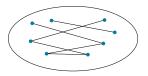
Fixed-Parameter Sensitivity Oracles

Davide Bilò, Katrin Casel, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, J.A. Gregor Lagodzinski, Martin Schirneck, and Simon Wietheger

> 13th Innovations in Theoretical Computer Science Conference January 31–February 3, 2022

Sensitivity Oracles

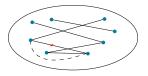
a.k.a. fault-tolerant data structures, algorithms for emergency planning, failure-prone graphs



Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

Sensitivity Oracles

a.k.a. fault-tolerant data structures, algorithms for emergency planning, failure-prone graphs

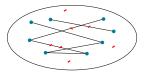


Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

ITCS - January 31-February 3, 2022

Sensitivity Oracles

a.k.a. fault-tolerant data structures, algorithms for emergency planning, failure-prone graphs

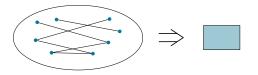


Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

• Sensitivity: failures in batches, maximum number f known.

Sensitivity Oracles

a.k.a. fault-tolerant data structures, algorithms for emergency planning, failure-prone graphs



Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

- Sensitivity: failures in batches, maximum number *f* known.
- Data structure: preprocess once, query when needed.

Sensitivity Oracles

a.k.a. fault-tolerant data structures, algorithms for emergency planning, failure-prone graphs

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

- Sensitivity: failures in batches, maximum number *f* known.
- Data structure: preprocess once, query when needed.

Sensitivity Oracles

a.k.a. fault-tolerant data structures, algorithms for emergency planning, failure-prone graphs

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

- Sensitivity: failures in batches, maximum number *f* known.
- Data structure: preprocess once, query when needed.

Fixed-Parameter Tractability

Fixed-parameter tractable (FPT): on *n*-vertex G with parameter k P(G, k) computable in time $O(g(k) \cdot n^c)$ for some function g and constant c.

Sensitivity Oracles

a.k.a. fault-tolerant data structures, algorithms for emergency planning, failure-prone graphs

Maintain graph property P(G) (distances, connectivity, ...) under edge failures.

- Sensitivity: failures in batches, maximum number f known.
- Data structure: preprocess once, query when needed.

Fixed-Parameter Tractability

Fixed-parameter tractable (FPT): on *n*-vertex G with parameter k P(G, k) computable in time $O(g(k) \cdot n^c)$ for some function g and constant c.

• Textbook: Compute a vertex cover of size k in time $O(2^k k \cdot n)$.

Fixed-Parameter Sensitivity Oracles

Combine both areas: Oracle with sensitivity f for FPT property P(G, k).

Fixed-Parameter Sensitivity Oracles

Combine both areas: Oracle with sensitivity f for FPT property P(G, k).

• Answer: P(G-F, k) with same parameter k.

Fixed-Parameter Sensitivity Oracles

Combine both areas: Oracle with sensitivity f for FPT property P(G, k).

- Answer: P(G-F, k) with same parameter k.
- Preprocessing time: $O(g(f, k) \cdot n^c) \operatorname{not} g(k) \cdot n^{O(f)}$.

Fixed-Parameter Sensitivity Oracles

Combine both areas: Oracle with sensitivity f for FPT property P(G, k).

- Answer: P(G-F, k) with same parameter k.
- Preprocessing time: $O(g(f, k) \cdot n^c) \text{not } g(k) \cdot n^{O(f)}$.
- Query time: "significantly faster than computing P(G-F, k) from scratch".

Fixed-Parameter Sensitivity Oracles

Combine both areas: Oracle with sensitivity f for FPT property P(G, k).

- Answer: P(G-F, k) with same parameter k.
- Preprocessing time: $O(g(f,k) \cdot n^c)$ **not** $g(k) \cdot n^{O(f)}$.
- Query time: "significantly faster than computing P(G-F, k) from scratch".

FPT for dynamic graphs:

- Iwata & Oka [SWAT 2014]
- Alman, Mnich & Vassilevska Williams [TALG 2020]
- Chen, Czerwinski, Disser, Feldmann, Hermelin, Nadara, Pilipczuk, Pilipczuk, Sorge, Wróblewski & Zych-Pawlewicz [SODA 2021]

Fixed-Parameter Sensitivity Oracles

Combine both areas: Oracle with sensitivity f for FPT property P(G, k).

- Answer: P(G-F, k) with same parameter k.
- Preprocessing time: $O(g(f,k) \cdot n^c)$ **not** $g(k) \cdot n^{O(f)}$.
- Query time: "significantly faster than computing P(G-F, k) from scratch".

