The Minimization of Random Hypergraphs

Thomas Bläsius, Tobias Friedrich, and Martin Schirneck

28th Annual European Symposium on Algorithms - September 7-9, 2020

Data Profiling

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

Data Profiling

Data profiling: mining metadata from databases.

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

• Unique column combinations (UCCs): entries identify the rows.

Add City AC

Data Profiling

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.

Data Profiling

_	Age	Name	Address	City	Area Code	Add City AC
	47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467	
	47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101	Age Name Add City AC
	76	Doe, John	South Street 8	London	UK-W1K	
	90	Nightingale, Florence	South Street 8	London	UK-W1K	
	25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200	
	33	Doe, John	South Street 8	Philadelphia	US-PA-19145	

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.

Data Profiling

Age	Name	Address	City	Area Code	
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467	
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101	
76	Doe, John	South Street 8	London	UK-W1K	
90	Nightingale, Florence	South Street 8	London	UK-W1K	
25 Menigmand, Morten		Trøjburgvej 24	Aarhus	DK-8200	
33	Doe, John	South Street 8	Philadelphia	US-PA-19145	

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.
- Non-minimal difference sets are redundant.

Data Profiling

Age	Name	Address	City	Area Code
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101
76	Doe, John	South Street 8	London	UK-W1K
90	Nightingale, Florence	South Street 8	London	UK-W1K
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200
33	Doe, John	South Street 8	Philadelphia	US-PA-19145

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.
- Non-minimal difference sets are redundant.

Data Profiling

A	lge	Name	Address	City	Area Code	Add City AC
	47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467	
	47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101	Age Name Add City AC
	76	Doe, John	South Street 8	London	UK-W1K	
	90	Nightingale, Florence	South Street 8	London	UK-W1K	Age Name
	25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200	
	33	Doe, John	South Street 8	Philadelphia	US-PA-19145	

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.
- Non-minimal difference sets are redundant.

Data Profiling

Age	Name	Address	City	Area Code	Add City AC
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467	
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101	Age Name Add City AC
76	Doe, John	South Street 8	London	UK-W1K	
90	Nightingale, Florence	South Street 8	London	UK-W1K	Age Name
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200	
33	Doe, John	South Street 8	Philadelphia	US-PA-19145	

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.
- Non-minimal difference sets are redundant.

Data Profiling

Age	Name	Address	City	Area Code	Add City AC
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467	
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101	Age Name Add City AC
76	Doe, John	South Street 8	London	UK-W1K	
90	Nightingale, Florence	South Street 8	London	UK-W1K	Age Name
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200	
33	Doe, John	South Street 8	Philadelphia	US-PA-19145	Age City AC

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.
- Non-minimal difference sets are redundant.

Data Profiling

Age	Name	Address	City	Area Code	Add City AC
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467	
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101	Age Name Add City AC
76	Doe, John	South Street 8	London	UK-W1K	
90	Nightingale, Florence	South Street 8	London	UK-W1K	Age Name
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200	
33	Doe, John	South Street 8	Philadelphia	US-PA-19145	Age City AC

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.
- Non-minimal difference sets are redundant.
- Discard supersets \rightarrow minimization of a hypergraph.

Data Profiling

Age	Name	Address	City	Area Code	Add City AC
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467	
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101	Age Name Add City AC
76	Doe, John	South Street 8	London	UK-W1K	
90	Nightingale, Florence	South Street 8	London	UK-W1K	Age Name
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200	
33	Doe, John	South Street 8	Philadelphia	US-PA-19145	Age City AC

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.
- Non-minimal difference sets are redundant.
- Discard supersets \rightarrow minimization of a hypergraph.
- Minimization is small for large databases. [Papenbrock et al. 2015] [Bläsius et al. 2019]

Data Profiling

Data profiling: mining metadata from databases.

