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Zusammenfassung

Aktuelle Modelle fiir maschinelles Lernen, die auf Zeitreihen spezialisiert
sind, legen beeindruckende Prognosefihigkeiten an den Tag, bleiben jedoch
grofstenteils Black Boxes. Gleichzeitig versprechen modellunabhéngige, nach
dem Perturbation-Prinzip arbeitende Erkldrsysteme, insbesondere das kiirzlich
vorgeschlagene SHAP, einzelne Vorhersagen eines beliebigen Modells zu erk-
laren. In dieser These wird demonstriert, wie diese Techniken an Modelle
angepasst werden konnen, die auf Zeitserien arbeiten. Hierfiir werden neuar-
tige, sogenannte mapping functions vorgestellt, die auf Zeitreihen zugeschnit-
ten sind. Die Aussagekraft sowie die Limitierungen dieser Mappings werden
analysiert. Dariiber hinaus werden verwenden die vorgeschlagenen Mapping-
Techniken in einem grofs angelegten Experiment verwendet, um die Entschei-
dungsfindungsprozesse einer Vielzahl von aktuellen Zeitreihenklassifikatoren
zu vergleichen und nach Ahnlichkeiten zwischen scheinbar unterschiedlichen
Klassifizierungskonzepten zu suchen.
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Abstract

State-of-the-art machine learning models special-
ized on time series display impressive predic-
tive capabilities, yet they mostly remain black
boxes. At the same time, model-agnostic, so-
called perturbation-based explainers, including
recently proposed SHAP, promise to explain in-
dividual predictions of any model. In this work,
we show how to adapt those techniques to time
series predictors. For this, we present novel do-
main mappings tailored to time series. We analyze
the explicative power as well as the limits of our
mappings. Additionally, we employ our proposed
mapping techniques in a large-scale experiment
to compare the decision-making processes of a va-
riety of state-of-the-art time series classifiers and
discover similarities between seemingly distinct
classification concepts.

1. Introduction

In recent years, Al technology has become ubiquitous in nu-
merous industries. From dynamic pricing and recommender
systems to autonomous vehicles and predictive policing,
machine learning (ML) models have found their way into
our everyday lives. As they are progressively entrusted with
more and more responsibility, we should wonder whether
we can actually trust them. ML systems must be safe, exhibit
predictable and expected behavior, and must not discrimi-
nate (Lipton, 2016). Whether an ML system satisfies such
fuzzy, yet important criteria cannot be determined by just
computing a single “trustworthiness” metric.

To combat this issue, researchers are pushing towards tech-
nologies that explain the decision-making process of ML
models. Through understanding the inner workings and
reasons behind the predictions of such complicated estima-
tors, ML engineers are enabled to both spot flaws and build
trust in their systems. The movement towards explainable
Al (XAI) has been further fueled by a “right to explana-
tion” recently proposed by the European Union (Goodman
& Flaxman, 2017).
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Figure 1. Exemplary explanation depicting which temporal seg-
ments of a specimen (time series #76 from the UCR GunPoint test
set) are relevant to a residual neural network classifier (ResNet)
when asked whether the specimen belongs to its true class. The
red areas were identified as supporting the classifier’s decision
towards the true class while blue areas oppose it. The explanation
was generated using Kernel SHAP with time slice mapping.

However, one’s ability to comprehend the decision-making
process of an ML model highly depends on its complexity.
While understanding a linear regression is feasible (Lou
et al., 2012), grasping the whole of the inner workings of
a sufficiently complex neural network with thousands or
millions of weights is considered to be impossible at this
time (Lipton, 2016). As a possible solution, Alvarez-Melis
& Jaakkola (2018b) proposed specialized models which
have interpretability built into them. However, explaining
other, uninterpretable models post-hoc and at the grand scale
still elude us.

Rather than striving to explain an inherently uninterpretable
model in its completeness, numerous methods have been
proposed that only explain the model’s prediction of an
individual input. In what follows, we call that input spec-
imen. For example, saliency-based approaches like those
of Selvaraju et al. (2017) examine the gradients of neural
networks during the prediction of the specimen. However,
most of these techniques are highly model-specific. In con-
trast, we will focus on model-agnostic, perturbation-based
approaches that treat the model as a black box and probe
it in the vicinity of the specimen. Exploiting the gained
insight, these approaches then infer which features of the
specimen are relevant to the model, yielding an explanation
as the result. Ribeiro et al. (2016) pioneered work in this
area with their LIME framework. Multiple extensions were
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subsequently proposed, which have recently been unified by
Lundberg & Lee (2017) with their generic SHAP framework
and specifically its model-agnostic explanation generator
called Kernel SHAP.