FPT for dynamic graphs:

- Iwata & Oka [SWAT 2014]
- Alman, Mnich & Vassilevska Williams [TALG 2020]
- Chen, Czerwinski, Disser, Feldmann, Hermelin, Nadara, Pilipczuk, Pilipczuk, Sorge, Wróblewski & Zych-Pawlewicz [SODA 2021]

Fault tolerance on special graph class & take insights back to FPT:

• Lochet, Lokshtanov, Misra, Saurabh, Sharma & Zehavi [ITCS 2020]

ITCS - January 31-February 3, 2022

Vertex Cover

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Kernelization: equivalent graph with $O(k^2 + kf)$ vertices in polynomial time.

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Kernelization: equivalent graph with $O(k^2 + kf)$ vertices in polynomial time.

Trade-offs between space, preprocessing time, and query time depending on f and k.

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Kernelization: equivalent graph with $O(k^2 + kf)$ vertices in polynomial time.

Trade-offs between space, preprocessing time, and query time

depending on f and k. This talk: $f \le k$ for simplicity.

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Kernelization: equivalent graph with $O(k^2 + kf)$ vertices in polynomial time.

Trade-offs between space, preprocessing time, and query time

depending on f and k. This talk: $f \le k$ for simplicity.

Solution 1:

• Space: $O(3^{f+k})$, prep. time: $O(3^{f+k} \operatorname{poly}(f,k)) + \operatorname{poly}(n)$, query time: $O(2^{f})$.

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Kernelization: equivalent graph with $O(k^2 + kf)$ vertices in polynomial time.

Trade-offs between space, preprocessing time, and query time

depending on f and k. This talk: $f \le k$ for simplicity.

Solution 1:

- Space: $O(3^{f+k})$, prep. time: $O(3^{f+k} \operatorname{poly}(f,k)) + \operatorname{poly}(n)$, query time: $O(2^{f})$.
- Add "this edge fails" option to standard branching.

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Kernelization: equivalent graph with $O(k^2 + kf)$ vertices in polynomial time.

Trade-offs between space, preprocessing time, and query time

depending on f and k. This talk: $f \le k$ for simplicity.

Solution 1:

- Space: $O(3^{f+k})$, prep. time: $O(3^{f+k} \operatorname{poly}(f,k)) + \operatorname{poly}(n)$, query time: $O(2^{f})$.
- Add "this edge fails" option to standard branching.

Solution 2:

• Space: $O(2^{f+k^2+k})$, prep. time: $O(2^{f+k^2}2.548^k) + \text{poly}(n)$, query time: $O(k^2)$.

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Kernelization: equivalent graph with $O(k^2 + kf)$ vertices in polynomial time.

Trade-offs between space, preprocessing time, and query time

depending on f and k. This talk: $f \le k$ for simplicity.

Solution 1:

- Space: $O(3^{f+k})$, prep. time: $O(3^{f+k} \operatorname{poly}(f,k)) + \operatorname{poly}(n)$, query time: $O(2^{f})$.
- Add "this edge fails" option to standard branching.

Solution 2:

- Space: $O(2^{f+k^2+k})$, prep. time: $O(2^{f+k^2}2.548^k) + \text{poly}(n)$, query time: $O(k^2)$.
- Combine branch & bound with fault-tolerant lookup trees.

Does G-F have a vertex cover of size at most k?

Decidable in time $O(1.274^k + kn)$ [Chen, Kanj & Xia, TCS 2010].

Kernelization: equivalent graph with $O(k^2 + kf)$ vertices in polynomial time.

Trade-offs between space, preprocessing time, and query time

depending on f and k. This talk: $f \le k$ for simplicity.

Solution 1:

- Space: $O(3^{f+k})$, prep. time: $O(3^{f+k} \operatorname{poly}(f,k)) + \operatorname{poly}(n)$, query time: $O(2^{f})$.
- Add "this edge fails" option to standard branching.

Solution 2:

- Space: $O(2^{f+k^2+k})$, prep. time: $O(2^{f+k^2}2.548^k) + \text{poly}(n)$, query time: $O(k^2)$.
- Combine branch & bound with fault-tolerant lookup trees.

Solution 3:

• Space: $O(k^2)$, preprocessing time: poly(n), query time: $O(1.274^k)$.

[Alman, Mnich & Vassilevska Williams, TALG 2020]

k-Path

Does G-F have a simple (directed) path of length k?

Deterministic: $O(2.554^k \cdot \text{poly}(n))$ [Tsur, TCS 2019]; randomized: $O(1.657^k \cdot \text{poly}(n))$ [Björklund, Husfeldt, Kaski & Koivisto, JCSS 2010].

k-Path

Does G-F have a simple (directed) path of length k?

Deterministic: O(2.554^k · poly(n)) [Tsur, TCS 2019]; randomized: O(1.657^k · poly(n)) [Björklund, Husfeldt, Kaski & Koivisto, JCSS 2010].