Age	Name	Address	City	Area Code	Add City AC
47	Mustermann, Max	Mittelstraße 125	Potsdam	D-14467	
47	Mustermann, Max	W Broadway 400	San Diego	US-CA-92101	Age Name Add City AC
76	Doe, John	South Street 8	London	UK-W1K	
90	Nightingale, Florence	South Street 8	London	UK-W1K	Age Name
25	Menigmand, Morten	Trøjburgvej 24	Aarhus	DK-8200	
33	Doe, John	South Street 8	Philadelphia	US-PA-19145	Age City AC

- Unique column combinations (UCCs): entries identify the rows.
- UCCs = hitting sets of hypergraph of difference sets.
- Non-minimal difference sets are redundant.
- Discard supersets \rightarrow minimization of a hypergraph.
- Minimization is small for large databases. [Papenbrock et al. 2015] [Bläsius et al. 2019]

Why?

Random Hypergraphs

HPI

Random Hypergraphs

Average-case analysis needs a distribution.

• Several random graph models exist.

- Several random graph models exist.
- Erdős-Rényi graphs (Gilbert graphs) = "maximally random" graphs.

- Several random graph models exist.
- Erdős-Rényi graphs (Gilbert graphs) = "maximally random" graphs.
 - $\mathcal{G}_{n,m}$ ($\mathcal{G}_{n,p}$) maximum-entropy distribution on graphs with *n* vertices and *m* edges (expected $p\binom{n}{2}$ edges).

- Several random graph models exist.
- Erdős-Rényi graphs (Gilbert graphs) = "maximally random" graphs.
 - $\mathcal{G}_{n,m}$ ($\mathcal{G}_{n,p}$) maximum-entropy distribution on graphs with *n* vertices and *m* edges (expected $p\binom{n}{2}$ edges).
- Only few non-uniform hypergraph models. [Schmidt-Pruzan, Shamir 1985] [Chodrow 2020]

Average-case analysis needs a distribution.

- Several random graph models exist.
- Erdős-Rényi graphs (Gilbert graphs) = "maximally random" graphs.
 - $\mathcal{G}_{n,m}$ ($\mathcal{G}_{n,p}$) maximum-entropy distribution on graphs with *n* vertices and *m* edges (expected $p\binom{n}{2}$ edges).
- Only few non-uniform hypergraph models. [Schmidt-Pruzan, Shamir 1985] [Chodrow 2020]

Our model:

 $\mathcal{B}_{n,m,p}$ maximum-entropy distribution on multi-hypergraphs with *n* vertices, *m* edges, and expected edge size *pn*.

Average-case analysis needs a distribution.

- Several random graph models exist.
- Erdős-Rényi graphs (Gilbert graphs) = "maximally random" graphs.
 - $\mathcal{G}_{n,m}$ ($\mathcal{G}_{n,p}$) maximum-entropy distribution on graphs with *n* vertices and *m* edges (expected $p\binom{n}{2}$ edges).
- Only few non-uniform hypergraph models. [Schmidt-Pruzan, Shamir 1985] [Chodrow 2020]

Our model:

 $\mathcal{B}_{n,m,p}$ maximum-entropy distribution on multi-hypergraphs with *n* vertices, *m* edges, and expected edge size *pn*.

Average-case analysis needs a distribution.

- Several random graph models exist.
- Erdős-Rényi graphs (Gilbert graphs) = "maximally random" graphs.
 - $\mathcal{G}_{n,m}$ ($\mathcal{G}_{n,p}$) maximum-entropy distribution on graphs with *n* vertices and *m* edges (expected $p\binom{n}{2}$ edges).
- Only few non-uniform hypergraph models. [Schmidt-Pruzan, Shamir 1985] [Chodrow 2020]

Our model:

 $\mathcal{B}_{n,m,p}$ maximum-entropy distribution on multi-hypergraphs with *n* vertices, *m* edges, and expected edge size *pn*.

• Sample *m* subsets of [*n*], including any vertex with probability *p*.

Average-case analysis needs a distribution.

