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Abstract

In 2018, Bläsius et al. devised an algorithm that enumerates minimal hitting
sets of ordered hypergraphs in lexicographical order. It has polynomial delay,
provided the transversal hypergraph has a bounded rank k∗. We improve
upon the enumeration algorithm by decreasing its worst-case delay bound by
factor |H| to O(|H|k∗+1|V |2). We then evaluate the algorithm in the context
of unique column combination discovery and observe that the hypergraphs
resulting from real-world problem instances are usually mucher smaller than
the original database and that they can be enumerated quickly. Finally, we
present a heuristic for �nding a vertex order that reduces the total enumeration
time in cases where the output order is irrelevant.



Zusammenfassung

Bläsius et al. präsentierten 2018 einen Algorithmus, der minimale Hitting
Sets in Hypergraphen lexikographisch geordnet aufzählt. Für eine feste maxi-
male Gröÿe k∗ der minimalen Hitting Sets ist die Verzögerung zwischen einzel-
nen Lösungsausgaben polynomiell in der Eingabegröÿe begrenzt. Wir entwick-
eln den Algorithmus weiter und reduzieren die Verzögerung um den Faktor
|H| auf O(|H|k∗+1|V |2). Anschlieÿend wenden wir den Algorithmus an, um in
Datenbanken Attributmengen zu �nden, die Einträge eindeutig identi�zieren.
Wir stellen fest, dass die aus realen Datenbanken generierten Probleminstanzen
meist deutlich kleiner als ihr Quelldatensatz sind, sodass der Algorithmus
schnelle Laufzeiten aufweist. Weiterhin erarbeiten wir eine Heuristik für die
Knotenreihenfolge, die die Laufzeit in Szenarien reduziert, in denen die Aus-
gabereihenfolge nicht relevant ist.
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1 Introduction

Data pro�ling is the collection and computation of metadata of a given data
set to facilitate data management, exploration and analytics. A reoccurring
pro�ling task is the discovery of unique column combinations, sets of attributes
that uniquely identify every single record. They �nd application in database
management, data cleansing and database reverse engineering [2].
Unique column combination discovery has been shown to be equivalent to

the transversal hypergraph generation problem [6], i. e., the computation of all
minimal hitting sets of a hypergraph. While both problems are NP-hard in
general [3, 6], real-world data is oftentimes strongly structured and shows very
di�erent characteristics than worst-case instances. In these cases, algorithms
with exponential worst-case complexity often show tolerable running times.
Bläsius et al. [7] devise an algorithm speci�cally tailored to the requirements

of interactive data pro�ling software. While maintaining a running time that
is polynomial in the output size, it enumerates all minimal hitting sets in
lexicographical order with a delay that is polynomial in the input size, provided
that minimal hitting sets are bounded in cardinality. This means that the �rst
results can be viewed quickly after start, beginning with the results deemed the
most interesting or important. Both features are essential for systems designed
around human experts who can apply domain knowledge to decide whether a
result is just incidental or portrays valuable insight [7].

Contribution and Outline. This paper is concerned with the applicabil-
ity of the lexicographical enumeration algorithm by Bläsius et al. [7] to the
unique column combination discovery problem. We introduce hypergraphs,
the transversal problem and its data pro�ling sibling, unique column combi-
nation discovery, in Section 2. After examining the enumeration algorithm
in Section 3, we present some algorithm enhancements in Section 4 and show
that these improvements reduce the polynomial delay bound by factor |H| to
O(|H|k∗+1|V |2), where k∗ is the size of the largest minimal hitting set. In Sec-
tion 5, we evaluate the algorithm in the context of unique column combination
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1 Introduction

discovery and �nd out that real-world datasets result in hypergraphs that can
be enumerated quickly. We compare the original algorithm version to its suc-
cessor and verify that the theoretical improvements translate to a signi�cant
speedup in practice. Additionally, we investigate how the vertex or attribute
order can be used to improve the running time and present a heuristic for
�nding an attribute order that reduces the enumeration time when the output
order is irrelevant. Finally, we examine the algorithm-speci�c extension oracle
and observe that its average running time is far lower than its exponential
worst-case complexity would initially suggest.

Prior Work. Transversal hypergraphs have appeared in various shapes in
theoretical computer science. The generation of a transversal hypergraph is,
for example, equivalent to the dualization of a monotone Boolean function [9].
Transversal hypergraph recognition, i. e., verifying that a given hypergraph
is the transversal hypergraph of a second one, also appears under the name
Monet and is covered extensively by Hagen [12]. All in all, the problem
has been approached from multiple angles over the last three decades. Fred-
man and Kachiyan [10] devise an algorithm that generates the transversal
hypergraph with a quasi-polynomial running time complexity in input and out-
put. Eiter and Gottlob [8] prove that for a bounded transversal hypergraph
rank, recognition is possible in polynomial time. In combination with this re-
sult, the equivalence found by Bioch and Ibaraki [5] implies the existence of
an incremental-polynomial algorithm for generating such a transversal hyper-
graph. Bläsius, Friedrich, Meeks and Schirneck [7] extend this result and show
that generation is possible with polynomial delay, even under the constraint
that the output has to be ordered lexicographically.
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2 Preliminaries

We formally introduce hypergraphs and reduce the task of �nding unique col-
umn combinations to the hypergraph transversal problem. We further consider
running time implications of the problem at hand.

2.1 Ordered Hypergraphs and Hitting Sets

Hypergraphs are generalized graphs whose edges can contain an arbitrary num-
ber of vertices instead of exactly two. Figure 2.1 shows a hypergraph that will
be used as an example throughout the next sections. Hypergraphs are widely
studied [4, 18] and �nd application in data mining [11], natural language pro-
cessing [14] or machine learning [19].
In formal terms, a hypergraph (V,H) consists of a set of vertices V and a

set of (hyper-)edges H ⊆ P(V ) with cardinalities n = |V | and m = |H|. It
may be identi�ed by its set of edges H. Its rank is the size of its largest edge
max{|E| | E ∈ H}. A hitting set or transversal is a set of vertices H ⊆ V with
H ∩E 6= ∅ for all E ∈ H. It can be understood as a hyperedge that intersects
all edges in H. We call a hitting set (inclusion-wise) minimal if it does not
include any other hitting set. The minimal hitting sets of H form the edges of
the transversal hypergraph of (V,H) on the vertex set V .
An ordered hypergraph (V,<,H) additionally includes a total ordering < of

the vertex set V that induces a lexicographical order on P(V ). A subset S ⊆ V
is lexicographically smaller than R ⊆ V if and only if the <-�rst element in
which they di�er is in S.

