial delay is possible
 if the largest solution has constant size.
- 2. The extension oracle is a natural W[3]-complete problem.
- 3. Enumeration is fast on hypergraphs arising in data profiling.

Future Work

- Preprocessing seems to be the real bottleneck.
- · Understand the structure of difference sets.

- Hitting set enumeration with polynomial delay is possible
 if the largest solution has constant size.
- 2. The extension oracle is a natural W[3]-complete problem.
- 3. Enumeration is fast on hypergraphs arising in data profiling.

Future Work

- Preprocessing seems to be the real bottleneck.
- Understand the structure of difference sets.

Thank you.