- Several random graph models exist.
- Erdős-Rényi graphs (Gilbert graphs) = "maximally random" graphs.
 - $\mathcal{G}_{n,m}$ ($\mathcal{G}_{n,p}$) maximum-entropy distribution on graphs with *n* vertices and *m* edges (expected $p\binom{n}{2}$ edges).
- Only few non-uniform hypergraph models. [Schmidt-Pruzan, Shamir 1985] [Chodrow 2020]

Our model:

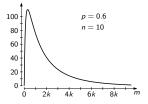
 $\mathcal{B}_{n,m,p}$ maximum-entropy distribution on multi-hypergraphs with *n* vertices, *m* edges, and expected edge size *pn*.

• Sample *m* subsets of [*n*], including any vertex with probability *p*.

Expected size of the minimization of $\mathcal{B}_{n,m,p}$?

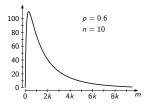
Main Results

Tight bounds on $E[|\min(\mathcal{B}_{n,m,p})|]$



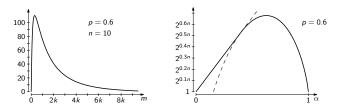
Main Results

Tight bounds on $E[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



Main Results

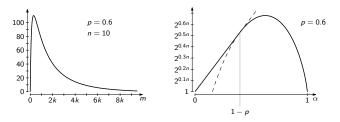
Tight bounds on $E[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Main Results

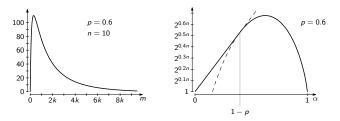
Tight bounds on $E[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Main Results

Tight bounds on $E[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



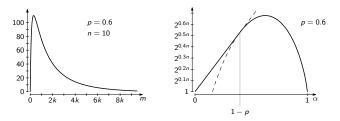
Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Theorem

1. If $m \leq 1/(1-p)^{(1-p)n}$, then the minimization has expected size $\Theta(m)$.

Main Results

Tight bounds on $E[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Theorem

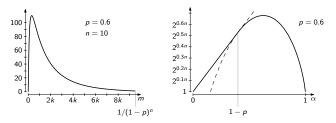
1. If $m \leq 1/(1-p)^{(1-p)n}$, then the minimization has expected size $\Theta(m)$.

2. If
$$\alpha \in [1 - p + \varepsilon, 1 - \varepsilon]$$
 for any $\varepsilon > 0$, the size is $\Theta(2^{H(\alpha)n} \cdot p^{(1-\alpha)n}/\sqrt{n})$.

 $(2^{H(\alpha)})$ perplexity from information theory.)

Main Results

Tight bounds on $E[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Theorem

1. If $m \leq 1/(1-p)^{(1-p)n}$, then the minimization has expected size $\Theta(m)$.

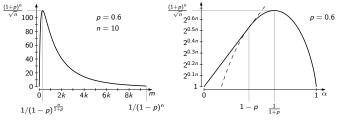
2. If
$$\alpha \in [1 - p + \varepsilon, 1 - \varepsilon]$$
 for any $\varepsilon > 0$, the size is $\Theta(2^{H(\alpha)n} \cdot p^{(1-\alpha)n}/\sqrt{n})$.

 $(2^{H(\alpha)})$ perplexity from information theory.)

3. If
$$m = 1/(1-p)^{n+\omega(\log n)}$$
, the size is $1 + o(1)$.

Main Results

Tight bounds on $E[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Theorem

1. If $m \leq 1/(1-p)^{(1-p)n}$, then the minimization has expected size $\Theta(m)$.

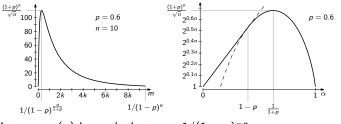
2. If
$$\alpha \in [1 - p + \varepsilon, 1 - \varepsilon]$$
 for any $\varepsilon > 0$, the size is $\Theta(2^{H(\alpha)n} \cdot p^{(1-\alpha)n}/\sqrt{n})$.

