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Data Profiling

Data profiling is the gathering of metadata from databases.

Age ‘ Name ‘ Address ‘ City ‘ Area Code
47 | Mustermann, Max MittelstraBe 125 | Potsdam D-14467

47 | Mustermann, Max Oktavie-Allee 1 |Wadern D-66687

76 | Doe, John South Street 8 London UK-W1K

90 | Nightingale, Florence| South Street 8 London UK-W1K

25 | Menigmand, Morten Trgjburgvej 24 Aarhus DK-8200

33 | Doe, John South Street 8 Philadelphia | US-PA-19145
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Minimal UCCs = minimal transversals of the hypergraph of difference sets.
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Enumeration with Polymonial Delay H

Notation:

e n = number of vertices/attributes.
e m = number of hyperedges/minimal difference sets.

e k* = size of the largest minimal hitting set/UCC.
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Notation:

e n = number of vertices/attributes.
e m = number of hyperedges/minimal difference sets.

e k* = size of the largest minimal hitting set/UCC.

There is an enumeration algorithm for minimal hitting sets/UCCs that...
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e ...is fast in practice!
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Backtracking Enumeration

a.k.a. the flashlight technique. mary & strozecki 2016]

Idea: decision tree pruned by an extension oracle.
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e X is extendable iff there are potential witnesses (Ey)xex s.t.
the union |J,x Ex does not contain an unhit edge.
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The Extension Oracle H

1 if X =0 then
2 if V\Y is a hitting set then return EXTEND.;
3 else return NOT EXTEND.;
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The Extension Oracle ﬂ

4 initialise set system U = {);

5 foreach x € X do initialise set system W, = (;
6 foreach edge E do

7 if ENX = {x} then add E\Y to W,;

8 L if ENX =0 then add E\Y to U;

7/11



Efficiently Enumerating Hitting Sets of Hypergraphs Arising in Data Profiling Dagstuhl - 16 October 2018
Martin Schirneck

The Extension Oracle H

9 if 3x € X: W, = 0 then return NOT EXTEND;
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The Extension Oracle H

9 if 3x € X: W, = 0 then return NOT EXTEND;
10 if U = () then return MINIMAL;
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11 foreach (EXI,...,EXW) € Wy X -+ X Wy, do
12 | WeUZXEg

if VU€U: UZ W then return EXTEND.;
14 return NOT EXTEND;
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* Dominant brute-force phase: O(m!X|. mn).
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...to Delay

Claim: Largest solution has constant size k* = polynomial delay.
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From Run Time...

* Dominant brute-force phase: O(m!X|. mn).

e Matches conditional lower bound.

...to Delay
Claim: Largest solution has constant size k* = polynomial delay.
e Maximum distance between leaves in O(n). /(M)\
o If | X| > k*, oracle answer is either /a@\ (ZJ,a\
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From Run Time... ﬂ

« Dominant brute-force phase: O(m!X!. mn).

e Matches conditional lower bound.

...to Delay

Claim: Largest solution has constant size k* = polynomial delay.
/(M)\
0 0, a
Ve wf oy

a, Uab

b
e Maximum delay of O(n)- O(mk“’ln)_ ;b@

e Maximum distance between leaves in O(n).

o If | X| > k*, oracle answer is either /a
NOT EXTENDABLE or MINIMAL. 3b50)
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Theory and Practice H
Setup: 10+2 databases on 2x 2.60GHz CPUs & 256GB RAM.
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e 23 to 200k solutions = enumeration times 0.25ms to 27min.
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e 23 to 200k solutions = enumeration times 0.25ms to 27min.

e ncvoter_allc (88 cols., 100k rows): n =82, m = 448, k* = 15.
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Theory and Practice
Setup: 10+2 databases on 2x 2.60GHz CPUs & 256GB RAM.
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e 23 to 200k solutions = enumeration times 0.25ms to 27min.
e ncvoter_allc (88 cols., 100k rows): n =82, m = 448, k* = 15.

- Maximum delay of 1.6s, but median at 0.35ms.
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o Half the calls are trivial (X = 0) or easy (Wyx =0 or U = ().

e Brute-force calls exhibit power-law behavior.

Practice: The algorithm rarely hits the worst case.
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Conclusion H

1. Hitting set enumeration with polynomial delay is possible

if the largest solution has constant size.
2. The extension oracle is a natural W[3]-complete problem.

3. Enumeration is fast on hypergraphs arising in data profiling.
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Conclusion ﬂ

1. Hitting set enumeration with polynomial delay is possible

if the largest solution has constant size.
2. The extension oracle is a natural W[3]-complete problem.

3. Enumeration is fast on hypergraphs arising in data profiling.

Future Work

¢ Preprocessing seems to be the real bottleneck.

e Understand the structure of difference sets.

Thank you.

1 /11