2.2 Unique Column Combinations

A unique column combination (UCC) is a set of attributes of a relational
dataset whose projection contains no duplicate entry. Therefore, the values of
those attributes uniquely identify all records in the dataset. In practice, unique
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2 Preliminaries

a b

c d

Figure 2.1: Hypergraph (V,H) with V = {a, b, c, d} and H = {{a, b}, {c}, {c, d}}.

column combinations are used for various data pro�ling tasks like schema nor-
malization, data cleansing, query optimization, duplicate and anomaly detec-
tion or schema reverse engineering [2, 13, 17].
Analogous to the de�nition of a minimal hitting set, a UCC is called minimal

if it does not contain any other UCC. Most real-world applications will require
only the knowledge of all minimal UCCs from which further non-minimal UCCs
can be derived easily [17]. The number of minimal UCCs of a dataset can be
exponential in the dataset size [1].

Finding UCCs in a given dataset can be expressed as a hitting set enumera-
tion problem on a generated hypergraph [7]. Each attribute is represented by
a vertex. Every pair of non-identical database records is translated into a hy-
peredge consisting of exactly those vertices that correspond to the attributes
where the records di�er in value. The record values of any single attribute
encoded by the edge allow to distinguish between those records. A hitting set
shares at least one vertex with any edge. Therefore, all hitting sets include
at least one vertex that represents an attribute that allows to distinguish be-
tween any two non-identical records. This makes the attributes corresponding
to a hitting set a unique column combination. Likewise, a minimal hitting set
corresponds to a minimal UCC.
Some dataset attributes may be especially interesting or relevant to data

analysts, e. g., those that are suspected to form a primary key. An algorithm
enumerating minimal hitting sets in lexicographical order can be con�gured to
prioritize those attributes by ordering vertices from most to least important.
Consequently, all minimal UCCs containing prioritized attributes will be found
and returned before all other UCCs.
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2 Preliminaries

2.3 Hitting Set Enumeration Complexity

Similar to UCCs, the number of minimal hitting sets of a hypergraph can be
exponential in both |V | and |H| [5]. Therefore, no input-polynomial algorithm
(an algorithm with a running time that is polynomial in input size) outputting
all minimal hitting sets of arbitrary hypergraphs can exist. However, running
time complexity can be measured in both input and output size. An algorithm
is output-polynomial if it has a running time polynomial in both.
Some algorithms do not output a single solution at the end (e. g., a complete

transversal hypergraph) but instead emit solution parts throughout their run-
ning time (e. g., single transversals). On these algorithms, more �ne-grained
running time complexity evaluations are possible. An algorithm has polyno-
mial delay if it has an input-polynomial upper bound between two consecutive
outputs.
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3 Lexicographical Minimal Hitting

Set Enumeration

Bläsius et al. [7] devise an algorithm that �nds all minimal hitting sets with
polynomial delay for transversal hypergraphs with a bounded rank. It enumer-
ates minimal hitting sets in lexicographical order.
The algorithm is divided into two parts. The actual enumeration algorithm

enumOrig traverses an enumeration tree and uses the extension oracle ex-
tendOrig to prune branches not containing any minimal hitting sets.

3.1 Extension Oracle

The original extension oracle extendOrig (Algorithm 3.1), given a hyper-
graph (V,H) and two disjoint sets X, Y ⊆ V , outputs true if and only if
there exists a minimal hitting set X ⊆ H ⊆ V \Y of H. It makes heavy use of
the observation that a hitting set H of a hypergraph (V,H) is minimal if and
only if for every x ∈ H, there is an edge Ex ∈ H (called witness for x) such
that Ex ∩H = {x} [4, 15].
The underlying concept of the algorithm is to determine a set of potential

witnesses Sx for all x ∈ X with Sx = {E \ Y | E ∩ X = {x}, E ∈ H}. To
extend X to a minimal hitting set, vertices from V \ (X ∪Y ) have to be added
to X until all edges are hit. Adding a vertex v to X eliminates all potential
witnesses that contain v. As long as for all x, at least one witness remains
after adding enough vertices to hit all edges, an extension to a minimal hitting
set is possible. The oracle only determines the possibility of such an extension
and does not compute minimal hitting sets itself.

We exemplify the algorithm on the hypergraph (V,H) from Figure 2.1 for
X = {a} and Y = {b}. At �rst, if X is empty, the oracle returns whether V \Y
is a hitting set for H (the existence of any hitting set implies the existence of
a minimal hitting set). If X is not empty, the edges of H are divided into
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3 Lexicographical Minimal Hitting Set Enumeration

three di�erent categories: Edges that are hit by at least two di�erent vertices
from X (those cannot be witnesses), edges hit by exactly one vertex x from X
(potential witnesses, collected into Sx, Sx ∈ S) and edges not hit by any vertex
from x (collected into T ). All vertices from Y are removed from these edges.
After this step in our example, Sa is the only set system in S and contains
only {a} while T contains {c} and {c, d}.
If any x ∈ X has no potential witness, X cannot be extended to a minimal

hitting set and the algorithm returns false in line 10.
Following that, every x ∈ X has a potential witness. If T is empty, all

edges are hit by X, making X a minimal hitting set for H and extendOrig

returns true.
If T is not empty, there exist edges in H that are not hit by X. If and only if

X is extendable to a minimal hitting set without using vertices from Y , there
exists a Z ⊆ V \(X∪Y ) that hits all edges in T and has an empty intersection
with at least one potential witness for any x ∈ X. This ensures that after the
addition of a vertex from Z to X, at least one witness remains for all x ∈ X.
The algorithm tests all possible combinations of these remaining witnesses

using brute force to �nd a combination c ∈ Sx1 × · · · × Sx|X| for which all
T ∈ T include a vertex that is not included in any witness in c. These vertices
make up Z. If no such combination is found, the algorithm returns false. In
our example, {a} is the only potential witness that has to be checked. Since
both {c} and {c, d} contain vertices that are not in {a}, the algorithm returns
true.