Reminder: $f \leq k$.

Solution 1:

• Space: $O(k^{f+1})$, rand. prep. time: $O(k^{f}1.657^{k} \cdot \text{poly}(n))$, query time: $O(f^{2})$.

k-Path

Does G-F have a simple (directed) path of length k?

Deterministic: O(2.554^k · poly(n)) [Tsur, TCS 2019]; randomized: O(1.657^k · poly(n)) [Björklund, Husfeldt, Kaski & Koivisto, JCSS 2010].

Reminder: $f \leq k$.

Solution 1:

- Space: $O(k^{f+1})$, rand. prep. time: $O(k^{f}1.657^{k} \cdot \text{poly}(n))$, query time: $O(f^{2})$.
- Fault-tolerant lookup tree of depth f, each node holds a k-path.

k-Path

Does G-F have a simple (directed) path of length k?

Deterministic: O(2.554^k · poly(n)) [Tsur, TCS 2019]; randomized: O(1.657^k · poly(n)) [Björklund, Husfeldt, Kaski & Koivisto, JCSS 2010].

Reminder: $f \leq k$.

Solution 1:

- Space: $O(k^{f+1})$, rand. prep. time: $O(k^{f}1.657^{k} \cdot \text{poly}(n))$, query time: $O(f^{2})$.
- Fault-tolerant lookup tree of depth f, each node holds a k-path.

Solution 2:

• Space: O(sk), rand. prep. time: $O(s \ 1.657^k \cdot \text{poly}(n))$, query time: O(sf), where $s = O((\frac{f+k}{f})^f (\frac{f+k}{k})^k f \cdot \log n)$. (Worst case: $s = O(2^{f+k} f \cdot \log n)$)

k-Path

Does G-F have a simple (directed) path of length k?

Deterministic: O(2.554^k · poly(n)) [Tsur, TCS 2019]; randomized: O(1.657^k · poly(n)) [Björklund, Husfeldt, Kaski & Koivisto, JCSS 2010].

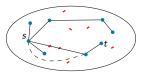
Reminder: $f \leq k$.

Solution 1:

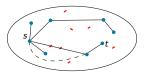
- Space: $O(k^{f+1})$, rand. prep. time: $O(k^{f}1.657^{k} \cdot \text{poly}(n))$, query time: $O(f^{2})$.
- Fault-tolerant lookup tree of depth f, each node holds a k-path.

Solution 2:

- Space: O(sk), rand. prep. time: $O(s \ 1.657^k \cdot \text{poly}(n))$, query time: O(sf), where $s = O((\frac{f+k}{f})^f (\frac{f+k}{k})^k f \cdot \log n)$. (Worst case: $s = O(2^{f+k} f \cdot \log n))$
- Sample s subgraphs of G, discarding each edge with probability f/(f+k). [Weimann & Yuster, TALG 2013]

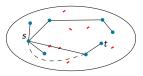


Fault-tolerant distance preservers:



Fault-tolerant distance preservers:

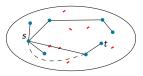
Graph G with source vertex s, compute subgraph $H \subseteq G$ s.t. for all vertices t and at most f edge failures F, $d_{G-F}(s,t) = d_{H-F}(s,t)$.



Fault-tolerant distance preservers:

Graph G with source vertex s, compute subgraph $H \subseteq G$ s.t. for all vertices t and at most f edge failures F, $d_{G-F}(s, t) = d_{H-F}(s, t)$.

Constructions with $\widetilde{O}(f n^{2-1/2^f})$ edges known, $\Omega(n^{2-1/(f+1)})$ edges required. [Parter, PODC 2015] [Parter & Peleg, TALG 2016] [Bodwin, Grandoni, Parter & Vassilevska Williams, ICALP 2017]

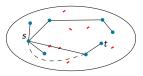


Fault-tolerant distance preservers:

Graph G with source vertex s, compute subgraph $H \subseteq G$ s.t. for all vertices t and at most f edge failures F, $d_{G-F}(s,t) = d_{H-F}(s,t)$.

Constructions with $\widetilde{O}(f n^{2-1/2^f})$ edges known, $\Omega(n^{2-1/(f+1)})$ edges required. [Parter, PODC 2015] [Parter & Peleg, TALG 2016] [Bodwin, Grandoni, Parter & Vassilevska Williams, ICALP 2017]

Only preserve distances with $d_{G-F}(s,t) \leq d_G(s,t) + k$ for every $F \subseteq E$, $|F| \leq f$.



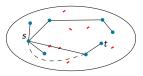
Fault-tolerant distance preservers:

Graph G with source vertex s, compute subgraph $H \subseteq G$ s.t. for all vertices t and at most f edge failures F, $d_{G-F}(s,t) = d_{H-F}(s,t)$.

