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Abstract

In this work, we look at the Ramer-Douglas-Peucker algorithm and its use
for compression of time series data. We analyze the effect parameter choices
have on the algorithm’s result. For this, we look at a modified version of
the algorithm that can work with multiple € for a time series. We introduce
a heuristic that is able to calculate these multiple € for a series. For the
heuristic, we optimize its parameters with multi-objective optimization, with
min-max normalized TMSE and compression factor as objectives. We see that
with multiple € per series, the user can set the heuristic’s parameters such that
outliers are not kept in the compression. We observe that depending on the
dataset, the resulting pareto front displays differences in regards to its shape,
which can have linear, concave, or convex characteristics. To approximate the
pareto front before compressing a series, we propose to look at the central
moving average’s similarity to a time series in dependence of the amount of
points, over which it is calculated.



Zusammenfassung

In dieser Arbeit beschéftigen wir uns mit dem Ramer-Douglas-Peucker Algo-
rithmus und seiner Verwendung zur Komprimierung von Zeitseriendaten. Wir
analysieren die Auswirkung, die Parameter auf das Ergebnis des Algorithmus
haben. Dazu betrachten wir eine modifizierte Version des Algorithmus, die auf
einer Zeitserie mit mehreren € arbeiten kann. Wir fiithren eine Heuristik ein,
die diese mehreren ¢ fiir eine Serie berechnet. Fiir die Heuristik optimieren wir
ihre Parameter mit einer mehrkriteriellen Optimierung, wobei der min-max
normalisierte rMSE und der Kompressionsfaktor als Kriterien dienen. Wir se-
hen, dass der Benutzer bei mehreren € pro Serie die Parameter der Heuristik
so einstellen kann, dass Ausreifer nicht in der Komprimierung bleiben. Wir
stellen fest, dass die resultierende Pareto-Front je nach Datensatz Unterschiede
in Bezug auf ihre Form aufweist, die lineare, konkave oder konvexe Eigen-
schaften haben kann. Um die Paretofront vor dem Komprimieren einer Serie
zu approximieren, schlagen wir vor, den Abstand des gleitenden Mittelwertes
zu einer Zeitserie in Abhangigkeit von der Anzahl der Punkte zu untersuchen,
iiber die er berechnet wird.
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1 Introduction

With the progress information technology made in the last 30 years, the amount
of its possible applications is continuously growing. For a vast amount of fields,
we only see the beginning of what is achievable. One of those fields is automa-
tion, in which computers perform work that is ordinarily done by humans. For
automation, one task is the autonomous monitoring of the machines in a fac-
tory to review whether they are functioning properly. If this is not the case,
appropriate measures can be taken, without the need of a human to interfere.
To monitor the machines, their properties are measured by sensors and then
analyzed |16]. Those sensor values could include a machine’s temperature, its
vibrations or the rotations of its engine. Since these are measured over time,
they are called a time series. When there is a large amount of sensor data,
there are significant efforts necessary to send and process the data. In order
to still deal with the data quickly, more sophisticated and expensive hardware
could be bought. There does, however, exist another way to face this situation.
The series generated by the sensors can be compressed and therefore reduced
in their size [24] [9].

There are two possible ways to compress a time series, lossless compression
and lossy compression. With lossless compression, the original data can be
completely reconstructed from the compression. Lossless compression consists
of techniques such as delta encoding [25] or run length encoding [15]. As a
contrast to lossless compression, lossy compression allows that parts of the
original data are not reconstructable anymore. When this is the case, there
exists the possibility to compress a time series even further. This argument is
also made in a survey on lossless and lossy compression methods [31]. To get a
handle on a large amount of sensor data, lossy compression therefore becomes
handy.

A lossy compression algorithm for a time series is designed such that it gets
the series as input and outputs a result that does need significantly less space.
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The smaller the size of the compressed series, the easier it is for the data to be
sent and processed. However, the loss of information must not be too profound.
For instance, when a machine’s temperature is measured to control whether it
overheats, the compression must not deviate too far from the original temper-
ature values. Otherwise, the monitoring algorithm could falsely state that a
machine is overheating, or, even worse, does not recognize when this is indeed
the case. When the compression leads to false decisions, a compression algo-
rithm would be rendered useless. But, what data is a compression algorithm
allowed to forget? This depends largely on the type of the data, as well as
the use case for it. For some analytic tools, a very broad representation of
the sensor values may be enough. In other cases, such as the temperature
measurements, it may be sensible to keep most of the values and especially
sudden peaks. Concluding, there does not exist one single lossy compression
setting to solve every problem. Since so much depends on the use case, the
user needs to give some input to the compression algorithm that indicates how
the algorithm should act.

This input happens in the form of so-called parameters. With parameters,
the user can control the behavior of an algorithm. For instance, there exist
algorithms where the user can indicate the factor by which the size of the
compressed series gets reduced [30] [7]. However, if the parameters require
too much a priori knowledge of the user, they may not bring additional utility.
For instance, the user may not know to what extent the time series should be
compressed, since they do not know the exact appearance of it. They could,
however, know the measuring inaccuracy of the sensor that generates the se-
ries and therefore the error they are willing to allow. For those use cases,
algorithms are developed that have an error bound as parameter [9] [14] [13]
[29].

In general, there exist certain challenges when dealing with algorithms that
take parameters as input. Coy et al. [10] noticed that for algorithms with pa-
rameters, the research community seldom sets these such that they achieve the
desired effect, but rather in an “ad hoc way”. For the compression algorithms
with an error bound as input, the compression may not fulfill its desired use
case when the user sets the parameters this way. This holds especially true
when they do not know about information such as the sensor’s measuring in-
accuracies. Also, in the field of data mining, Keogh et al. [20] showed that
the performance of a parameter setting for some “parameter-laden” algorithms
tends to be entirely different between similar datasets. In regards to compres-
sion, it can be vital that this is not the case, particularly when the user wants
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to compress multiple time series in one run.

To deal with these challenges, we developed a heuristic in the project that
calculates an error tolerance suiting to the series’ movements. In this work,
we introduce a change to the heuristic such that it can, for one time series,
calculate for different areas of it different tolerated errors. Still, the heuristic
has parameters that can not be set straightaway. But how exactly does their
parameter setting influence the compression? How can the user use the heuris-
tic such that they get a compression that suits their use case? To aid them in
this regard, we analyze the heuristic and its parameters in this work.

We show how the heuristic’s parameters influence each other and to which
value ranges they can be narrowed down. Additionally, we demonstrate how
the user can affect the tendency of the compression algorithm to take out-
liers into account. Furthermore, we show that there are characteristics of the
datasets that may highly influence the degree of information loss relevant to
the user. To further aid the user in this regard, we propose a simple way to
observe those characteristics before a time series gets compressed.
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2.1 Introduction to Compression Setup

A compression algorithm gets a time series as input and outputs a compressed
version of the time series. In order to work with the algorithm, we define the
term time series first. We define a time series as a sequence of points. Each
point consists of two numbers, its time t € N, and its value y € R. The se-
quence is ordered by the time of the points. Let T be a time series. With T}
we denote its i-th point. Furthermore, we define y(7;) as the value of the i-th
point. With ¢(7;), we denote the time of the i-th point. We denote the amount
of points that are contained in 7" with |T'].

To compress a time series, we remove points from it. We can therefore use
the notation defined above as well for a compressed series. For it, we demand
that each of its times must also exist in the original time series. Let T" be a
time series and let C' be its compressed series. To fulfill this requirement, we
demand that {t(C;) | i« < |C|} is a subset of {¢(T;) | i« < |T'|}. However, to
allow for more flexible compression algorithms, we allow that the value y of
a point gets changed. Therefore, {y(C;) | ¢ < |C|} is not necessarily a subset
of {y(T;) | i < |T'|}. We define the compression factor of C' as % The less
points are contained in C', the higher is its compression factor.

To compare the compressed version of a time series with the original version,
we need to measure its similarity to the original series. In order to do this,
we compare the time series to a reconstructed version of the compressed time
series. Let T be a time series, C' be its compressed version, and R be its
reconstructed version. Then the reconstructed time series has the following
properties:

e Both time series, the reconstructed and the original, have the same length.
Therefore, |T'| = |R|

e The reconstructed series consists of the same times as the original series.
It holds that Vi < |T| : t(T;) = t(R;)

e The y-values of the reconstructed are obtained by the use of linear in-
terpolation. Let R; be a point of the reconstructed time series R. We
know that the time of R; is equal to #(7;). To calculate its value y,
we use linear interpolation between two adjacent points of C. We call
those two points C, and C,.1. They are chosen, such that the time of
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R; is located between the times of them. More precisely it holds that
t(Cy) < t(R;) < t(Cyy1). The value y(R;) is now calculated as

y(Ca) + (t(R:) = 1(Ca)) -

2.2 Compression Algorithm

In the bachelor’s project we researched existing compression algorithms, de-
veloped new algorithms, and compared which algorithm was most suitable to
our needs. In order to do this, we had several criteria in order to evaluate the
algorithms. First of all, the algorithm should keep points that represent the se-
ries fairly well. Secondly, for large amounts of data, we needed the algorithms
to work in a reasonable time. Regarding those criteria, the Ramer-Douglas-
Peucker algorithm performed very well in the project, which is why we use it
here in order to conduct our experiments.