Perturbation-based approaches require instructions on how
to perturb the specimen to yield variants that lie in its vicin-
ity. These instructions are embodied by a mapping function.
Ribeiro et al. (2016) previously introduced mappings for
images, text, and tabular data. In the domain of time series,
however, such mappings are still lacking. In this work, as a
step towards model-agnostic explanations for predictions on
time series, we present two expressive mapping functions
for this new domain in Sections 3.1 and 3.2. An exemplary
explanation found using one of our mapping functions is
exhibited in Figure 1. Additionally, we discuss challenges
and pitfalls in designing mapping functions and analyze the
limitations of our extensions in Sections 3.3 and 3.4.

In time series classification, a multitude of conceptually dif-
ferent approaches coexists. In Section 4, we first survey the
current state-of-the-art models for time series classification.
Afterwards, we employ Kernel SHAP combined with our
mappings to develop an automated tool which is able to gen-
erate a vast amount of explanations for these classifiers on
different specimens and then automatically compare these
explanations. Our tool in fact reveals surprising similarities
between diverse models.

2. Local Explanations and Kernel SHAP

Before we introduce Kernel SHAP, we first need to for-
malize the black-box ML model we want to interpret. We
define the space of all possible inputs for the model as the
vector space I with dimension d. The model itself then is
the function f: I — R, which takes an input and produces
a prediction. In classification, we would employ one such
function for each class, which outputs the probability that
the input belongs to that class.

For the rest of this paper, we formally denote the specimen
as x € [. Intuitively, Kernel SHAP “disables” portions
(called fragments) of x to yield one of many perturbed spec-
imens z € I and then computes f(z). Doing this multiple
times with different fragments disabled each time explores
the behavior of the prediction function f in the vicinity of
the specimen. Using the gained insight, an interpretable lin-
ear explanation model is built that approximates the original
model near the specimen, as illustrated in Figure 2. The
interpretable explanation model then allows us to estimate
the impact that each fragment of x has on the prediction
f () of the model. We will now formalize this process.

First, assume we have a way to divide the specimen « into
some number d’ of fragments that can be disabled individ-
ually. We now introduce the space of so-called simplified

x Specimen ¢  Perturbed specimen Prediction

Explanation model ¢

Original model f

Figure 2. Toy example illustrating the intuition behind Kernel
SHAP. The original model f is probed in the vicinity of the spec-
imen. The collected predictions are then used to build a linear
regression explanation model g.

inputs as the vector space I’ = {0,1}% with dimension .
Let us take a look at any one simplified input 2’ € I’. Each
1 or 0 in 2’ hints an activated or deactivated fragment of the
specimen x, respectively.

The actual act of disabling fragments is performed by a
mapping function hg: I' — I. Upon invocation with any
simplified input z’, the mapping function disables the frag-
ments of x that are hinted as disabled by z’ and yields the
resulting perturbed specimen. Take note that for the rest of
this paper, symbols with or without a prime are related to
simplified or original inputs, respectively.

Let us quickly examine the simplified input &’ = T € I’.
Since «’ only contains 1s and thus hints that all fragments
are enabled, x’ is the simplified representation of the unper-
turbed specimen x. So naturally, h,(x’) = @ holds.

With all the groundwork finished, let us now move on to the
explanation model.

Definition 1. An explanation model is a linear regression
model g: I' — R with the impact vector ¢ € R* *1 such
thatVz' € I':

N
9(Z) = o+ _ ¢izl.
=1

The set of all possible explanation models is called G.

The explanation model operates on simplified inputs I’ and
strives to linearly approximate the behavior of the original
model in the close vicinity around . In other words, given
az’ € I’ with only a couple of fragments disabled, i.e., only
a couple of zeros, g(2’) ~ f(hg(2")) should roughly hold.

The impact vector ¢ (also known as SHAP values) now acts
as the explanation of the model’s decision-making process
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with respect to x. For each i € {1,...,d'}, ¢, expresses
which impact activating the corresponding fragment has on
the prediction of the model.

In practice, an impact vector ¢ is found by probing the
model f with a lot of randomly generated perturbed spec-
imens hg(z’), z’ € I’ and using the results to build an
explanation model that approximates the ideal explanation
model

[f(ha(2)) — g(2")]) 7ar (2).

¢ = argmin E
geG z'cl’

The function 7, : I’ — RT is a distance function such
that 7.+ (2”) is a distance measure between x’ and z’. This
distance measure reduces the influence of those simplified
inputs which have most of their fragments disabled, since
the original model’s predictions of those are prone to noise.
For details regarding 7, see Lundberg & Lee (2017).

3. Kernel SHAP on Time Series

Kernel SHAP provides a framework to generate explana-
tions for the behavior of a model. However, the interpretabil-
ity of these explanations highly depends on the choice of
a mapping function h,, a choice that is left up to the user.
The mapping function solely dictates how the specimen is
divided into fragments. Those fragments need to be intu-
itively understandable by the user so he comprehends what it
means that a fragment has high or low impact. Additionally,
as shown in Section 3.3, employing a mapping function not
suitable for the data or model could produce explanations
that are misleading. All this renders the choice of h, an
important challenge.