Assuming that all set operations (membership, product, union, intersection
and di�erence) can be done in time proportional to the set size, testing whether
V \Y is a hitting set and generating S and T can be done in O(mn). As there
are at most (m/|X|)|X| tuples in the brute force loop for which operations in
O(mn) have to be computed to check whether all T ∈ T include vertices not
included in the remaining witness combination, the total oracle running time
complexity is in O((m/|X|)|X|mn) [7].

As all set systems maintained by the algorithm are disjoint subsets of H, it
only requires space linear in m [7].
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3 Lexicographical Minimal Hitting Set Enumeration

Algorithm 3.1: Algorithm for extendOrig by Bläsius et al. [7].

Data: Hypergraph (V,H)
Input: disjoint sets X, Y ⊆ V , with X = {x1, x2, . . . , x|X|}.
Output: true i� there is a minimal hitting set X ⊆ H ⊆ V \ Y for H

1 Procedure extendOrig(X,Y ):

2 if X = ∅ then
3 if V \Y is a hitting set for H then return true;

4 else return false;

5 initialize set system T = ∅;
6 foreach x ∈ X do initialize set system Sx = ∅;
7 foreach E ∈ H do

8 if E ∩X = {x} then add E\Y to Sx ;
9 if E ∩X = ∅ then add E\Y to T ;

10 if ∃x ∈ X : Sx = ∅ then return false;

11 if T = ∅ then return true;

12 foreach (Ex1 , . . . , Ex|X|) ∈ Sx1 × · · · × Sx|X| do
13 W ←

⋃|X|
i=1Exi

;

14 if ∀T ∈ T : T * W then return true;

15 return false;

3.2 Enumeration Algorithm

Minimal hitting sets are enumerated by the enumOrig procedure in lexico-
graphical order [7]. The algorithm traverses a binary tree depth-�rst. Each
level corresponds to a vertex, starting with the <-�rst one just below the root
down to the last one at leaf level. Each node is characterized by a pair (X, Y ),
where X includes all vertices that are to be included in a minimal hitting set,
while Y includes all vertices that are to be left out. The algorithm starts with
(∅, ∅) at the root. For each node besides the root, (X, Y ) can be assumed to
be extendable. Now the next smallest vertex v from the level below is taken
into consideration. Using the extension oracle, the algorithm checks whether
(X∪{v}, Y ) is extendable and descends further down to that node if the oracle
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3 Lexicographical Minimal Hitting Set Enumeration

returns true. After returning from that branch, the procedure is repeated
for (X, Y ∪{v}). When the tree traversal reaches the bottom, all vertices have
been added to either X or Y and (X, Y ) is extendable. Thus, X has to be
a minimal hitting set and is added to the output [7]. Figure 3.1 shows the
complete enumeration tree for the example hypergraph from Figure 2.1.

Lexicographical order is ensured by the pre-order traversal strategy. Let
v ∈ X1 be the �rst vertex that X1 and X2 with X2 * X1 di�er in. Then
X1 is located left of X2 in the enumeration tree since at their lowest common
ancestor node, the algorithm will try to add v to X �rst before checking the
extendability of (X, Y ∪ {v}). Due to pre-order traversal, if X1 and X2 are
minimal hitting sets, X1 will be added to the output �rst [7].

The enumeration algorithm has polynomial delay for a bounded maximum
minimal hitting set size. Since each tree level corresponds to a vertex, the
tree has height |V | = n. Nodes can be entered from above after at most two
oracle calls in the parent or from a child below without any oracle call when
backtracking. Only branches leading down to a leaf (which holds a solution)
are followed. Traversing from one leaf to the next thus requires zero oracle
calls when traversing upwards and at most O(n) oracle calls when traversing
downwards. In the process, at most O(n) nodes are visited.
The argument (X, Y ) for an oracle call will always be subject to |X| ≤ k∗+1

with k∗ being the rank of the transversal hypergraph. The reason is that
any call with |X| = k∗ + 1 will return false, preventing the enumeration
algorithm from traversing further down the branch. Thus, with the maximum
running time of a single oracle call being O(m|X|+1n), output delay is at most
O(n) · O(m(k∗+1)+1n) ⊆ O(mk∗+2n2) [7].

The algorithm only requires knowledge of the current node while traversing
the enumeration tree. All data generated by an extension oracle call is dis-
carded after the check. Consequently, the enumeration algorithm uses input-
linear space [7].
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3 Lexicographical Minimal Hitting Set Enumeration

Algorithm 3.2: Recursive enumeration algorithm enumOrig by Bläsius et al. [7].

Initial call: enumOrig(∅, ∅, V ).

Data: Ordered hypergraph (V,<,H) with H 6= ∅.
Input: Partition (X, Y,R) of the vertex set V .

1 Procedure enumOrig(X,Y ,R):

2 if R = ∅ then output X ; return;

3 v ← min< R;

4 if extendOrig(X ∪ {v}, Y ) then enumOrig(X ∪ {v}, Y , R\{v});
5 if extendOrig(X, Y ∪ {v}) then enumOrig(X, Y ∪ {v}, R\{v});

(∅, ∅)

({a}, ∅)
true

({a, b}, ∅)
false

({a}, {b})
true

({a, c}, {b})
true

({a, c, d}, {b})
false

({a, c}, {b, d})
true

({a}, {b, c})
false

(∅, {a})
true

({b}, {a})
true

({b, c}, {a})
true

({b, c, d}, {a})
false

({b, c}, {a, d})
true

({b}, {a, c})
false

(∅, {a, b})
false

Figure 3.1: Tree traversal of enumOrig on the hypergraph from Figure 2.1. Displayed per
node are the arguments to extendOrig and the resulting output. The algorithm will visit
a node and traverse further down its branch after its corresponding oracle call returned true.
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4 Faster Enumeration

The enumeration algorithm can be made more e�cient if the extension oracle
returns additional information that is used accordingly. We decrease the out-
put delay bound by factor |H| to O(|H|k∗+1|V |2), where k∗ is the rank of the
transversal hypergraph.