Ramer-Douglas-Peucker Algorithm

The Ramer-Douglas-Peucker algorithm [12] is mainly used in the context of
line simplification. In line simplification, an algorithm gets a polygon as input
and outputs a polygon that has fewer points than the original polygon, while
being as similar to it as possible. With slight modifications, we used this algo-
rithm in the project. In our setting in the project, the algorithm gets a time
series and an € € R as input. It outputs a compressed time series.

With the parameter €, the user can specify the maximum deviation that they
want the algorithm’s result to allow. Let T be a time series and let R be the
reconstructed time series of the compression algorithm’s result. For an i < |7,
the deviation to the i-th point in 7" is defined as |y(R;) —y(7;)|. The maximum
deviation is defined as max({|y(R;) —y(T;)| | ¢ < |T'|}). For an €, the algorithm
compresses the series such that the maximum deviation to 1" is smaller or equal
than €. We therefore say that with €, the user can set the allowed maximum
deviation of an algorithm. Similarly, we define the maximum deviation of a
point to a line. Let T be a time series, let [ be a line, and let {(z) be the
y-value of the line at . Then, the deviation of the i-th point T; to the line
is defined as |y(T;) — I(¢t(T}))|. U(t(T;)) is equal to the line’s value at the i-th
point’s time.
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Ramer-Douglas-Peucker is a divide-and-conquer algorithm. In its initial call,
it gets an € and the time series as input. Then, it draws a line between the first
and last point of it. Afterwards, it searches for the point in the time series that
has the maximum deviation to the drawn line. We denote this point as T,,. If
this maximum deviation is smaller than e, it returns a compressed series that
only contains the first and last point. Otherwise, it divides the time series into
two new parts. The first part starts at the first point and contains every point
until 7;,,. Similarly, the second part contains all points from 7, until the last
point. For each of those two parts, the algorithm calls itself recursively, with
the part and € as input. In the next step, it merges the compressed series that
were returned from the two recursive calls and returns them.

Modifications of Ramer-Douglas-Peucker Algorithm

In the established Ramer-Douglas-Peucker algorithm, the user specifies one ¢
as parameter. The algorithm compresses the series such that the deviation
to every point in T is smaller than . However, it can be sensible to allow a
higher deviation to some points in 7" and a smaller deviation to others. For
example, there can be areas in the series, which have a high amount of fluc-
tuations. Depending on the use case, it is possible that the user would not
want to keep these oscilliations in the compressed time series. However, if they
select ¢ accordingly, they could lose information interesting to them in other
parts of the series.

In order to handle these situations, we slightly altered the Ramer-Douglas-
Peucker algorithm in the bachelor’s project. In the altered version, the algo-
rithm gets a time series 7" and an array E of size |T'| as input. For each 7, E[i
contains the allowed deviation to the point 7;. In the previous setting, the
algorithm calculated the maximum deviation to the line to decide whether the
time series needs to be compressed. However, in this altered setting this does
not work. Even, when for a point 7} the deviation to the line is smaller than
its allowed deviation E[i], there could exist other points in the series that have
a higher deviation than they are allowed to.

To address this problem, we calculated the maximum relative deviation instead
of the maximum deviation in the project. To calculate a relative deviation of
a point T; to a line [, we compute

|y(T2) — I(t(T5))|
ETi]
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If the maximum relative deviation is below one, only the first and last point of
T are contained in the compressed series returned by the algorithm. Otherwise,
we split the time series by the point with the maximum relative deviation and
call the algorithm recursively, similarly to the original algorithm.

Local Optimization

In the bachelor’s project, we developed an algorithm that further optimizes a
compression’s result. This algorithm is called LoOp, which is an abbreviation
for local optimization. Let 7" be an original time series and let C' be a com-
pressed series that is output by an algorithm that compresses 7'. LoOp moves
the points in C such that the rMSE (see Section 2.5) of the reconstructed series
from C' gets improved. For this, LoOp iteratively considers three neighboring
points of C'. It starts with the first three points, then it looks from the second
to the fourth point, and so on. At each step, LoOp attempts to improve on
the TtMSE. To do this, it fixes the first and last point and changes the middle
point’s time and value, such that the resulting rMSE of the reconstructed se-
ries is minimal. The mathematical fundamentals of this algorithm are further
discussed in [32]. Since no new points are added, |C| stays the same after the
application of LoOp. Also, LoOp moves the points such that their times are a
part of the original time series as well.

A compressed time series can contain points whose placement leads to a high
error. When the error can be considerably reduced by slightly altering these
points, LoOp may be able to do this. Therefore, LoOp is able to significantly
improve on the rMSE in some cases. However, since LoOp changes the points
in ', we can not guarantee that the deviation to every point in 7" is smaller
than allowed. Nevertheless, since LoOp optimizes for the rMSE, we expect that
the deviation to the vast majority of points is still within the tolerance. Other-
wise, the rMSE would be increased, which is not possible per LoOp’s definition.
For the experiments, we always use the version of the Ramer-Douglas-Peucker
algorithm that can handle multiple . Afterwards, we apply LoOp as a way to
make sure the compressed series does not contain points with values that are
very unfavorably placed in regards to the rMSE.

2.3 Determing Parameter ¢

As we discussed, the Ramer-Douglas-Peucker algorithm gets an ¢ as parameter.
It is important that the user chooses an ¢ suitable to their needs. The higher
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Figure 2.1: This Figure shows a window of a time series of the Beijing PMs 5 dataset [22],
consisting of 5000 points. In this area, there is an upwards trend discernible, but also many
fluctuations.

g, the less accuracy the compressed time series has. Therefore, an ¢ not well
chosen leads to unsatisfactory results to the user. For one time series, a user
with expert knowledge might know what deviation ¢ they want to tolerate, for
instance because they know the measuring inaccuracy of the sensor. However,
there might be series where this is not the case. Especially when there are
similar series that should be compressed, a user might not want to choose an
individual ¢ for each time series. However, to set the same e for all series
may also not be an option, since those time series can have slightly different
characteristics and varying value ranges. In our bachelor’s project, we solved
this problem by calculating € with a heuristic for each series.

In time series analysis, time series are usually decomposed into multiple compo-
nents [4]. In the decomposition, they are divided into trend, seasonal patterns,
cyclic patterns, and an irregular component. A trend shows the direction of
a time series over a long period of time. Cyclic patterns are behavior of a
time series that repeat themselves, but not with a fixed period. On the other
hand, seasonal patterns occur over a fixed period. Irregular movements are
movements of the series that can not be explained with the other three com-
ponents. We denote these movements, which often show a lot of fluctuations
and variations, as noise (see Figure 2.1). For the heuristic, we assume that
the user usually would like to keep movements such as the trend, but is not
interested in noise.
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Figure 2.2: In Figure 2.2a, a time series of the Pamap2 dataset [27] is displayed. Figure 2.2b
shows a time series of the Beijing PMy 5 dataset. Both series have a similar amount of points.
For 2.2a, the heuristic calculates a considerably smaller ¢.

To explain the heuristic, we define the term window first. A window is a
subset of the original time series, in which consecutive points of the series are
contained. We say a window has size w when it consists of w points. We can
partition a time series 1" into windows. For a partition, each point in 7" needs
to be contained in exactly one window. When every window of the partition
except the last one has size w, we denote that we partitioned the series into
windows of size w.

To calculate e, we partition the series into windows of size w. The param-
eter w is chosen by the user. It indicates that to them, each window of size w
mostly consist of noise. With a large window size, the user indicates that most
of the series consists of movements they consider noise. On the other hand,
a small window size suggests most of the series’” movements are important to
them. With this information in mind, the heuristic calculates the parameter ¢
for a time series.

Per window, it calculates a maximum deviation d of the noise to the window’s

regular movements. We tried out multiple approaches to approximate this,
which are discussed in the next section. Then, we aggregate every calculated

10
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d by taking the median of them. For the time series, this calculated median is
then our result for its allowed deviation €. When the user wants to compress
multiple time series, they may not need to set every € by hand anymore. With
the heuristic, they can set the parameter w once, and then get approximated
¢ for each time series. The heuristic sensibly adapts to certain characteristics
of the time series. For instance, when a series has a higher amount of noise, it
calculates a higher € (see Figure 2.2).

Calculating multiple ¢

In the project, the heuristic calculated one allowed maximum deviation ¢ for
each time series. However, in a time series with different noise levels, it could
be sensible to allow for multiple € per series. In the project, we took the me-
dian over the calculated divergences d of the noise to the trend, and set ¢ to
the result. In this work, we change this such that the allowed deviations ¢ can
differ between each window. Per window, we set an allowed deviation ¢ that
only applies to its own points. Naturally, the divergence d of the window’s
noise to the trend influences its own . Additionally, to allow for flexibility,
the user can still aggregate the values of d from multiple windows, in order to
calculate an allowed deviation € for the window’s points. With the parameter
s, they can specify how many windows are taken into account for that. Set
to the smallest value, the user indicates that the allowed deviation e for each
window should be equal to the value d calculated for it. When they set s to the
largest value, they state that the calculated divergences should be aggregated
over every window to calculate an €, just as in the heuristic used in the project.
The parameter s has a relative value, with a value range between 0 and 1. Let
w be a window size, and P be a partition of the series into windows of size w.
Let W be a window on which we want to calculate for its points the allowed
deviation ¢ to them. Then, to each side of W, the values of d from its nearest
s - | P| neighboring windows are taken into account and then aggregated. Since
both sides of the window, the left and right, are taken into account, the ¢ for
W is calculated from 2 - s - |P| values, and additionally from the value d of
the window itself. These values are aggregated by taking the median over them.

