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Data Profiling
Data profiling: mining metadata from databases.

Name

Nightingale, Florence

Address

South Street 8

City

London

Area Code

UK-W1K

Doe, John South Street 8 Philadelphia US-PA-19145

Menigmand, Morten Trøjburgvej 24 Aarhus

Mustermann, Max Mittelstraße 125 Potsdam D-14467

Mustermann, Max W Broadway 400 San Diego US-CA-92101

Doe, John South Street 8 London UK-W1K

DK-8200

Age

90

33

25

47

47

76

• Unique column combinations (UCCs): entries identify the rows.

• UCCs = hitting sets of hypergraph of difference sets.

• Non-minimal difference sets are redundant.

• Discard supersets → minimization of a hypergraph.

• Minimization is small for large databases. [Papenbrock et al. 2015] [Bläsius et al. 2019]

Why?
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Random Hypergraphs

Average-case analysis needs a distribution.

• Several random graph models exist.

• Erdős-Rényi graphs (Gilbert graphs) = “maximally random” graphs.

− Gn,m (Gn,p) maximum-entropy distribution on graphs

with n vertices and m edges (expected p
(
n
2

)
edges).

• Only few non-uniform hypergraph models. [Schmidt-Pruzan, Shamir 1985] [Chodrow 2020]

Our model:

Bn,m,p maximum-entropy distribution on multi-hypergraphs

with n vertices, m edges, and expected edge size pn.

• Sample m subsets of [n], including any vertex with probability p.

Expected size of the minimization of Bn,m,p?

2 / 5
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• Erdős-Rényi graphs (Gilbert graphs) = “maximally random” graphs.

− Gn,m (Gn,p) maximum-entropy distribution on graphs

with n vertices and m edges (expected p
(
n
2

)
edges).

• Only few non-uniform hypergraph models. [Schmidt-Pruzan, Shamir 1985] [Chodrow 2020]

Our model:

Bn,m,p maximum-entropy distribution on multi-hypergraphs

with n vertices, m edges, and expected edge size pn.

• Sample m subsets of [n], including any vertex with probability p.

Expected size of the minimization of Bn,m,p?

2 / 5



The Minimization of Random Hypergraphs ESA - September 7-9, 2020

Martin Schirneck

Main Results
Tight bounds on E[ |min(Bn,m,p)| ]

& phase transition at m∗ = 1/(1− p)(1−p)n.

0 2k 4k 6k 8k
0

20

40

60

80

100

m

p = 0.6

n = 10

Let α = α(n) be such that m = 1/(1− p)αn.

Theorem

1. If m ≤ 1/(1− p)(1−p)n, then the minimization has expected size Θ(m).

2. If α ∈ [1− p + ε, 1− ε] for any ε > 0, the size is Θ
(
2H(α)n · p(1−α)n

/√
n
)
.

(2H(α) perplexity from information theory.)

3. If m = 1/(1− p)n+ω(log n), the size is 1 + o(1).

3 / 5
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3. If m = 1/(1− p)n+ω(log n), the size is 1 + o(1).
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Main Results
Tight bounds on E[ |min(Bn,m,p)| ] & phase transition at m∗ = 1/(1− p)(1−p)n.
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Proof recipe:

1. Establish close connection between E[ |min(Bn,m,p)| ]
and P[X ≤ (1− α)n] where X ∼ Bin(n, p).

2. Improve bounds on the binomial distribution.

3. Garnish with inequalities from combinatorics and information theory.
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The Chernoff–Hoeffding Theorem

How likely X ∼ Bin(n, p) deviates from E[X ] = pn?

Estimate P[X ≤ xn] for x ≤ p. (Via Kullback–Leibler divergence D(x∥p).)

• Chernoff–Hoeffding theorem: P[X ≤ xn] ≤ 2−D(x ∥ p)n. [Hoeffding 1963]

• Stirling’s approximation: P[X ≤ xn] ≥ 1√
8n x(1−x)

· 2−D(x ∥ p)n.

• Closing the O(
√
n)-gap down to constants.

Theorem: Tight Chernoff-Hoeffding.

If 0 < x < p is a constant, then P[X ≤ xn] = Θ
(
2−D(x ∥ p)n

/√
n
)
.

The same holds if x = x(n) ∈ [ε, p − ε] for any ε > 0.

Combine bound on ratio P[X ≤ xn]/P[X = xn] [Klar 2000]

with perplexity
(
n
xn

)
= Θ(2H(x)n/

√
n).
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Summary
• Analysis of minimization of maximum-entropy multi-hypergraph Bn,m,p.

• Implications for large databases.
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