Ribeiro et al. (2016) have previously introduced mappings
for images, text, and tabular data. We now propose expres-
sive SHAP-style mapping functions for the new domain of
time series.

For the rest of this paper, since we focus on time series now,
we define the vector space I = R? and view it as space
of time series with length d. Each vector z € I thus is a
time series, whose value at time ¢t € {1, ..., d} is naturally
denoted by z;.

3.1. Time Slice Mapping

We first present time slice mapping. This technique splits
a specimen @ into d’ equi-length slices along the time axis.
Each slice 7 € {1,...,d'} makes up one fragment whose
activation is thus governed by z/. To disable an individual
fragment, i.e., slice, one cannot just remove it or fill it
with missing values since most models can neither cope
with time series of dynamic length nor with missing values.
Instead, the slice is replaced with the corresponding slice
from a second replacement time series » € I. Five such

—— Perturbed specimen Slice edges Disabled slices
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Figure 3. Two different perturbations of the same specimen (time
series #7 from the UCR GunPoint test set), yielded by time slice
mapping with global mean replacement (see Section 3.1.1). A
different set of fragments has been disabled in both plots.

replacement series will be presented in the next section.

To bring it all together, when the time slice mapping func-
tion, which is tailored to the specimen x, is queried with any
simplified input 2’, it disables all the slices ¢ of = whose
z! is 0 and yields the resulting perturbed version of x, as
demonstrated in Figure 3.

Definition 2. Let r € I be a replacement time series. Let
j:{1,...,d} = {1,...,d'} be a function such that j(t)
vields the slice at time t.

Forany 2z’ € I, the time slice mapping function ISR (N
1 yields a perturbed time series such that

’
3t

ry, for z;(t) =0.

x, forz )y = 1;

vte {1,...,d}: (R (2')): = {

Some exemplary explanation found using this time slice
mapping technique is exhibited in Figure 1.

To avoid over-specific assumptions, no other, more diverse
strategies to splitting a series into slices apart from equi-
length slices are considered. Still, we make two assumptions
for this technique, which we consider reasonable. First, the
explained model bases its decisions on the occurrence of
patterns in the time domain (feature space assumption). Sec-
ondly, temporally neighboring parts of a series, i.e., points
from the same slice, have similar impact on the predic-
tions of the model (temporal coherence assumption). These
assumptions, which have not been discussed in literature
previously, are later elaborated in Section 3.3.

3.1.1. TIME DOMAIN REPLACEMENT

Finding a good replacement time series © € I is not trivial.
Replacing a slice in  with its counterpart from r must re-
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move all structure from the slice so that the model cannot
utilize any of the information it previously contained. Con-
versely, replacing a slice should insert as little accidental
additional structure as possible to not distort the explanation.
All this requires 7 to carry as little information as possible.

We propose the following five options for » with respect to
a set of reference time series .9, e.g., test data, four of which
are illustrated in Figure 4.

Zero: rt(l) =0

1
Local mean: 'rt(Q) == Z St

1
Global mean: rt(S) = W Z Z Sk

Local noise: r{*) ~ ./\f(,u(4),a(24)), with

Mgy = rt@) (local mean),

o(4) = local standard deviation.
Global noise: 7\°) ~ N(u(5),a(25)), with
H(s) = rt(?’) (global mean),

o(5) = global standard deviation.

The local and global standard deviation are computed analo-
gous to the local and global mean.

However, most of replacements violate the requirements
outlined beforehand. The two noise replacements insert
additional peaks and slopes, which could be considered
important information by some models. The two local re-
placements do not eliminate, but instead preserve the rough
path of the specimen and even smuggle in the rough path
of the dominant class if there is one. Finally, when a whole
dataset is valued at a higher magnitude, zero replacement
might introduce large jumps in magnitude.

Intuitively, global mean replacement removes most infor-
mation while inserting the least accidental structure. It pre-
serves the rough order of magnitude, does not preserve any
rough path, and avoids artificial slopes and peaks altogether.
It has also lead to satisfactory results in practice. However,
the sharp edges it almost always produces (see Figure 3)
may distort the explanations of models that are sensitive to
those.

3.1.2. DIRECT MAPPING

Returning to the grand view of time slice mapping, a special
case arises when one chooses d’ = d. In this case, each one
of the time series’ points makes up exactly one fragment and
can be disabled individually. That way, the impact of each
point is explained individually and isolated from all other
points, making the explanation incredibly fine-grained.