Also, there can be cases where the user wants to slightly increase the intensity
of the compression, while still retaining the current partition of the windows.
In the project, we therefore introduced that they can choose one constant fac-

tor f, by which each calculated ¢ gets multiplied.

For the experiments that we conduct, we use this altered heuristic. Therefore,

11
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there are three parameters that we analyze, the window size w, the relative
size s of the set of neighboring windows from which an ¢ is calculated, and the
scaling factor f.

2.4 Window Heuristics

Let w be a window size and let T" be a time series. Then, we denote with W
a window of T" that has size w. Given such a window W, we need to calculate
the maximum deviation d of its noise to its regular movements. For this, we
have tried out multiple approaches in the project.

Min-Max

The min-max heuristic is quite straightforward. With P = {y(W;) | i < w},
we denote the values of the window’s points. The value range of W is then
defined as max(P)—min(P). With the min-max heuristic, we set d to the value
range of the window. We know that the maximum deviation to the regular
movements is always smaller than the value range of W. Additionally, when
there exist more oscillating movements in the window, this is often reflected
by a higher value range, which leads to a higher calculated . Therefore,
this approach often allows for a higher compression factor, when there are
more fluctuating movements in a window. However, the heuristic can in some
instances lead to unwanted behavior. For instance, we can consider a window
where the values of the time series only only consists of a clear trend, and not
of any noise. Here, we would want the heuristic to calculate a small deviation
d. This is not the case here. Since only the value range gets considered, the
heuristic would compute a large deviation d in those cases.

Linear Regression

To better deal with steep slopes, we can compute the deviation d with other
heuristics. One heuristic, the linear regression heuristic, approximates the
trend line in the window (see Figure 2.3). The trend line is calculated by
simple linear regression over all points in W. This regression line has the form
m - x + b. We denote the first point of the window with W;, and the last
point with W,,. y(W;) indicates the value of a point, t(W;) its time. ¢ denotes
the mean of the window’s times, 7 is equal to the mean of the y-values in the
window. We apply simple linear regression as described in [3]. For this, the

12
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Figure 2.3: A time series of the Pamap2 dataset[27] is shown. Given a window of size 5000,
the trend of the series is approximated by linear regression.

slope m of the linear regression line is set as

2 (W) = D(y(W;) —7)
2 i (E(W5) —1)?

We set its constant value b as y —a - t.

For the window, we compute per point the deviation to the trend line. The
maximum deviation to the trend line is seen as the deviation of the irregular
movements to the trend. Applied on a window with a high slope, the calculated
deviation d is therefore small as well.

Central Simple Moving Average

For a window, we want to separate its trend from its irregular movements.
Another established way to filter these is to calculate a moving average on the
series [21], see Figure 2.4. For each point W; of the window, we calculate its
averaged value as the mean of {y(W,) | [a—i| < %-w}. The series that consists
of those averaged values is called central simple moving average (CSMA) [18].
% was determined empirically on the public datasets that are introduced later
in this work. With this value the CSMA follows the movements in the window,
but it does not follow every small movement in it. We define for a point W;

its deviation to the CSMA as the absolute difference between the point’s value

13
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Figure 2.4: The same window as in Figure 2.3 is shown. In 2.4a the trend is approximated with
the CSMA. In 2.4b, it is approximated with a low-pass filter using Fourier transformation.

and its averaged value. To compute d, we calculate for each point W; this
deviation. Then, we set d as the maximum of the computed values.

Fourier Transform

In addition to the CSMA, there are other approaches to filter oscillating move-
ments that are mentioned in literature [21|. One idea that is discussed, is to
apply Fourier transform on the data. Every series can be constructed from
a sum of sine waves. By applying Fourier transform, we transform the time
series into the frequency domain. The mathematical foundations for that are
described in [17]. The frequency domain displays to a given frequency, how
much the sine wave with this frequency contributes to the original signal. We
denote this as the frequency’s amplitude. The higher the frequency, the more
volatile the accompanying sine wave is. Since we want to have a smoothed
time series, we do not want that waves with a high frequency contribute to the
signal. In the frequency domain, we can filter the data, as is described in detail
in [1]. To filter the data, the series in the frequency domain is changed, such
that the amplitudes of frequencies above a certain cut-off frequency are set to
0. Since the frequencies are discrete values, we can specify how many of them
should be kept at their original amplitude. We denote this amount as c. In the
calculation, we keep the amplitudes of the ¢ lowest frequencies at their original
value, while they are set to 0 for the rest of the frequencies. To only keep the

14
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sine waves with the lowest frequencies, we set ¢ to a small number, with ¢ = 5.
Similarly to the CSMA heuristic, this number was determined empirically with
the goal that only the broadest movements of the series are displayed in the
smoothed time series. The Fourier transform has the characteristic that it can
be inversed [17]. With the inversion, we are able to transform a series from the
frequency domain into the time domain, again. After we set the amplitudes of
the vast amount of frequencies to 0, and apply the inverse Fourier transform,
we have a smoothed time series with less oscillations (see Figure 2.4). This
procedure is called low-pass filter. On the smoothed time series, we can now
measure the maximum deviation between the smoothed series and the original
series and set it as our calculated deviation d for the window. The maximum
deviation to this smoothed series is calculated analogously to the deviation to
the CSMA.

15
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2.5 Error Measures

When we compress a time series, we need to measure the quality of the com-
pression. For this purpose, there exist many error measures, some of them are
for example discussed in 28] [5]. For the experiments, we use some of the mea-
sures discussed in these works. For each of the error measures, we calculate
the error of a reconstructed time series R to a time series 7.

Mean Absolute Error

A simple error measurement is the mean absolute error (MAE). The MAE
aggregates the deviation of the points. The smaller the aggregated deviation
is, the more similar the reconstructed time series is to the original time series.
The MAE is equal to

|T|

LS (T - (R

Root Mean Squared Error

To calculate the root mean squared error (rMSE), we calculate the mean
squared error (MSE) first. MSE is defined as

|7
D> (1= Ri)?

Since each point’s deviation is squared, MSE further punishes it when the
reconstructed time series contains points with a high deviation. On the other
hand, small deviations receive less importance. To compute the rMSE, we take
the root of the MSE. This way, the error has the same dimension as the MAE.

S|

L., Error

The Ly error only considers the point with the highest deviation. It is calcu-
lated as
max({|Ti — Rl |i <n })

As a consequence, every point except the point with the largest deviation has
no influence on the L., error.
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2.6 Normalization

We need to consider that the time series can have different value ranges. For
instance, there exist series with a range from 0 to 1. Other series may have a
range from 0 to 2000. To compress a time series with a high value range may
result in a greater error than when a series with a small range is compressed.
Especially when we compress multiple time series, this property would make
it hard to compare errors of the reconstructed series to each other. To reduce
the dependency on the series’ value range, we normalize each of the calculated
errors by it. Let v be the value range of the series, and e an error that is cal-
culated on the reconstructed series. Then, the normalized error is calculated
as e - % We call this normalization the min-max normalization. We denote
the normalized error measures with nMAE, nRMSE, and nL,, respectively.
The error can have values between 0 and 1. In the experiments, we saw for
each error measure that an error smaller than 0.01 can be considered as small.
On the other hands, except for the nlL,, norm, the normalized errors seldom
displayed a value above 0.15. For the nL., norm, the normalized errors could
be as large as 0.5.

There exist other ways to define error measures that do not measure absolute
deviations. For example, there exists the category of relative error measures.
In a relative error measure, the error to a point 7} is measured in relation to
the point’s value. When we deviate to a point with a large value, the error is
smaller, compared to when we have the same deviation to a point with a small
value. This property, however, is not attractive for our compression setting.
On the one side, compression on a time series with a value range between
1000 and 1010 leads to low errors. On the other side, if the values of a time
series range between 0 and 10, a similar compression can result in an error
that is quite high. Therefore, the relative error for a compression can vary a
lot, depending on the value range of the series.

Comparison between the normalized Error Measures

In order to decide how to measure the error, we discuss the differences between
these normalized error measures. The main difference between nMAE, nRMSE
and nL, is their punishment of outliers. We view outliers as points in a time
series, whose value differs greatly from the value of the points in their near
environment. Since the nRMSE penalizes high deviations of the reconstructed
series to the original series’ points, a compression algorithm often needs to
take outliers into account to achieve a small error. In contrast to this, ignoring
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Figure 2.5: Two settings to compress a time series of the Kinect dataset [2]. In the first setting,
¢ is different per window, while in the second setting one ¢ is calculated for the whole series.
The reconstructed series of the first setting is shown in Figure 2.5a, while Figure 2.5b displays
the result of the second setting. In the second setting, outliers are kept, while the first setting
keeps other movements instead of outliers. The second setting leads to a lower nRMSE of the
reconstructed series (0.04 instead of 0.05), while the first yields a lower nMAE (0.028 instead of
0.031).

outliers does not necessarily lead to a high nMAE. This can be seen for instance,
when we compare two different compression settings (see Figure 2.5). The first
setting keeps outliers, while the other keeps all parts of the time series that
have a persistent slope. Both instances have the same compression factor.
Nevertheless, the reconstructed series of the first compression has a higher
nMAE than the one of the second, while in regards to the nRMSE, it is the
other way around.