4.1 Extension Oracle Return Value

The extendOrig algorithm returns true for all X that are extendable to
a minimal hitting set without using vertices from Y , even if the necessary
extension is empty, i. e., X is a minimal hitting set in itself. As described,
if T is found to be empty in line 11 of extendOrig, X has to be a min-
imal hitting set. Thus, the improved extension oracle extendImpr (Algo-
rithm 4.1) returns minimal in this case. If there exists a minimal hitting set
X ⊂ H ⊆ V \Y for H, the oracle returns extendable. If no minimal hitting
set X ⊆ H ⊆ V \ Y exists, the oracle returns notExtendable.

Lemma 1. Algorithm 4.1 returns minimal if and only if its �rst input argu-
ment X is a minimal hitting set for its hypergraph (V,H) with H 6= ∅.

Proof. First, we show that if X is a minimal hitting set for H, the extension
oracle returns minimal. Let X be such a minimal hitting set. Since H 6= ∅,
X cannot be empty. Hence, the algorithm does not enter the branch of line 2.
Since X is a minimal hitting set, every x ∈ X has a witness so that Sx 6= ∅
for all x ∈ X. Thus, the algorithm does not return in line 10. Because X is a
hitting set, no edge in H has an empty intersection with X. Consequently, T
is empty and the algorithm returns minimal.
Second, we show that if extendImpr returns minimal, its �rst argument

X is a minimal hitting set for H. The oracle will only return minimal if T
is found to be empty, meaning that X is a hitting set for H. We prove by
contradiction that X is indeed minimal. Assume X is a non-minimal hitting

11



4 Faster Enumeration

set. Then there exists an x ∈ X that has no witness in H. In this case,
extendImpr must have returned in line 10 since Sx must have been empty.
This contradiction can only be resolved by dropping the initial assumption
that X is non-minimal.

Algorithm 4.1: Algorithm for extendImpr.

Data: Hypergraph (V,H), H 6= ∅
Input: disjoint sets X, Y ⊆ V , with X = {x1, x2, . . . , x|X|}.
Output: minimal i� X is a minimal hitting set for H,

extendable i� there is a minimal hitting set

X ⊂ H ⊆ V \ Y for H,
notExtendable otherwise.

1 Procedure extendImpr(X,Y ):

2 if X = ∅ then

3 if V \Y is a hitting set for H then return extendable;

4 else return notExtendable;

5 initialize set system T = ∅;
6 foreach x ∈ X do initialize set system Sx = ∅;
7 foreach E ∈ H do

8 if E ∩X = {x} then add E\Y to Sx ;
9 if E ∩X = ∅ then add E\Y to T ;

10 if ∃x ∈ X : Sx = ∅ then return notExtendable;

11 if T = ∅ then return minimal;

12 foreach (Ex1 , . . . , Ex|X|) ∈ Sx1 × · · · × Sx|X| do

13 W ←
⋃|X|

i=1Exi
;

14 if ∀T ∈ T : T * W then return extendable;

15 return notExtendable;

12



4 Faster Enumeration

4.2 Enumeration Algorithm Improvements

While enumOrig always traverses to the bottom of the enumeration tree
to output a solution, the improved enumeration procedure enumImpr (Algo-
rithm 4.2) makes use of the improved extension oracle to output results as soon
as X grows to minimal hitting set. The underlying branch can only lead to a
single leaf containing the exact same X while all vertices below will be added
to Y . Since the results of all enumeration and oracle calls below are known at
this point, the branch is pruned and redundant computation is avoided.

The second enhancement is based on the assumption that for any call of
enumImpr, the tuple of the �rst two input arguments (X, Y ) has to be ex-
tendable. This holds true as the enumeration algorithm will only follow
down paths that lead to a minimal hitting set in the enumeration tree. The
root (∅, ∅) is extendable since the hypergraph does not include any empty
edges. Given that (X, Y ) is extendable, if (X ∪ {v}, Y ) is notExtend-
able, the other branch, (X, Y ∪ {v}), has to be extendable. Figure 4.1
shows the tree traversal of enumImpr on the exemplary hypergraph. Note
that the algorithm never proceeds to the level of vertex d. Also, the result
of extendImpr for ({a}, {b}) does not have to be computed after ({a, b}, ∅)
turns out to be notExtendable.

The �rst enhancement further improves the asymptotic output delay over
enumOrig.

Theorem 1. The delay of Algorithm 4.2 is O(mk∗+1n2).

Proof. Let k∗ be the rank of the transversal hypergraph. When enumImpr

calls extendImpr with �rst parameter X, |X| is at most k∗ instead of k∗+1.
We prove this by contradiction. Assume that extendImpr is called with
|X| > k∗. This means that enumImpr had to be called with anX ′ with |X ′| ≥
k∗ beforehand. This could only have happened if extendImpr returned
extendable for X ′, a contradiction since a vertex set of size greater than or
equal to k∗ has to be either minimal or notExtendable.
Consequently, a single oracle call has a running time complexity of at most
O(mk∗+1n), resulting in a delay of at most O(mk∗+1n2) between outputs, anal-
ogous to the O(mk∗+2n2) delay of the original algorithm.
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4 Faster Enumeration

Algorithm 4.2: Improved procedure enumImpr for the transversal hypergraph prob-

lem. Initial call: enumImpr(∅, ∅, V ).

Data: Ordered hypergraph (V,<,H) with H 6= ∅, ∅ /∈ H.
Input: Partition (X, Y,R) of the vertex set V .