Constructions with $\widetilde{O}(f n^{2-1/2^{f}})$ edges known, $\Omega(n^{2-1/(f+1)})$ edges required. [Parter, PODC 2015] [Parter & Peleg, TALG 2016] [Bodwin, Grandoni, Parter & Vassilevska Williams, ICALP 2017]

Only preserve distances with $d_{G-F}(s,t) \leq d_G(s,t) + k$ for every $F \subseteq E$, $|F| \leq f$.

• Distance preserver with $O(2^{fk+f+k}k \cdot n)$ edges in time $O(2^{fk+f+k}k^2 \cdot mn)$.



Fault-tolerant distance preservers:

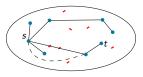
Graph G with source vertex s, compute subgraph $H \subseteq G$ s.t. for all vertices t and at most f edge failures F, $d_{G-F}(s,t) = d_{H-F}(s,t)$.

Constructions with $\widetilde{O}(f n^{2-1/2^f})$ edges known, $\Omega(n^{2-1/(f+1)})$ edges required. [Parter, PODC 2015] [Parter & Peleg, TALG 2016] [Bodwin, Grandoni, Parter & Vassilevska Williams, ICALP 2017]

Only preserve distances with $d_{G-F}(s,t) \leq d_G(s,t) + k$ for every $F \subseteq E$, $|F| \leq f$.

• Distance preserver with $O(2^{fk+f+k}k \cdot n)$ edges in time $O(2^{fk+f+k}k^2 \cdot mn)$.

Randomized oracle reporting whether $d_{G-F}(s,t) \leq d_G(s,t) + k$.



Fault-tolerant distance preservers:

Graph G with source vertex s, compute subgraph $H \subseteq G$ s.t. for all vertices t and at most f edge failures F, $d_{G-F}(s,t) = d_{H-F}(s,t)$.

Constructions with $\widetilde{O}(f n^{2-1/2^f})$ edges known, $\Omega(n^{2-1/(f+1)})$ edges required. [Parter, PODC 2015] [Parter & Peleg, TALG 2016] [Bodwin, Grandoni, Parter & Vassilevska Williams, ICALP 2017]

Only preserve distances with $d_{G-F}(s,t) \leq d_G(s,t) + k$ for every $F \subseteq E$, $|F| \leq f$.

• Distance preserver with $O(2^{fk+f+k}k \cdot n)$ edges in time $O(2^{fk+f+k}k^2 \cdot mn)$.

Randomized oracle reporting whether $d_{G-F}(s,t) \leq d_G(s,t) + k$.

• Space: $O(2^k k^2 \cdot n^2)$, prep. time: $O(2^k k^\omega \cdot n^\omega)$, query time: $O(2^k k^\omega f^\omega)$.

[Brand & Saranurak, FOCS 2019] $(\omega < 2.3729 \text{ matrix multiplication exponent})$

1. Fixed-parameter tractable algorithms are often already fault-tolerant.

- 1. Fixed-parameter tractable algorithms are often already fault-tolerant.
- 2. Sensitivity f fits naturally to the parameterized setting.

- 1. Fixed-parameter tractable algorithms are often already fault-tolerant.
- 2. Sensitivity f fits naturally to the parameterized setting.
- 3. Sensitivity oracles require careful trade-offs between space, preprocessing time, and query time.

- 1. Fixed-parameter tractable algorithms are often already fault-tolerant.
- 2. Sensitivity f fits naturally to the parameterized setting.
- 3. Sensitivity oracles require careful trade-offs between space, preprocessing time, and query time.
- 4. Parameterization can help relax bottlenecks in fault tolerance.

- 1. Fixed-parameter tractable algorithms are often already fault-tolerant.
- 2. Sensitivity f fits naturally to the parameterized setting.
- 3. Sensitivity oracles require careful trade-offs between space, preprocessing time, and query time.
- 4. Parameterization can help relax bottlenecks in fault tolerance.

Open Problems

- Fixed-parameter sensitivity oracles for more FPT properties.
- Bring down the (exponential) dependencies on f and k.
- More fault-tolerant problems that benefit from parameterization.

- 1. Fixed-parameter tractable algorithms are often already fault-tolerant.
- 2. Sensitivity f fits naturally to the parameterized setting.
- 3. Sensitivity oracles require careful trade-offs between space, preprocessing time, and query time.
- 4. Parameterization can help relax bottlenecks in fault tolerance.

Open Problems

- Fixed-parameter sensitivity oracles for more FPT properties.
- Bring down the (exponential) dependencies on f and k.
- More fault-tolerant problems that benefit from parameterization.

Thank you.