Thus, the choice of a suitable error measure depends on the user’s preference.
Do they want to keep all outliers? Then, it may not be a good idea to measure
the error with nMAE. Are they not interested in them? Then, using nMAE
as error measure may become a good idea. For the experiments, we mainly
look at the results that we get with the error measure nRMSE, however, we
bring up the nMAE as comparison when suitable.

In contrast to nMAE and nRMSE, nL, only depends on one point of the recon-
structed time series, namely the point that has maximal deviation. Therefore,
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Figure 2.6: Two settings to compress a time series of the Energy Production dataset [8]. In
the first setting, one ¢ is calculated for the whole series, while in the second one ¢ is different
per window. The reconstructed series of the first setting is shown in Figure 2.5a, while Figure
2.5b displays the result of the second setting. The first setting leads to a lower nL, error of the
reconstructed series (0.28 instead of 0.29), while it has a clearly larger nRMSE (0.082 instead
of 0.072).

to have a small error, it is sufficient when there is a small maximum deviation.
However, when the maximum deviation is not large, this does not necessarily
mean that most of the points have a small deviation (see Figure 2.6). If the
user wants the properties of the entire reconstructed series to be covered by
the error measure, nl., is not suitable. In our experiments, we only bring up
the nL., error when we compare how the error measure influences the non-
dominated parameters.
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3.1 Multi-Objective Optimization

We analyze the effect of the different heuristics and parameter choices on the
results of the compression algorithm. To evaluate a fix setting of heuristic and
parameters, we introduce datasets to run it on. This happens in Section 3.2.
Any given parameter setting is applied to every series in the respective set.
This way, the results are more generalizable than if we would have ran the
algorithm on a single time series only.

To evaluate the result of a fix setting, we define quality measures. When we
analyze a setting, there are two criteria that we consider. The first criterium is
the aggregated error we get when the series in the dataset are compressed with
the setting. For this, we calculate the errors of the compression’s reconstructed
series with one of our normalized error functions presented in 2.5 and take the
mean over them. When we use, for instance, the nRMSE as error function,
this criterium is denoted as aggregated nRMSE. The second criterium is the
aggregated compression factor. For a dataset and fix setting, we take the har-
monic mean [26] of the compression factors achieved on the dataset’s series.
Usually, a larger aggregated compression factor leads to a larger aggregated
error. Therefore, there is no compression setting that excels in both criteria.

To still compare them to each other, there exists the technique of multi-
objective optimization [19]. With multi-objective optimization, both criteria
are taken into account when we optimize the parameters’ values. If for a pa-
rameter combination, there exists another combination that performs better
on both criteria, the parameter setting is dominated. Consequently, we can
disregard it. Finally, we analyze the parameter combinations that are not
dominated.
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There exist approaches in literature to find non-dominated parameters, as are
for example discussed in [6]. We use the non dominated sorting genetic al-
gorithm (NSGA2)[11]. It generates a few random parameter settings in the
beginning and calculates which settings produce results that are not domi-
nated. For those settings, the parameter values are then modified and again
evaluated afterwards. If these changes produce valuable results again, the pro-
cedure is repeated, and so on. In contrast to this, settings that produce a high
aggregated error and low aggregated compression factor are disregarded and
not used for further calculations. The combinations that are not dominated
consist of an aggregated error and an aggregated compression factor. There-
fore, we are able to plot them against each other. The resulting graph is called
a pareto front.

The experiments were run on a machine with an Intel(R) Xeon(R) Gold 5118
CPU with 2.30 GHz that supports SSE, SSE2, SSSE3, SSE4.1, SSE4.2, and
AVX instruction sets. The machine has 62 GB RAM available. It runs Linux
4.14.85-rancher. To generate a pareto front for one dataset took a few hours
of time at maximum. In order for the NSGA2 algorithm to generate sensible
parameter combinations, we need to limit the ranges of the values that the
parameters can take. For the window size w, we set the minimum window
size to 10, since with windows for a smaller size than that, it is not feasible to
discern irregular movements and trends. For the scaling factor f, we analyze
the case that the user wants to increase the degree of the compression without
increasing the window size, since we presume this use case may be relevant to
them. Therefore we set the minimum value of f to 1. We set the maximum
values for w and f to 10,000, respectively 50.0. For each of these values, a very
high aggregated compression factor is achieved on the datasets, even indepen-
dently of the values for the other parameters. Since s is a relative value, we
limit its range to be between 0 and 1.
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Figure 3.1: Two example time series of the Pamap2 dataset.

3.2 Datasets

For the experiments, we look at different types of time series. For this, we
consider the following publicly available datasets. In section 2.3 we described
that a time series can be decomposed into trend, seasonal patterns, cyclical
patterns, and an irregular component. Both seasonal and cyclical patterns
display behavior that repeats over time, however in cyclical pattern this repe-
tition does not occur over a fixed period. We use this decomposition to analyze
the series in the datasets.

Pamap2

For the Pamap2! dataset, participants were tracked for 10 hours, while they
performed physical activities [27]. During this time, their heart rate was ob-
served. Furthermore, their movement was measured at a frequency of 100Hz
with inertial measuring units at their hands, chest and ankles. In the experi-
ments, we only look at the nine time series showing the participants’ heart rate,
since the other series consist mostly of variations and irregular movements.

The series generated by the heart rates contain between 20,000 and 40,000
points, depending on the participant. Example series can be seen in Figure

1 https://archive.ics.uci.edu/ml/machine-learning-databases/00231/
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Figure 3.2: Two example time series of the Kinect dataset.

3.1. Typically for the series, a long-term upward trend is discernible. There
are no cyclic or seasonal patterns in the series. There are fluctuations in the
series, but they only extend to larger intervalls.

Kinect

For the Kinect? dataset provided by Microsoft, participants were asked to
perform several gestures (e.g. “Throw an object”, “Change weapon”)|2]. While
they performed the gestures, the coordinates of several body parts were tracked.
Each coordinate forms a time series that can be analyzed and compressed. To
ensure some similarity between the series, we only consider the series display-
ing the values for one coordinate of one body part. For that, we choose the
x-coordinate of the participant’s spine, however a different coordinate could
have been fitting just as well.

Each time series has between 1000 and 2000 points. In the datasets there
are 594 gestures performed. Per gesture, we consider one time series (the x-
coordinates of the participant’s spine). In contrast to the Pamap2 dataset,
time series in the Kinect dataset do not show a trend. Furthermore, most of
the series in the Kinect dataset have seasonal characteristics (see Figure 3.2
a, 3.2 b). These seasonal patterns occur over a longer timespan. In addition,

2 https://www.microsoft.com/en-us/download/details.aspx?id=52283
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Figure 3.3: Figure 3.3a displays a time series of the Beijing PMs 5 dataset in full length. In
Figure 3.3b a window of the series of size 1000 is shown.

some time series have large peaks at their beginning or end.

Beijing PM, 5

In the Beijing PM, 5 dataset, Scientists from the Peking University analyzed
the air pollution of Beijing, People’s Republic of China. For this, they deter-
mined the concentration of the fine particulate PMs 5. To generate context
information, they also assessed the dew point, temperature and precipitation.
The measurements were taken every hour from the beginning of 2010 to the
end of 2014. From this set, we investigate the three series generated by the
dew point, temperature and precipitation data [22].

These series consist of 43,824 points. Similarly to the Kinect dataset, no
trend is discernible in the time series. However, here the series show strong
seasonality. In the series (see Figure 3.3a), we see a yearly pattern (one year
corresponds to 8760 points). Besides the seasonality, the series are further
influenced by irregularities and random movements. Even in a window that
only encompasses a small fraction of the series’ length, there is a considerable
amount of fluctuations discernible. This is shown in Figure 3.3b.

3 https://archive.ics.uci.edu/ml/machine-learning-databases/00381/
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Figure 3.4: Two example time series of the Energy Production dataset.

Energy Production

For the Energy Production® dataset, scientists of the University of Mons, Bel-
gium, tested prediction models for the energy use of appliances in a household.
For this, they measured their energy use in the span of four months, with one
reading every ten minutes. As context information, they also took readings of
the temperature and humility in each of the household’s room. We look at the
time series generated by the context information [8].

Each time series consists of 19,735 points. Some of the series in the dataset
are exclusively composed of fluctuations and are disregarded. We consider the
residual 19 time series. In the majority of them, no major trend is discernible.
Furthermore, in similarity to the Pamap2 dataset, no time series contains sea-
sonal or cyclical patterns. There is a large number of fluctuations in the series,
even when we only look at a small window (see Figure 3.4). In that regard, the
Energy Production series are similar to the Beijing P M, 5 dataset. In addition,
a lot of the series contain outliers. This phenomenon is more prevalent in this
dataset than it is in the other datasets.