 $(2^{H(\alpha)})$ perplexity from information theory.)

3. If
$$m = 1/(1-p)^{n+\omega(\log n)}$$
, the size is $1 + o(1)$.

Main Results

Tight bounds on $\mathsf{E}[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



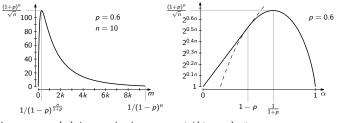
Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Proof recipe:

1. Establish close connection between $E[|\min(\mathcal{B}_{n,m,p})|]$ and $P[X \leq (1 - \alpha)n]$ where $X \sim Bin(n, p)$.

Main Results

Tight bounds on $\mathsf{E}[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



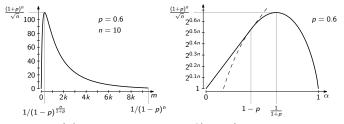
Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Proof recipe:

- 1. Establish close connection between $E[|\min(\mathcal{B}_{n,m,p})|]$ and $P[X \leq (1 - \alpha)n]$ where $X \sim Bin(n, p)$.
- 2. Improve bounds on the binomial distribution.

Main Results

Tight bounds on $\mathsf{E}[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



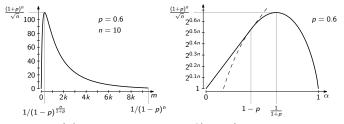
Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Proof recipe:

- 1. Establish close connection between $E[|\min(\mathcal{B}_{n,m,p})|]$ and $P[X \leq (1 - \alpha)n]$ where $X \sim Bin(n, p)$.
- 2. Improve bounds on the binomial distribution.
- 3. Garnish with inequalities from combinatorics and information theory.

Main Results

Tight bounds on $\mathsf{E}[|\min(\mathcal{B}_{n,m,p})|]$ & phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



Let $\alpha = \alpha(n)$ be such that $m = 1/(1-p)^{\alpha n}$.

Proof recipe:

- 1. Establish close connection between $E[|\min(\mathcal{B}_{n,m,p})|]$ and $P[X \leq (1 - \alpha)n]$ where $X \sim Bin(n, p)$.
- 2. Improve bounds on the binomial distribution.
- 3. Garnish with inequalities from combinatorics and information theory.

The Chernoff-Hoeffding Theorem

How likely $X \sim Bin(n, p)$ deviates from E[X] = pn?

The Chernoff-Hoeffding Theorem

How likely $X \sim Bin(n, p)$ deviates from E[X] = pn?

Estimate $\mathsf{P}[X \leq xn]$ for $x \leq p$. (Via Kullback-Leibler divergence $\mathsf{D}(x \parallel p)$.)

The Chernoff-Hoeffding Theorem

How likely $X \sim Bin(n, p)$ deviates from E[X] = pn?

Estimate $P[X \le xn]$ for $x \le p$. (Via Kullback-Leibler divergence $D(x \parallel p)$.)

• Chernoff-Hoeffding theorem: $P[X \le xn] \le 2^{-D(x \parallel p)n}$. [Hoeffding 1963]

The Chernoff–Hoeffding Theorem

How likely $X \sim Bin(n, p)$ deviates from E[X] = pn?

Estimate $P[X \le xn]$ for $x \le p$. (Via Kullback-Leibler divergence D(x||p).)

- Chernoff-Hoeffding theorem: $P[X \le xn] \le 2^{-D(x \parallel p)n}$. [Hoeffding 1963]
- Stirling's approximation: $P[X \le xn] \ge \frac{1}{\sqrt{8n \times (1-x)}} \cdot 2^{-D(x \parallel p)n}$.

The Chernoff-Hoeffding Theorem

How likely $X \sim Bin(n, p)$ deviates from E[X] = pn?

Estimate $P[X \le xn]$ for $x \le p$. (Via Kullback-Leibler divergence D(x||p).)