1 Procedure enumImpr(X,Y ,R):

2 v ← min< R;

3 left←extendImpr(X ∪ {v}, Y );

4 if left = minimal then

5 output X ;

6 else if left = extendable then

7 enumImpr(X ∪ {v}, Y , R\{v});
8 else

9 enumImpr( X, Y ∪ {v}, R\{v});
10 return;

11 if extendImpr(X, Y ∪ {v}) = extendable then

12 enumImpr(X, Y ∪ {v}, R\{v});

(∅, ∅)

({a}, ∅)
extendable

({a, b}, ∅)
notExtendable

({a}, {b})
extendable

({a, c}, {b})
minimal

({a}, {b, c})
notExtendable

(∅, {a})
extendable

({b}, {a})
extendable

({b, c}, {a})
minimal

({b}, {a, c})
notExtendable

(∅, {a, b})
notExtendable

Figure 4.1: Tree traversal of enumImpr on the hypergraph from Figure 2.1. Displayed
per node are the arguments to extendImpr and the resulting output. The algorithm will
visit a node and traverse further down its branch after its corresponding oracle call returned
extendable.
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5 Experimental Results

We use the enumImpr algorithm to �nd UCCs in real-world datasets. The
procedure can be divided into two separate stages: At �rst, we generate hy-
pergraphs by pairwise record comparison (generation stage). Subsequently, we
enumerate all minimal hitting sets in lexicographical order using enumImpr

(enumeration stage).
The main generation stage research topic is the size of hypergraphs generated

from real-world data. Our results indicate that a larger number of records does
not increase the number of hyperedges after a certain point. To the contrary,
adding records to the input set can even decrease the number of hyperedges
when the hypergraph is minimized.
For the enumeration stage, we examine the applicability of the algorithm in

general and show that on our real-world problem instances, the output delay
and the total enumeration time are small. We investigate the magnitude of
our performance improvements over enumOrig and �nd signi�cant running
time advantages. Although the lexicographical output order is a unique sell-
ing point of the algorithm, an ordered output may not be required in some
scenarios. We observe that di�erent attribute (i. e., vertex) orders lead to dif-
ferent enumeration times. We analyze causes of this observation and present
a heuristic for �nding an attribute order that reduces the enumeration time.
This order can be used when the output order is irrelevant. At last, we in-
spect the behavior of the extension oracle and �nd out that its running time
is highly variable but small on average. We work out the remaining witness
combination order in the oracle brute force loop as a topic of future research.

5.1 Implementation Details and Data

The following results are based on an implementation written in C++ run-
ning on a Windows 10 system using an Intel Xeon E3-1231 v3 processor. To
allow for O(1) insertion, deletion, union, intersection and di�erence, vertex
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5 Experimental Results

sets (i. e., hyperedges) were implemented as bit arrays of length 64. To ensure
correctness, results were compared to those of a brute force algorithm. The im-
plementation was tested on publicly available voter data (ncvoter-temporal
with 19 columns, ncvoter-allc with 64 columns)1 and randomly generated
data (fd-reduced-30 with 30 columns [16]). We restricted all datasets to the
�rst 215 records of each �le. If no further information is given, hypergraphs
were generated from all those 215 records with attributes ordered from the
column containing the most unique values to the column containing the least
(descending uniqueness). The reverse attribute order, ascending uniqueness, is
also contained in some benchmarks. Additionally, records were sorted lexico-
graphically after sorting the column order.

5.2 Hypergraph Generation

As described earlier, database records are compared pairwise. Every pair forms
an edge that consists of the attributes that the records di�er in. This results
in a number of edges that is quadratic in the number of records. Apart from
eliminating duplicate edges, this number can be greatly reduced by only keep-
ing inclusion-wise minimal edges in the generated set. For two edges X, Y
with X ⊆ Y , any vertex set intersecting X will also intersect Y . Hence, Y
can be discarded during the generation stage without a�ecting the transversal
hypergraph.

5.2.1 Number of Generated Edges

Our results on real-world data show that UCC discovery hypergraphs tend
to be much smaller than the dataset they were generated from. Furthermore,
their size does not increase with the number of records or even decreases after
a certain point (Figure 5.1). Given that real-world data is often strongly
structured, we expect records to be similar in what they di�er in. This helps
to explain why graph size does not grow with record number. Additionally,
with a higher number of records, chances increase that there exist pairs of
records that di�er only in a small number of attributes. The resulting edges are
small, leading to a great number of supersets to be omitted. While the second
mechanism also has an e�ect on hypergraphs for randomly generated datasets,
the �rst one does not apply. This could be the reason why the hypergraph
for fd-reduced-30 grows with the record number where the ncvoter datasets
show the opposite trend.

1 https://www.ncsbe.gov/ncsbe/data-statistics
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Figure 5.1: Size of the generated UCC hypergraph by number of records for ncvoter-allc (64
columns), ncvoter-temporal (19 columns) and fd-reduced-30 (30 columns). Records were
randomly sampled from a dataset of size 215 with 20 samples per box plot. All values above
0.75-quantile+1.5 · (0.75-quantile−0.25-quantile) or below 0.25-quantile−1.5 · (0.75-quantile−
0.25-quantile) are marked as outliers.

One can observe a great variance in the number of edges produced for any
�xed number of randomly selected records. We argue that the number of edges
is lower whenever pairs of similar records were randomly selected, generating
small edges that lead to the omission of a great number of supersets. To test
this hypothesis, we used di�erent sampling strategies to generate a hypergraph
for ncvoter-allc (Figure 5.2). The dataset was sorted by descending or as-
cending uniqueness at �rst, then sorted lexicographically. On sorted datasets,
similar records tend to be close to each other. For the �rst 215 records of the
dataset sorted by descending uniqueness, out of the 22 pairs of records that dif-
fer in seven or less attributes, 14 are direct neighbors (and an additional three
pairs have distance two). For ascending uniqueness, where primary keys do not
dominate the lexicographical order, 15 are direct neighbors (and again three
pairs have distance two). Hypergraphs generated from n consecutive records
are therefore signi�cantly smaller than hypergraphs generated from n records
with maximal distance from each other or a random sample. Note that for
Figure 5.2, records were sampled from a dataset of size 215, drastically increas-
ing the likelihood that records close to each other are sampled randomly with
sample size, while equidistant sampling never selects direct neighbors. This
explains why the random sampling curve drops sharper than the equidistant
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5 Experimental Results

descending uniqueness curve. Additionally, since the ascending uniqueness
order places similar records even closer to each other than ordering by de-
scending uniqueness, sampling consecutive ascending records mostly results in
even fewer edges than sampling descending ones. The same property causes
equidistant ascending uniqueness ordered records to be even more dissimilar
than their descending counterparts. Thus, equidistant ascending sampling re-
sults in the highest number of hyperedges of all sampling strategies.
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n equidistant records (asc. uniq.)

random sample

Figure 5.2: Size of the UCC hypergraph by number of records and record selection strategy
for 215 ordered rows of ncvoter-allc (64 columns). Random data points are an average of
20 samples. Data points for n consecutive or equidistant records display an average of 215/n
mutually exclusive samples.