4 https://archive.ics.uci.edu/ml/machine-learning-databases/00374/
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Figure 3.5: Two example time series of the Human Activity Recognition dataset.

Human Activity Recognition

For the Human Activity Recognition® dataset, scientists of the Queen Mary
University of London, UK, collected gravity, accelerometer, and gyroscope
data of people that executed activities such as walking, jogging or standing
[23]. We select the time series such that they display similar patterns. This
is, for instance, the case for some series generated by the gravity sensor’s y
coordinate. In total, we choose eleven series showing this sensor’s value. The
length of the series varies from 1,000 to 3,000.

Every time series contains seasonal patterns that repeat over a very short
period (see Figure 3.5). In some series, there are even cyclical patterns over
longer timespans (see Figure 3.5a).

5 https://www.kaggle.com/malekzadeh /motionsense-dataset
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4.1 Differences Between the Heuristics

We do not discuss the results for each combination of window heuristic and
a dataset. Instead, we discuss the influences of the heuristics first and see
whether there are even noticeable differences between them. Are there heuris-
tics that perform better than others in general? Are there interesting patterns?
The pareto front displays for a dataset the aggregated error in dependence of
the aggregated compression factor, and can therefore be used to analyze a
heuristic. Besides the pareto front, there are other things that can be consid-
ered when we discuss a window heuristic, such as its robustness.

Robustness

With robustness we denote behavior of a compression algorithm when there
are slight changes in the parameters. When the result of an algorithm only
changes slightly when there are small modifications in the parameters, the al-
gorithm is robust. Furthermore, in regards to robustness, the values of the
metrics should go in the intended direction. For example, the window size w
influences the computed deviation £ per window. The larger the user sets w,
the more movement there is per window, which should reflect in a higher ¢.
Therefore, the user expects a higher compression factor when they increase the
window size. Now, we discuss to what extent the algorithm’s behavior meets
this expectation when different heuristics are used.
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Figure 4.1: A comparison of the low-pass filtered series that are calculated by the Fourier
transform heuristic. In Figure 4.1a, the filtered series for a window of size 4910 is shown. In
Figure 4.1b, the low-pass filtered series for a window of size 10,000 is displayed. Despite the
significantly smaller window size, the low-pass filtered series in Figure 4.1a has a larger deviation
to the original series (23.6 instead of 20.6).
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Figure 4.2: A comparison of two compression settings for the series of Figure 4.1. Both settings
have s set to 0% and f to 1.5. They differ in their window size. The first setting uses a window
size of 4910 for the compression. In Figure 4.2a, its resulting reconstructed series is shown. The
second setting (see Figure 4.2b) has a window size of 10,000. The setting with the larger window
size has both a higher compression factor (3984 instead of 3652) and a smaller nRMSE (0.09
instead of 0.15) of the reconstructed series.

28



4 Results

First, we take a closer look at the Fourier transform heuristic. Regarding its
robustness, there are certain drawbacks. The heuristic calculates a low-pass fil-
tered series and measures how far the original series deviates to it. In the case
of the Fourier transform heuristic, it depends highly on the time series how
near a low-pass filtered series is to it. When only a few sine waves influence
the series’ broad appearance, the low-pass filter works as expected (see Figure
4.1b). However, when this is not the case, there can be larger deviations to
the original time series in the low-pass filtered series (see Figure 4.1a). There-
fore, sometimes a smaller window size generates a larger ¢, while a significantly
higher window size results in a smaller €. This results in compression settings,
where the nRMSE actually decreases, when the window size is highly increased
(see Figure 4.2). When the user increases the window size, they normally do
not expect such a behavior. Therefore, the Fourier transform heuristic may
not be a suitable choice to them.

When we look at the heuristic that computes a regression line to calculate ¢,
we run into a related issue. The reason for this is that the line’s fit to the series
highly depends on the window. For instance, in a window with a persistent
slope, the regression line follows the series quite closely. An example for such
a case can be seen in Figure 4.3b . In these segments, we compute a small €.
However, if in the beginning, the series has a steady decrease and afterwards a
steady increase, it can not be approximated with a regression line anymore. In
figure 4.3a, it can be seen that when the window is slightly altered compared
to Figure 4.3b, the regression line looks distinctly different. In regards to the
robustness of the heuristic, slightly changed parameters can therefore lead to
very different calculated . This is something that may not be wanted by the
user.

The CSMA heuristic and the min-max heuristic might not suffer from this
situation as much. The CSMA heuristic computes the CSMA on the whole
time series. When the window size is slightly increased, more points are taken
into account for the average of a point. Thus, the CSMA line increasingly
displays the long term trend instead of single movements. Compared to the
linear regression heuristic, the change in the CSMA line happens more grad-
ually however. Therefore, when the parameter settings change slightly, the
moving average lines tend to have a similar fit to the original series. In those
cases, the calculated parameters ¢ are therefore often similar. An example
for this is visualized in Figure 4.4. The same argument can be made for the
min-max heuristic.
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Figure 4.3: A comparison of the regression lines that are calculated by the linear regression
heuristic. In Figure 4.3a, the regression for a window of size 2510 is shown. In Figure 4.3b, the
regression for a window of size 2640 is displayed. Despite the smaller window size, and despite
the fact that both windows are largely overlapping, the regression line for the smaller window
has a considerably larger maximum deviation to the original series (36.3 instead of 21.6).
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Figure 4.4: A comparison of the central moving averages that are calculated. Compared to
Figure 4.3, the same window sizes and windows are considered. In Figure 4.4a, the CSMA with
a window size of 2510 is shown. Figure 4.4b displays the CSMA with a window size of 2640. In
this case, both calculated maximum deviations are similar, with 17.2 for the smaller window and
19.7 for the larger one.
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Now that we discussed certain properties of the heuristics, we show them
experimentally. For that, we look at the Pamap2 dataset as a representant
of a dataset with only few oscillations. To represent a dataset that has many
variations in a short window, we consider the Beijing PM, 5 dataset as well.
We take every time series of those datasets into account and a large number
of possible window sizes. To evaluate the effect of an increasing window size,
the scaling factor f and the parameter s, which denotes the percentage of
neighboring windows taken into account per window, are set to a fix value.
To better examine the effect of varying partitions of the windows, we set s
to 0%. We set f such that when the original series has many fluctuations,
it is possible for them to not be present in the compressed series. With this
criterion, we determined f to be equal to 1.5 empirically. For each dataset, we
generate 100 data points. Each of them consists of a different window size and
the two fix parameters. We choose the different window sizes such that they
are equidistantly spread over the length of the time series. For each point, we
calculate the aggregated compression factor and aggregated nRMSE. Figure
4.5 shows the results.

There are a few things to note here. On the Pamap2 dataset (see Figure 4.5a),
the linear regression heuristic performs worse than the CSMA and min-max
heuristic. For any aggregated compression factor, the resulting error of the
linear regression heuristic is higher than for these other two heuristics. This
can be due to the fact that it calculates large deviations € in important areas,
when the windows are unfavorably split. Since there are multiple series in the
dataset, it is likely that for any window size, there exists one time series where
the division of windows is disadvantageous. With the Fourier transform heuris-
tic, we see that an increasing window size often leads to a decreasing aggregated
compression factor and nRMSE, which we suspected to happen. The second
experiment on the Beijing PM, 5 dataset (see Figure 4.5b) demonstrates that
the regression heuristic is not necessarily less robust than the CSMA heuristic.
In the case of this dataset, with the highly fluctuating movement of its series,
the regression line and CSMA line tend to look similar per window. However,
again we see that the Fourier transform heuristic does not perform robustly.

From the analysis and from the experiments, we conclude that regarding ro-
bustness, the Fourier transform heuristic does not show very promising results.
Furthermore, there are time series where the computed deviations ¢ for the
windows are inconsistent, when the linear regression heuristic is used. This
problem is less severe, when the CSMA heuristic and min-max heuristic are
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Figure 4.5: In Figure 4.5a the results for the Pamap2 dataset are displayed. Figure 4.5b shows
the results for the Beijing PMy 5 dataset. Each Figure shows for each different heuristic, the
development of the aggregated nRMSE and aggregated compression factor. However, the pa-
rameter settings are restricted for this calculation. The parameter s is fixed at 0% and f is fixed
at 1.5. The window sizes are chosen equidistantly over the length of the series. A point for a

window size is connected with a line to the one for the next larger window size.
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Figure 4.6: For the same datasets as in Figure 4.5, the development of the aggregated nRMSE
with the aggregated compression factor is shown for each heuristic. This time, per heuristic the
parameters are optimized for it. Figure 4.6a shows the result for the Pamap2 dataset, Figure

4.6b the results for the Beijing PMs 5 dataset.
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used.