- Chernoff-Hoeffding theorem: $P[X \le xn] \le 2^{-D(x \parallel p)n}$. [Hoeffding 1963]
- Stirling's approximation: $P[X \le xn] \ge \frac{1}{\sqrt{8n \times (1-x)}} \cdot 2^{-D(x \parallel p)n}$.
- Closing the $O(\sqrt{n})$ -gap down to constants.

The Chernoff-Hoeffding Theorem

How likely $X \sim Bin(n, p)$ deviates from E[X] = pn?

Estimate $P[X \le xn]$ for $x \le p$. (Via Kullback-Leibler divergence $D(x \parallel p)$.)

- Chernoff-Hoeffding theorem: $P[X \le xn] \le 2^{-D(x \parallel p)n}$. [Hoeffding 1963]
- Stirling's approximation: $P[X \le xn] \ge \frac{1}{\sqrt{8n \times (1-x)}} \cdot 2^{-D(x \parallel p)n}$.
- Closing the $O(\sqrt{n})$ -gap down to constants.

Theorem: Tight Chernoff-Hoeffding.

If 0 < x < p is a constant, then $P[X \le xn] = \Theta(2^{-D(x \parallel p)n}/\sqrt{n})$.

The same holds if $x = x(n) \in [\varepsilon, p - \varepsilon]$ for any $\varepsilon > 0$.

The Chernoff-Hoeffding Theorem

How likely $X \sim Bin(n, p)$ deviates from E[X] = pn?

Estimate $P[X \le xn]$ for $x \le p$. (Via Kullback-Leibler divergence $D(x \parallel p)$.)

- Chernoff-Hoeffding theorem: $P[X \le xn] \le 2^{-D(x \parallel p)n}$. [Hoeffding 1963]
- Stirling's approximation: $P[X \le xn] \ge \frac{1}{\sqrt{8n \times (1-x)}} \cdot 2^{-D(x \parallel p)n}$.
- Closing the $O(\sqrt{n})$ -gap down to constants.

Theorem: Tight Chernoff-Hoeffding.

If 0 < x < p is a constant, then $P[X \le xn] = \Theta(2^{-D(x \parallel p)n}/\sqrt{n})$.

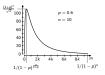
The same holds if $x = x(n) \in [\varepsilon, p - \varepsilon]$ for any $\varepsilon > 0$.

Combine bound on ratio $P[X \le xn] / P[X = xn]$ [Klar 2000] with perplexity $\binom{n}{xn} = \Theta(2^{H(x)n}/\sqrt{n}).$

Summary

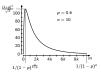
• Analysis of minimization of maximum-entropy multi-hypergraph $\mathcal{B}_{n,m,p}$.

- Analysis of minimization of maximum-entropy multi-hypergraph $\mathcal{B}_{n,m,p}$.
- Implications for large databases.

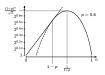


Summary

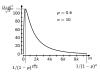
- Analysis of minimization of maximum-entropy multi-hypergraph $\mathcal{B}_{n,m,p}$.
- Implications for large databases.



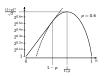
• Phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



- Analysis of minimization of maximum-entropy multi-hypergraph $\mathcal{B}_{n,m,p}$.
- Implications for large databases.

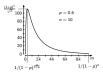


• Phase transition at $m^* = 1/(1-p)^{(1-p)n}$.

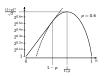


• Tight bounds on binomial distribution $P[X \le xn] = \Theta(2^{-D(x \parallel p)n}/\sqrt{n})$.

- Analysis of minimization of maximum-entropy multi-hypergraph $\mathcal{B}_{n,m,p}$.
- Implications for large databases.



• Phase transition at $m^* = 1/(1-p)^{(1-p)n}$.



• Tight bounds on binomial distribution $P[X \le xn] = \Theta(2^{-D(x \parallel p)n}/\sqrt{n})$.

Thank you.