5.2.2 Number of Edges During Generation

Only inclusion-wise minimal edges are kept during hypergraph generation. Ev-
ery edge that is generated by comparing two records has to be tested for inclu-
sion of any other edge currently in the working set (the new edge is discarded)
and inclusion in any other edge (the other edge is discarded). The most simple
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way to achieve this is to compare the new edge pairwise with all edges in the
working set. This approach has a O(kn2) running time, where n is the num-
ber of records and k is the maximum number of edges that are in the current
working set at any given time. In our experiments, k was never more than 5
times larger than the number of edges of the �nal hypergraph. The row order
did not appear to have a signi�cant e�ect on both k and on the running time.
As a result, this trivial approach already yields tolerable running times when
all pairs of records are to be compared. Obviously, a quadratic running time
is not feasible on larger datasets. Instead, strategic sampling could be used to
generate UCC candidates that are veri�ed against the data. However, this is
outside the scope of this paper. For details, we direct the reader to Papenbrock
and Naumann [17] who use this approach to discover UCCs in datasets, albeit
without the explicit use of hypergraphs.

5.3 Lexicographical Enumeration

The second part of the implementation enumerates all minimal UCCs in lexico-
graphical order using enumImpr (Algorithm 4.2). The algorithm was tested
on hypergraphs generated from 215 records. Since the hypergraph size does
not necessarily grow with the number of records, we expect our results to be
applicable to hypergraphs based on larger datasets as well.
On the 64-column ncvoter-allc dataset, the total enumeration time is less

than 30s for a descending uniqueness ordered hypergraph. The output delay is
under 16ms for 99% of all hitting sets, making the algorithm suitable for use in
interactive systems designed for human experts. On ncvoter-temporal and
fd-reduced-30 , the same attribute order leads to an enumeration time of
0.2s and 1.1s, respectively. Note that these numbers, as all running time mea-
surements in this section, do not include the time necessary for the hypergraph
generation.
In the following subsections, we argue why some attributes may be omitted

from the hypergraph before enumeration without changing the result, com-
pare the performance of enumImpr and enumOrig, present a heuristic for
�nding an attribute order that reduces the enumeration time and evaluate the
running time behavior of the extension oracle.

5.3.1 Eliminating Attributes

For some datasets, the generated hypergraph contains vertices that are not
included in any edge due to edge minimization. For example, two addresses
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di�ering in the attribute state may always di�er in the attribute zip code. Edges
that include both vertices may be eliminated by edges containing only the zip
code vertex. Since no pair of records di�ering in state but not in zip code can
exist, this leads to the state vertex not being included in any hyperedge. This
vertex cannot be included in any minimal hitting set, either. It can therefore
be excluded from the graph to improve the enumeration time.
However, a priori knowledge of functional dependencies where attribute A

implies attribute B does not allow for removal of B from the dataset before
hypergraph generation. It is still possible that another set of attributes A with
A /∈ A forms a UCC together with B.
The ncvoter-allc UCC hypergraph contains four vertices that are not in-

cluded in any edge. Removing these vertices from the graph leads to a modest
average speed increase of 3% across 100 random attribute orders. However,
this result is highly speci�c to this dataset. Both ncvoter-temporal and
fd-reduced-30 do not contain unused vertices, other datasets may pro�t a
lot more from eliminated attributes. All following results are based on hyper-
graphs that do not have this optimization applied to them.

5.3.2 enumImpr vs. enumOrig

In Chapter 4, we showed that theoretical improvements over enumOrig can
be made and introduced enumImpr. These enhancements show performance
increases on all benchmarked datasets, enumImpr outperforms enumOrig
on every single tested hypergraph. The average speedup across 100 random at-
tribute orders was 1.8, 1.3 and 3.6 for ncvoter-allc , ncvoter-temporal and
fd-reduced-30 , respectively (Table 5.1). While these numbers are signi�cant
in practice, the improvements are not as strong as the theoretical worst-case
delay factor of |H| would suggest. A closer look shows that the average number
of oracle calls decreased by factor 2.2, 1.6 and 5.9. This means that the im-
provements disproportionately removed cheap oracle calls with far lower than
worst-case running time.

dataset ncvoter-allc ncvoter-temporal fd-reduced-30

minimal speedup 1.5 1.1 3.2
average speedup 1.8 1.3 3.6
maximal speedup 2.5 1.6 4.0
oracle call decr. 2.2 1.6 5.9

Table 5.1: Running time improvements and average oracle call number decrease of enumImpr
over enumOrig across 100 random attribute orders.
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The second conclusion we can draw from these measurements is that the
attribute order a�ects the enumeration time. We inspect this e�ect next.

5.3.3 Attribute Order

Con�gurable output order is one of the unique selling points of the enumeration
algorithm. The output order depends on the input attribute order. An obvi-
ous attribute order is from most interesting to least interesting so that UCCs
containing the most important attributes are added to the output set �rst. In
some scenarios however, the output order may be irrelevant. As already sug-
gested by the benchmarks of enumImpr against enumOrig, the attribute
order a�ects the enumeration time. Benchmarks across 2500 random orders
for ncvoter-allc , ncvoter-temporal and fd-reduced-30 demonstrate that
the running time for di�erent orders can vary by a factor of more than �ve
(Figure 5.3).
Besides random attribute orders, the benchmarks also include two additional

ones. Descending uniqueness is the order starting with the column contain-
ing the most unique values and ending with the column containing the least
uniques. It is a candidate for quick enumeration because records are more
likely to di�er in their �rst attributes, leading to these attributes being in-
cluded in (non-minimized) hyperedges more often. This raises the likelihood
of being included in a hitting set. On the ncvoter-allc dataset (64 attributes),
column-sorted by descending uniqueness, every minimal UCC includes at least
one attribute out of the �rst nine. Consequently, on the same dataset sorted by
the opposite order, ascending uniqueness, every minimal UCC includes at least
one attribute out of the last nine. Thus, in the latter case, the enumImpr
procedure has to traverse down to one of the last nine levels to �nd any min-
imal hitting set. On average, a minimal hitting set is found on level 52.2 for
descending and 59.3 for ascending order.
Our results show that descending uniqueness has one of the lowest enumer-

ation times across all orders. The enumeration of the hypergraph ordered
by ascending uniqueness is always signi�cantly slower but not necessarily the
slowest amongst all possible permutations (Figure 5.3).
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Figure 5.3: Enumeration time by attribute order on hypergraphs for ncvoter-allc,
ncvoter-temporal and fd-reduced-30. Random order data points represent an average of
2500 random samples.