General results

But what are the results when the three parameters get optimized? Do the
more robust heuristics perform better in this regard as well? For this, we
generate non-dominated parameter choices for each heuristic with the NSGA2
algorithm. The results of this experiment are shown in Figure 4.6. When the
parameters are optimized instead of fixed at a certain value, the heuristics
perform remarkably similar. As a consequence, we concentrate on the results
of the CSMA heuristic in the upcoming sections, since this heuristic is quite
robust with respect to changes to parameters such as the window size.
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4.2 Performance on Different Datasets

For each dataset, we run our compression algorithm on every selected time se-
ries. Using the NSGA2 algorithm, we perform a multi-objective optimization
of the parameters, with the aggregated nRMSE and aggregated compression
factor as objectives. Then, we analyze the generated pareto fronts. For the
analysis, we partition our datasets into two categories. The first category con-
tains the datasets where its series have a large amount of variations in a small
window, while the second dataset contains the datasets where the amount of
variations is rather small in their series.

To split the datasets by their amount of variations, we could generate anec-
dotal evidence by looking at some of their time series. However, we also may
be able to quantify the amount of variations characteristic for a dataset. To
approximate this, we compute how similar the dataset’s series are to a central
simple moving average of them. The more variations a series has, the less
similar it is to a moving average of it (more on this can be found in Section
4.4). Then, we can, for a dataset, aggregate the obtained distances to the
moving average and use this as a measure for the amount of variations present
in it. To compute this, we need to set a sensible window size w for the moving
average. We choose w large enough, such that the variations in the series are
filtered by the moving average. However, if every movement is filtered out by
it, even series with a low amount of variations may have a low similarity to
the moving average. To satisfy these requirements, we look, for every time
series T, at the moving average with w set to = - |T']. The number & was
generated experimentally on our datasets. However other factors (for instance,
%, ﬁ, etc.) could have been chosen just as well to meet the requirements and
bring similar results. To aggregate, for the series in a dataset, the distances to
the moving average, we calculate for each of them the nRMSE to the moving

average and afterwards compute the mean over these calculations.

As a result of these calculations, the Beijing PMs 5 dataset yields an aggre-
gated nRMSE of 0.08, the Energy Production dataset an aggregated nRMSE
of 0.07, and the Human Activity Recognition dataset an aggregated nRMSE of
0.08. For the other two datasets, the Pamap2 dataset and the Kinect dataset,
the aggregated nRMSE is equal to 0.02 in both cases. Because of this signifi-
cant difference, we count the Beijing PMy 5, Energy Production, and Human
Activity Recognition datasets to the datasets with a large amount of varia-
tions and the other two datasets to the datasets that have a smaller amount
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Figure 4.7: Pareto fronts for different datasets. For each dataset, the CSMA heuristic is used
and the parameters w, s, and f are optimized for it. The pareto fronts show, for the non-
dominated parameters, the development of the aggregated nRMSE and aggregated compression
factor. Figure 4.7a shows the pareto front for the Beijing PMs 5 dataset, Figure 4.7b the one
for the Energy production dataset, and Figure 4.7c the pareto front for the Human Activity
Recognition dataset.
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of variations.

Large Variations

In Figure 4.7, for the datasets with a large amount of variations, the pareto
fronts for the aggregated error in dependence of the aggregated compression
factor are shown. In the beginning of each front, an increase of the aggre-
gated compression factor leads to a massive increase in the aggregated error.
For larger compression factors, the error only increases marginally. Why is
that so? To have a reconstructed series with a small nRMSE of, say, 0.01,
it needs to contain the majority of the original series’ variations. To keep
them, however, leads to a small compression factor (see Figure 4.8a). When
the compression factor is raised, the compression algorithm draws a straight
line through most of the variating points (see Figure 4.8b), which results in a
high nRMSE. This is a general issue for every series that has a high number
of variations. When the user wants to keep the variations, they have to accept
a low compression factor.

However, if they do not need to have the variations, for example because they
are considered noise in the application domain, the achievable compression
factor increases drastically. An example for such a compression is shown in
Figure 4.9b. To only keep some of the variations in this case may not be sen-
sible from the perspective of the user, but also it is not ideal when we look
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Figure 4.8: Two compression settings are compared. The reconstructed series of the first
compression setting (w = 11, s = 100%, f = 1.00) is shown in Figure 4.8a. The second
compression setting (w = 109, s = 100%, f = 9.9) leads to the reconstructed series displayed
in Figure 4.8b. For the first compression setting, the nRMSE of the reconstructed series is still
small with 0.006, however the compression factor is small as well with 4.1. For the second setting,
in which the compression factor is, with 276, not as small, the resulting error is quite large, with

0.07.
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Figure 4.9: Two compression settings are compared. The reconstructed series of the first
compression setting (w = 15, s = 100%, f = 9.9) is shown in Figure 4.9a. The second
compression setting (w = 109, s = 0%, f = 4.57) leads to the reconstructed series displayed in
Figure 4.9b. The compression factor for the second compression setting is considerably higher
(3652 instead of 276), while the nRMSE of the reconstructed series is not increased by much
(0.09 instead of 0.07).
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Figure 4.10: A reconstructed series is shown, which skipps some seasonal patterns. To generate
this series, w was set to 58, s to 0%, and f to 13.8. Compared to the compression displayed
in 4.9b, the nRMSE of the reconstructed series increases significantly (0.16 to 0.09), while the
compression factor increases less dramatically (4382 instead of 3652).

at the objectives. In Figure 4.9a, the reconstructed series still contains some
variations. The nRMSE for this example is only slightly smaller than on the
right figure, while its compression factor is decreased by 13 times. For settings
with a high amount of variations, there are two advisable options for the user
in most cases. Either they keep every variation, or keep none of them.

When we compare the pareto front of the Beijing PM, 5 dataset to the pareto
fronts of the Energy Production dataset and Human Activity Recognition
dataset, there is an interesting difference between them. After the pareto
front for the Beijing PMy 5 dataset flattens, it displays a significant increase
again for aggregated compression factor larger than 5000. On the other hand,
the front for the Energy production and Human Activity Recognition datasets
do not show such a salient point. This difference can be explained by the sea-
sonality of the series. As we discussed earlier, every series in the Beijing PM, 5
dataset has a strong yearly seasonality. Consequently, there is a stark increase
in the nRMSE of the reconstructed series, when even one of the seasonal pat-
terns is skipped due to the compression (see Figure 4.10). On the other hand,
when those longer seasonal patterns are not present in a series, the nRMSE in
dependence of the compression factor does not show such a bend.
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Figure 4.11: The pareto fronts are created similarly as in Figure 4.7. Figure 4.11a displays the
pareto front for the Pamap2 dataset, Figure 4.11b shows the one for the Kinect dataset.

To conclude, we see that when a time series has a large amount of variations,
there are only two sensible options in most cases. Either the user keeps those
fluctuations, or they discard them. Keeping only some of the fluctuations
results in a comparatively small compression factor and high nRMSE for the
compression of a series. The same can be said, when the series consists of
simple seasonal patterns or cycles. Again, if the user decides to keep only
some of the patterns, both, compression factor and error, are suboptimal.

Small Variations

When we look at the Pamap2 dataset and the Kinect dataset, they share the
similarity that in a short window, their time series do not contain a large num-
ber of variations. This property sets them apart from the other datasets. The
pareto fronts generated for those datasets display distinct differences (see Fig-
ure 4.11). The main difference is that, for non-dominated parameter settings,
the aggregated nRMSE scales linearly with the aggregated compression factor.
For those datasets, the algorithm achieves a aggregated compression factor of
more than 50, while keeping the aggregated nRMSE below 0.01.

We explain the linear movements using an example series of the Pamap2
dataset, which can be seen in Figure 4.12. In the series, there are some areas,
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Figure 4.12: One example time series of the Pamap2 dataset, with three different compression
settings. Here, the error increases linearly to the compression factor. The reconstructed series of
the first setting (w = 96, s = 100%, f = 3.0) is displayed in Figure 4.12a. It has a nRMSE of
0.005 and the setting a compression factor of 127. The second setting (w = 20, s = 0%, f =
49.8, seen in Figure 4.12b) yields a nRMSE of the reconstructed series of 0.05 and a compression
factor of 1273. The third setting (w = 132, s = 0%, f = 50.0, seen in Figure 4.12c) results in
a nRMSE of the reconstructed series of 0.087 and a compression factor of 2866.

where it has an upwards trend, without a lot of deviation from it. Then, there
are some smaller, variating movements. Furthermore, there are some signifi-
cant highs in the series, where afterwards, the values drop steadily again. For
such a series that does not only consist of variations or seasonal movements,
different compression factors result in considerably different errors of the re-
constructed series. This can be well seen in the example series. With a small
compression factor, every small movement can be captured. In Figure 4.12a it
is visible that as a result of this, the error is small as well. For a compression
factor 10 times as large compared to the one in Figure 4.12a, they can not be
kept anymore, but at least some of the movements with larger swings can. We
see in Figure 4.12b that the error therefore increases noticeably as well, in fact
the increase is also tenfold. With an even greater compression factor, even
some of these movements are not covered in the series anymore, however, the
trend can still be displayed. Therefore, the error rises almost twofold again,
when the compression factor increases by 2.25 times. This can be seen in Fig-
ure 4.12c.

When we compare the pareto front of the Pamap2 dataset to the one of the
Kinect dataset, they look quite similar to each other. Both show a nearly
linear scaling. However, the pareto front of the Kinect dataset shows a starker
increase, beginning at an aggregated compression factor of 300. One possi-
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ble explanation for this phenomenon are the longer seasonal patterns that are
contained in some series of the dataset. As described earlier, it can lead to
a starker increase in error, when seasonal patterns are not approximated well
anymore. Since the dataset consists of a large number of time series, it is
possible that this is not the only influence on the rise of the aggregated error
with larger compression factors.

To sum it up, it seems like the error’s stark increase in the beginning is in-
deed caused by the variations. In datasets, in which these are only present
to a small degree, the aggregated error increases linearly with the aggregated
compression factor. For this reason, the user can freely choose a compres-
sion factor depending on their use case. There are no settings that would be
assumed as unattractive beforehand.

4.3 Combinations of Parameters

As we laid out, there are three parameters for the algorithm, the size w of the
window, the relative amount of windows over which ¢ is calculated s, and the
scaling factor f. When we optimize the parameter for the pareto front, we get
a set of parameter choices that yield non-dominated results. In this section,
we discuss whether there are patterns in this set of choices.

Windows Around s

In the setting, € gets calculated per window of the series, which allows the user
to have different maximum deviations of the reconstructed series in different
areas. The relative amount of neighboring windows to take into account is set
by the parameter s. We investigate whether there are datasets, for which the
values of s are similar to each other within the non-dominated parameters.

To evaluate this, we consider the pareto fronts that we generated in Section
4.2. For these fronts, we used the aggregated nRMSE as error measure. In
addition to this, we create two new pareto fronts for each dataset, one with
the aggregated nMAE as error measure, and one using the aggregated nlL.,
error. For each pareto front, the CSMA heuristic is used to calculate the lo-
cal €. Per pareto front, we eliminate some of the non-dominated parameter
combinations. For the datasets with large variations (Beijing PMsy 5, Energy
Production, Human Activity Recognition), we saw that in their pareto fronts,
there is an area in the beginning where the error shows a stark increase. This
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Dataset nMAE nRMSE nL.

Pamap2 54.2%  21.6% 1.7%

Kinect 25.7%  10.1%  1.6%

Beijing PMy s 04.7%  97.7%  14.6%
Energy Production 87.5%  65.0% 13.5%
Human Activity Recognition | 58.3%  28.4%  9.4%

Table 4.1: We observe per combination of dataset and error measure the relative amount of
non-dominated parameter choices, in which s has a small value.

is not only the case for the pareto fronts with the aggregated nRMSE as error
measure, but also for the pareto fronts with aggregated nMAE and aggregated
nL., as measures. Since we presume this may not be attractive to the user,
we exclude parameter settings whose results are located in this part of the
pareto front. To very roughly approximate this, we only consider per exper-
iment on these three datasets the non-dominated parameter settings, where
the respective aggregated error is larger than 0.05. Additionally, we cap the
maximum allowed error for all datasets. For this, we look at a reconstructed
series that only consists of a constant value, which is the original series” mean
value. When only the mean value is stored as a compression of the series,
the resulting compression factor would be larger than any compression factor
achievable with the Ramer-Douglas-Peucker algorithm. If the aggregated er-
ror of storing the mean is smaller than the aggregated error of a parameter
combination, we can therefore disregard the parameter combination.

With these restrictions, we observe per dataset and error measure how often
a non-dominated parameter combination has a small value for s. We denote
s as small, when it is less than 0.025. Since neighbors on both sides of the
window are considered, this means at most 5% of all windows are taken into
account to calculate the local €. The results can be seen in table 4.1.

The Beijing PM, 5 dataset and the Energy Production dataset consist of se-
ries with larger variations that do not appear seasonally, and outliers. The
Human Activity Recognition dataset consists of many variations as well, how-
ever they occur seasonally and not irregularly. The Kinect dataset and the
Pamap2 dataset contain only a few fluctuations in a short window. For the
datasets with a lot of irregular variations, the optimizations for the aggregated
nRMSE and aggregated nMAE often result in parameter combinations where s
is small. For datasets that contain only a few variations, or seasonal variations,
the non-dominated parameter combinations do considerably less often consist
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Figure 4.13: One example time series of the Pamap2 dataset. For both results of the compression
algorithm, window size and the scaling factor are the same. In the left figure, no window in the
neighborhood is considered. In the right figure, we take the median over all windows. The latter
approach result in a higher compression factor (1215 instead of 1100) and a 40% lower nRMSE
(0.037 instead of 0.058) of the reconstructed series.

of a small value for s. Furthermore, we observe that the optimizations for the
aggregated nMAE yield more often non-dominated parameter combinations
with a small parameter s, than the optimizations for the aggregated nRMSE.
Optimizations for the aggregated nL., error do not often yield non-dominated
combinations with a small s.

To illustrate the effect of a small value for the parameter s, we view the most
extreme case, in which s is equal to 0%. In this case, windows in which the
values deviate largely from the CSMA generally have a larger £ than windows
where this is not the case. In a series that has areas where a stark increase is
followed by a stark decrease, these areas can therefore potentially be omitted
in the compressed series without violating the bound . An example for this
can be seen in Figure 4.13a. If we medianize the windows’ deviations to the
CSMA, points in these areas have a smaller bound ¢ than without medianizing.
Consequently, they are represented in the reconstructed series. This can be
seen in Figure 4.13b. In this case, the error with medianizing is smaller than
without it, even though other areas of the series are less closely approximated
by the reconstructed series.
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Figure 4.14: One example time series of the Energy Production dataset. Again, in the left
figure we consider no neighboring windows, while we take the median over all windows in the
right figure. The window size w and scaling factor f are set to a fix value value. To consider no
neighboring windows results in a compression factor 2 times higher (822 instead of 411), while
the nRMSE of the reconstructed series is 14% smaller (0.058 instead of 0.067).

However, not every series has as few oscillations as the series in the Pamap2
dataset. The Human Activity Recognition dataset contains many variations,
however it has no outliers or much irregular movement in general. There do
however exist series that consist of outliers. These are partially present in
the Beijing PM, 5 dataset and even more so in the Energy Production dataset.
With the original Ramer-Douglas-Peucker algorithm, the user needs to set a
large € to get a compressed series that does not keep these outliers. This way
however, interesting movements in other areas may get lost. In those cases,
a flexible setting of £ comes in handy. Now, the outliers are covered by the
sizable ¢ for their respective windows. Additionally, areas with more steady
movements are taken into consideration, because of a smaller ¢ in their respec-
tive windows. In Figure 4.14, we see how the compression can be improved in
regards to the nRMSE this way. To conclude, we see that with a small value
for the parameter s, the algorithm is able to take outliers less into account. We
saw in the experiment that the non-dominated parameter choices depend on
the error the parameters are optimized for. It showed for the aggregated error
measures that the nMAE has the largest amount of combinations with a small
s, while the nL., error has the fewest by far, with the result for the nRMSE
being somewhere in between them. This can be explained by the error mea-
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sures’ punishment when outliers are not kept in the reconstructed series. The
less severe the error function punishes this, the more often a non-dominated
parameter combination leads to a reconstructed series that does not keep out-
liers, and therefore the parameter combination often has a small value for s.
In conclusion, the parameter s can be a tool for the user to indicate that the
reconstructed series should include more or less outliers.

Relation Between Scaling Factor and Window Size

The second parameter is the scaling factor. For every window, an ¢ is cal-
culated. After the calculation, the user is allowed to scale € by a factor f.
Therefore, in the compression setting there are two ways to increase the com-
pression factor of a compressed series. Either heighten the window size, or
enlarge the scaling factor. It could be suspected that the result of a larger
scaling factor can also be achieved by a heightened window size. If this was
the case, we would only need the window size w as a parameter and could
disregard the scaling factor. Therefore, we conduct experiments to evaluate
whether this assumption holds true. In order to do this, we change the upper
limit the scaling factor can adopt. In the experiments, this limit was 50. Now,
we consider the limits 5.0, 2.0, and 1.0 as well. For each limit and dataset,
we conduct the experiment and generate a pareto front. We use the CSMA
heuristic to calculate €. Also, we use the aggregated nRMSE as the error mea-
sure. Note that the lower bound of the scaling factor is always 1.0. Thus, we
see whether it influences the compression when the factor has a smaller range.
Additionally, we examine whether the scaling factor could be fixed at 1.0.

As we can see in the resulting pareto fronts, it does have indeed no measurable
effect, whether the limit is set to 50, 5 or 2. The very slight variations can be
explained by the way the NSGA2 algorithm works. Since it does not try out
every combination, the pareto fronts are only approximated. Therefore, slight
differences in the fronts do not have any explicative value. However, there is
an emerging pattern. In the Kinect dataset, the Beijing PMs 5 dataset, and the
Energy Production dataset, the compression algorithm performs worse when
the factor is fixed at 1.0, especially for larger aggregated compression factors.
This is displayed in Figure 4.15 and 4.16. When we consider our results of
the previous section, we observe a certain correlation. As a reminder, in the
previous section we tested on which datasets we gain anything when we have a
lot of differing € in one time series. Those were mainly comprised of the Beijing
PM, 5 dataset and the Energy Production dataset. In those datasets, with a
fix scaling factor of 1.0 the compression algorithm performs worse in regards
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Figure 4.15: The resulting pareto fronts that display the development of the aggregated nRMSE

with the aggregated compression factor for the non-dominated parameter settings.