However, this enumeration time advantage for descending uniqueness or-
dered hypergraphs cannot solely be attributed to a small average minimal
hitting set depth in the enumeration tree. On ncvoter-allc , an attribute or-
der can be found that causes an average depth of just 33.5 (attributes ordered
by frequency in the output, resulting in 50,000 oracle calls). Yet, this order
almost doubles the enumeration time compared to the descending uniqueness
order (78,000 oracle calls). This also shows that a low number of oracle calls is
no guarantee for a fast running time, either. While the number of oracle calls
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does correlate strongly with enumeration running time on the ncvoter-allc

dataset (Pearson correlation coe�cient r = 0.80), it does so only weakly
on ncvoter-temporal (r = 0.17) and even negatively on fd-reduced-30

(r = −0.19; compare Figure 5.4).
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Figure 5.4: Enumeration time vs. number of oracle calls for 500 random attribute orders of
ncvoter-allc, ncvoter-temporal and fd-reduced-30. The red square represents the enu-
meration performance of the descending uniqueness order.
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In contrast to that, the total number of oracle brute force iterations is
strongly positively correlated with total enumeration time (r > 0.9 on all
datasets; compare Figure 5.5). This number is the total sum of all iterations
of the loop starting in line 12 of Algorithm 4.1 across all oracle calls of a single
enumeration.
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Figure 5.5: Enumeration time vs. total number of oracle brute force iterations for 500 random
attribute orders of ncvoter-allc, ncvoter-temporal and fd-reduced-30. The red square
represents the enumeration performance of the descending uniqueness order.
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Generally, enumeration time di�erences have multiple reasons. First, the
attribute order in�uences the number of visited nodes in the enumeration tree.
If all minimal hitting sets are located close to each other in the tree, large
branches may be pruned, reducing the overall number of visited nodes and
therefore the total number of oracle calls. Second, oracle calls vary in cost.
A call might return before entering the brute force loop at the end, after un-
successfully testing out all remaining witness combinations or somewhere in
between. To optimize the attribute order for enumeration time, one wants to
minimize the total number of brute force iterations. This number is a prod-
uct of the total number of oracle calls and the average brute force iterations
per oracle call. Interestingly, these two measures are mostly uncorrelated on
ncvoter-allc (r = 0.09) and ncvoter-temporal (r = −0.18) but weakly neg-
atively correlated on the random dataset fd-reduced-30 (r = −0.38; compare
Figure 5.6). This means that on real-world data, it is possible to have the best
of both worlds, a low number of oracle calls and a low average cost per call.
Descending uniqueness ordering appears to be a good heuristic for minimizing
both and requires only information that is known a priori.
What also follows from Figure 5.6 is that the average number of brute force

iterations per oracle call appears to be bounded by a small dataset-speci�c
constant. We have a more detailed look at the oracle running time behavior
in the next subsection.
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Figure 5.6: Average number of oracle brute force iterations vs. number of oracle calls for 500
random attribute orders of ncvoter-allc, ncvoter-temporal and fd-reduced-30. The red
square represents the enumeration performance of the descending uniqueness order.
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5.3.4 Extension Oracle Running Time

The extension oracle has a worst-case complexity of O((m/|X|)|X|mn) when
set operations take linear time [7]. Its running time is dominated by the brute
force loop at the end. In contrast to the exponential worst-case complex-
ity, the average number of brute force iterations on real-world hypergraphs
is small, as visible in Figure 5.6. A large percentage of oracle calls (up
to 66% on ncvoter-allc, up to 41% on ncvoter-temporal, up to 57% on
fd-reduced-30) even return before entering the loop.
Still, averages do not paint the full picture. While for descending unique-

ness ordered hypergraphs, the oracle running time appears to roughly follow
a power law distribution (indicated by the almost straight line in the log-log
plot), the same does not hold for the distribution of the number of brute force
iterations of a single oracle call (Figure 5.7). Instead, a single oracle call seems
to either return quickly, i. e., before or right after testing the �rst remaining
witness combination, or it gets drawn out to a much longer brute forcing e�ort.
Interestingly, if the oracle input is extendable, it takes only a small number
of iterations on average until the oracle call returns (Table 5.2).
However, on both ncvoter-temporal and fd-reduced-30, not even a single

oracle call returns after exactly two iterations, leaving room for improvements.
Our implementation tests remaining witness combinations in reverse lexico-
graphical order, an arbitrary implementation choice. It may be possible to
choose a brute force order that reduces the average number of iterations per
oracle call for inputs that are extendable, especially on hypergraphs that
are not ordered by descending uniqueness. On these hypergraphs, averaged
across 2500 random attribute orders, the number of brute force iterations until
the oracle returns extendable in the loop is 11.0, 26.2 and 19.7, respectively.
We consider �nding a faster brute force order a topic for future research.

return value ncvoter-allc ncvoter-temporal fd-reduced-30

extendable 2.95 8.79 1.02
notExtendable 55.65 76.51 189.69
total 22.67 40.86 23.18

Table 5.2: Average number of brute force iterations for oracle calls that enter the brute force loop,
grouped by return value, for the descending uniqueness ordered hypergraphs of ncvoter-allc,
ncvoter-temporal and fd-reduced-30.
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Figure 5.7: Oracle running time and brute force iteration distribution for the descending unique-
ness ordered hypergraphs of ncvoter-allc, ncvoter-temporal and fd-reduced-30. The
vertical axis displays the number of oracle calls with an enumeration time or iteration count
greater or equal to the corresponding value on the horizontal axis.
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6 Conclusion and Outlook

Building on the work of Bläsius et al. [7], we proposed an improved enumeration
algorithm for lexicographically ordered minimal hitting sets in hypergraphs and
subsequently used it to detect unique column combinations in datasets. Our
improvements resulted in a lower output delay bound and a lower running
time in practice. We showed that large real-world datasets produce small
hypergraph problems. On those hypergraphs, the analyzed algorithm performs
well despite an exponential worst-case running time complexity. The invoked
extension oracle, having an exponential worst-case complexity itself, runs very
fast on average. The enumeration requires only input-linear space.
While the attribute order can be used to prioritize important attributes

that are added to the output �rst, allowing the algorithm to choose an order
can improve running time more than �vefold. Some attributes may even be
omitted due to existing functional dependencies rendering them irrelevant to
the UCC detection problem.