For each

pareto front, the scaling factor f is limited to a different maximum value. Figure 4.15a displays
the results for the Pamap?2 dataset and Figure 4.15b the results for the Kinect dataset.
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Figure 4.16: The pareto fronts are generated the same way as in Figure 4.15. Figure 4.16a shows
the results for the Beijing PMy 5 dataset, Figure 4.16b the results for the Energy Production
dataset, and Figure 4.16c the results for the Human Activity Recognition dataset.
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to multi-objective optimization. One possible explanation for this is related
to the diversity of the ¢ in the windows. When ¢ vastly differs per window,
the partition of the windows can influence the result of the compression. For
instance, in the Energy Production dataset, with a larger window size outliers
and significant movements can occur in one window. As explained earlier, this
can create a dilemma. Either we choose a small € to depict the movements,
or choose a large ¢ to omit the outlier. In those cases, we can increase the
scaling factor f to increase the compression factor, while the partition of the
windows stays the same. In the Kinect dataset, with a fix f, the compression
algorithm performs worse for aggregated compression factors larger than 300.
This is illustrated in Figure 4.15. In the dataset, for aggregated compression
factors larger than 300, 87.5% of the non-dominated parameter combinations
have a small value for s as well. Therefore, its result is in line with the re-
sults for the PM, 5 dataset and the Energy Production dataset. In the other
datasets, a fixed scaling factor yields nearly equal results. We can assume that
in those cases, the partition of the windows matters less, since for many of the
non-dominated parameter combinations, every window has the same value for
€.

Summing up, we see that the scaling factor and the flexibility of ¢ allow the
user additional fine-tuning. With both parameters combined, the user can
compress the series such that the outliers are rather not kept, while other,
more consistent movements are displayed.

4.4 Window Size

Now, we discuss how we can use the window size to approximate the pareto
front. As we argued before, the window size is a powerful tool to adjust the
compression setting. Even though the scaling factor yields additional value for
some datasets, its addition does not dramatically change the characteristics
of the pareto fronts (see Figure 4.15, 4.16). Additionally, we observed that
depending on the dataset, the pareto fronts look vastly different to each other.
When the pareto front has a linear progression, the user has many options for
the window size. If, however, the pareto front displays a stark increase of the
error for small aggregated compression factors, a small window size is normally
not advisable. Therefore, the suitable parameters depend on the characteristics
of the pareto front. It would thus be beneficial if the user knows beforehand
what front they can expect for a dataset. In this section, we present a simple
procedure that allows them to do this. When we use the CSMA heuristic, we
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Figure 4.17: Two time series are compared. The left figure shows a time series of the Pamap?2
dataset, while the right figure display a series of the Beijing PMs 5 dataset. For both series, the
moving average per point is calculated for a window size w of 600. In the left figure, the effect
of the smoothing is more significant.

calculate for a window size w the central moving average of a time series. For
each w, the value per point is calculated over % - w values. For the approxi-
mation, we calculate the moving average with multiple window sizes w. Then,
we plot the dissimilarity of those moving averages to the original time series
in dependence of their window size.

The idea behind this approach is to approximate the error that is caused by
the variations and seasonal movements. We can consider a scenario, in which
the series is smoothed with a moving average that averages only over a small
amount of values. When the series has many oscillating movements, the av-
erage already smoothes them out (see Figure 4.17a), which leads to a large
difference of the moving average to the original series. However, a series with
slower, more consistent changes is not altered significantly when smoothed this
way (see Figure 4.17b) and thus the moving average is close to the original se-
ries in this case. The larger w is, the more values are taken into account to
calculate the value for each point. Therefore, a greater w leads to a moving
average that further follows the long term trend.

For each calculated moving average, we calculate its difference to the origi-
nal series with an error measure. Similarly as for the compression, we use
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the nRMSE. We calculate, per series, for multiple w the error of the moving
average with w as window size. More precisely, we use 100 equidistant win-
dow sizes per series. Finally, we need to aggregate the calculated errors and
window sizes over the entire dataset. To do that, we look for each i € [1, 100]
at the i-th smallest window size of every series. Then, we calculate the mean
over each i-th smallest window size. In addition, we calculate the mean of
each i-th smallest size’s resulting error. The resulting point then consists of
an aggregated window size and its aggregated error. While we conducted the
experiments, we detected that when the window size is set to a significant por-
tion of the series’ length, there are not much changes in the moving average
anymore. This holds true for every dataset on which we conducted the experi-
ment. Therefore, we slightly limit the range over which we sample the window
sizes. For each series T', we set the range to [0, |T'|/5].

Now, we analyze whether the approximations that we calculate this way are
similar to the pareto fronts. In the previous experiments, we detected that the
pareto fronts for the Pamap2 dataset and Kinect dataset dataset showed lin-
ear progression. For these datasets, the moving average approximations can be
seen in Figure 4.18. We see that they do indeed display a roughly linear scaling
as well. For the Beijing PM, 5 dataset, the Energy Production dataset, and the
Human Activity Recognition dataset, the pareto fronts showed a considerable
increase in error for smaller aggregated compression factors. In Figure 4.19 it
is visible that for the calculated approximations, the growth in error for smaller
aggregated window sizes w corresponds to this. In the approximation for the
Beijing PMs 5 dataset, the aggregated nRMSE for larger aggregated window
sizes increases again, after slowing down. Again, this is behavior present in
the actual pareto front as well.

Concluding, we developed a technique which enables to approximate the pareto
front for a dataset. Although the approximations do not look exactly the same
as the pareto fronts, they preserve their main characteristics. With this, the
user is able to get information on the behavior of the compression algorithm
without compressing the series. Especially when the user only samples some
time series of a dataset and some window sizes, the approximation can be
calculated in a few seconds for the datasets in this work.
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Figure 4.18: The pareto fronts are approximated with the central moving average. For this,
the aggregated nRMSE of the central simple moving average is plotted against its aggregated
window size. In Figure 4.18a the front of the Pamap?2 dataset is approximated, and Figure 4.18b
the front of the Kinect dataset.
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Figure 4.19: The fronts are approximated similar as in Figure 4.18. In Figure 4.19a, the front of

the Beijing PMs 5 dataset is approximated, in Figure 4.19b the front of the Energy Production
dataset, and in Figure 4.19c the front of the Human Activity Recognition dataset.

49



5 Conclusion

When a time series needs to be compressed, the extent of the compression
depends on the use case for the series. In a setting where machines are moni-
tored, there are many different ways imaginable to compress the sensors’ values.
However, the user needs to find parameters such that the compression fits to
their use case.

With this work, we aid the user in the selection of suitable parameters. It
is based on the work that was part of the bachelor’s project. In the project,
we developed a heuristic that computes a tolerable deviation ¢ for any given
time series. To compute this allowed deviation e, the heuristic needs to cal-
culate how far points deviate from the overall trend. In this work we showed
that even though there exist multiple approaches to calculate this, the error
in dependence on the compression factor develops very similar between the
pareto fronts. Furthermore, we argued that calculating the deviation to the
CSMA is very robust, which can not be said for other approaches, such as the
linear regression heuristic or the fourier transform heuristic.

We proposed a change to the heuristic that allows it to compute multiple
allowed deviations € per time series. We analyzed whether this change can
lead to different compressions by the algorithm. We observed that especially
when the series contains outliers, the heuristic can calculate the multiple e
such that the compression algorithm assigns such outliers a lower priority. We
further showed that for error measures such as nMAE and nRMSE, this can
yield better results.

For the compression of a time series, we demonstrated that it depends on
the data how the error develops for increasing compression factors. When a
series has a lot of variations, the error is already high for small compression
factors. When this is not the case, the error develops slowly in the beginning.
For the user this may be interesting, since it shows that for different types of
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data, different compression settings could be suitable.

When the user wants to choose parameter settings for a time series depending
on its characteristics, they would need to know the characteristics beforehand.
In this work, we proposed a way to aid the user with this. For this, we de-
veloped a way to approximate the pareto front of a time series’ compression.
As approximation, we propose to calculate a moving average with different
window sizes. Then, we visualize its error to the original series in dependence
of the window sizes. With this approximation, the user is able to project the
expected pareto front before the compression algorithm starts to compress a
time series.

The parameter values that the user can choose, however, could be put to
further research. Especially interesting is whether one can estimate the posi-
tion of a compression setting in the pareto front based on the parameter choice
and the characteristics of a dataset. For this, one could research how the cal-
culated error of a moving average with window size w relates to the error of a
compression where the heuristic has window size w.

To conclude, in this work we set out to aid the user in regards to the parameter
configurations and their effects on the compression. For this, we showed how
the user, by the use of the heuristic, is able influence the properties of the
compression. We additionally analyzed for different datasets, how the error of
non-dominated parameter settings develops with the compression factor. Not
only did we show that there are significant differences between the datasets, we
further developed a tool that enables the user to spot these before the compres-
sion. With the results of our work, the user now has the information and tools
available that allow them, for their use case, to achieve a fitting compression
for it.
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