Further research could look into optimizing the hypergraph generation stage
which, at the moment, has a running time quadratic in input size and presents
the main bottleneck in the application of the enumeration algorithm to UCC
discovery. Papenbrock and Naumann [17] have shown that hybrid approaches
iterating between generation and validation stages can outperform single di-
rection algorithms by a wide margin.
The enumeration stage could pro�t from advanced heuristics that either

prevent the extension oracle from entering the �nal brute force loop or order the
remaining witness combinations in a way that leads to a faster return. While
the general enumeration problem is proven to be di�cult [7], hypergraphs
generated from real-world data show inherent structure and characteristics
that may allow for some shortcuts on the way to complete minimal hitting set
enumeration.

29



References

[1] Z. Abedjan and F. Naumann. Advancing the discovery of unique column
combinations. In Proceedings of the 20th ACM Conference on Information
and Knowledge Management, pages 1565�1570, 2011. (Cited on page 4.)

[2] Z. Abedjan, L. Golab, and F. Naumann. Pro�ling relational data: a
survey. VLDB J., 24(4):557�581, 2015. (Cited on pages 1 and 4.)

[3] C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the structure of
armstrong relations for functional dependencies. J. ACM, 31(1):30�46,
1984. (Cited on page 1.)

[4] C. Berge. Hypergraphs: Combinatorics of Finite Sets, volume 45 of North-
Holland Mathematical Library. Elsevier Science, 1984. (Cited on pages 3

and 6.)

[5] J. C. Bioch and T. Ibaraki. Complexity of identi�cation and dualization
of positive boolean functions. Inf. Comput., 123(1):50�63, 1995. (Cited

on pages 2 and 5.)

[6] T. Bläsius, T. Friedrich, and M. Schirneck. The parameterized complexity
of dependency detection in relational databases. In 11th International
Symposium on Parameterized and Exact Computation, IPEC 2016, pages
6:1�6:13, 2016. (Cited on page 1.)

[7] T. Bläsius, T. Friedrich, K. Meeks, and M. Schirneck. On the enumeration
of minimal hitting sets in lexicographical order. CoRR, abs/1805.01310,
2018. (Cited on pages 1, 2, 4, 6, 7, 8, 9, 10, 27, and 29.)

[8] T. Eiter and G. Gottlob. Identifying the minimal transversals of a hyper-
graph and related problems. SIAM J. Comput., 24(6):1278�1304, 1995.
(Cited on page 2.)

30



References

[9] T. Eiter, K. Makino, and G. Gottlob. Computational aspects of monotone
dualization: A brief survey. Discrete Applied Mathematics, 156(11):2035�
2049, 2008. (Cited on page 2.)

[10] M. L. Fredman and L. Khachiyan. On the complexity of dualization of
monotone disjunctive normal forms. J. Algorithms, 21(3):618�628, 1996.
(Cited on page 2.)

[11] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining,
hypergraph transversals, and machine learning. In Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 209�216, 1997. (Cited on page 3.)

[12] M. Hagen. Algorithmic and Computational Complexity Issues of MONET.
Cuvillier, 2008. (Cited on page 2.)

[13] A. Heise, J. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and F. Naumann.
Scalable discovery of unique column combinations. PVLDB, 7(4):301�
312, 2013. (Cited on page 4.)

[14] D. Klein and C. D. Manning. Parsing and hypergraphs. In Proceedings
of the Seventh International Workshop on Parsing Technologies (IWPT-
2001). 2001. (Cited on page 3.)

[15] Ø. Ore. Theory of graphs, volume 38 of Colloquium Publications - Amer-
ican Mathematical Society. American Mathematical Society, 1962. (Cited

on page 6.)

[16] T. Papenbrock and F. Naumann. A hybrid approach to functional depen-
dency discovery. In Proceedings of the 2016 International Conference on
Management of Data, pages 821�833, 2016. (Cited on page 16.)

[17] T. Papenbrock and F. Naumann. A hybrid approach for e�cient unique
column combination discovery. In Datenbanksysteme für Business, Tech-
nologie und Web (BTW 2017), pages 195�204, 2017. (Cited on pages 4, 19,

and 29.)

[18] V. Voloshin. Introduction to Graph and Hypergraph Theory. Nova Science
Publishers, 2009. (Cited on page 3.)

[19] D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clus-
tering, classi�cation, and embedding. In Advances in Neural Information
Processing Systems 19, Proceedings of the Twentieth Annual Conference

31



References

on Neural Information Processing Systems, pages 1601�1608, 2006. (Cited

on page 3.)

32


	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Ordered Hypergraphs and Hitting Sets
	2.2 Unique Column Combinations
	2.3 Hitting Set Enumeration Complexity

	3 Lexicographical Minimal Hitting Set Enumeration
	3.1 Extension Oracle
	3.2 Enumeration Algorithm

	4 Faster Enumeration
	4.1 Extension Oracle Return Value
	4.2 Enumeration Algorithm Improvements

	5 Experimental Results
	5.1 Implementation Details and Data
	5.2 Hypergraph Generation
	5.2.1 Number of Generated Edges
	5.2.2 Number of Edges During Generation

	5.3 Lexicographical Enumeration
	5.3.1 Eliminating Attributes
	5.3.2 enumImpr vs. enumOrig
	5.3.3 Attribute Order
	5.3.4 Extension Oracle Running Time


	6 Conclusion and Outlook
	References