—— Global mean Global noise
2 B
04
—924
—— Local mean Local noise
2
0 A
—24
0 20 40 60 80 100 120 140
Time

Figure 4. Comparison of four time domain replacement series, gen-
erated by four different approaches. The UCR GunPoint test set is
employed as reference set .S.

This direct mapping approach isn’t aware that it is operating
on time series data since the impact of each vector com-
ponent of the specimen x is measured directly. Thus, we
happily dispose of the temporal coherence assumption. But
despite all these merits, direct mapping with its large d’ has
substantial drawbacks, as discussed later in Section 3.4.

3.2. Frequency Band Mapping

Some models might not only be interested in the temporal
structure of a time series, e.g., hills or valleys, but also in
whether the series oscillates at particular frequencies. To de-
tect this, they first convert the series from the ordinary time
domain to the so-called frequency domain via the Fourier
transform. There, the frequencies that the series oscillates
at are clearly visible, as illustrated in Figure 5.

While time slice mapping allows us to compute interpretable
impacts of temporal slices of a time series, it fails to capture
frequencies that are considered impactful by models which
operate in the frequency domain. We strive to explain the
decisions of a model as completely as possible, thus we
need to introduce a mapping function that considers the
frequency domain.

Frequency band mapping splits the frequency spectrum of
the specimen into d’ frequency bands with quadratically
increasing bandwidths. We chose a quadratic scaling to
provide greater resolution at the information-rich lower fre-
quencies, as opposed to linear scaling, while not loosing
too much resolution at higher frequencies, as opposed to
logarithmic scaling. Each band i € {1,...,d'} makes up
one fragment whose activation is thus governed by z/. An
individual fragment is disabled by cutting the corresponding
frequency band from the frequency spectrum of x, a task
which is performed using a so-called bandstop filter.
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Figure 5. Intuition for the Fourier transformation. On the left, vari-
ous time series are depicted in the ordinary time domain. Convert-
ing them to the frequency domain via the Fourier transform yields
the frequency spectra on the right. Signals 1 and 2 demonstrate
how oscillations of a single frequency in the time domain are just
a single spike at that frequency in the frequency domain. Signal 3
illustrates that two oscillations laid on top of each other result in
two spikes at those frequencies. Signal 4 is a complex audio signal
which nevertheless has three dominant frequencies. Signal 5 is a
real-world time series with a lot of different low frequencies and
some high frequencies.

Two such filters will be proposed in the next section.

Summing up again, when the frequency band mapping func-
tion, which is tailored to the specimen «, is queried with any
simplified input 2/, it iteratively disables all the frequency
bands ¢ of & whose 2/ is 0 one after the other using bandstop
filters and yields the resulting perturbed version of x, as
demonstrated in Figure 6. Let us now formally define this
iterative function as a recursive loop.

Definition 3. Forany 2’ € I, the frequency band mapping

function th’ : I' — 1 yields a perturbed time series such
that
h (') = A(Z', 1, 2)

with A: I’ x {1,...,d+ 1} x I — I such that

z, fori=d +1,
A i+ 1, 2),
A2 i+ 1,04, 2)),

A(2',i,z) =

with X: {1,...,d} x I — I such that \(i, z) cuts the band
1 from the time series z using a bandstop filter.

Analogous to time slice mapping, the only two assumption
made by frequency band mapping are that the model con-

—— Specimen Band edges Disabled bands
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Figure 6. Demonstration of how the perturbation of a specimen
(time series #64 from the UCR FaceFour test set) in the frequency
domain manifests in both the frequency and time domains. Scales
are linear and have been omitted for clarity. Notably, in the bottom
right, one can observe how the disabled frequency bands of the
specimen are almost completely set to O by the bandstop filters.
The bottom left shows the effect of this filtering in the time domain.

siders frequency information in its decision-making process
(feature space assumption) and that neighboring frequen-
cies, i.e., those inside the same band, have mostly similar
impact on the predictions of the model (band coherence
assumption). Both assumptions will be elaborated in Sec-
tion 3.3.

3.2.1. BANDSTOP FILTERS

We propose two bandstop filters that are suitable for fre-
quency band mapping. Exemplary frequency responses of
these filters are depicted in Figure 7.

Our first proposal, an elliptic filter (Schlichthérle, 2000),
is an infinite impulse response (IIR) filter that is fast in
execution and can be designed to feature a frequency re-
sponse with unparalleled clarity and sharpness at the edges.
However, IIR filters are notorious for their unreliability, as
shown by Litwin (2000), rendering elliptic filters a clean,
but in no way general purpose solution. Without previous
examination of how cleanly the filter cuts out the bands
i € {1,...,d'} from the concrete specimen x, its usage
thus cannot be recommended.

Instead, we advocate employing an finite impulse response
(FIR) filter designed using least-squares linear-phase opti-
mization (FIRLS), as described by Parks & Burrus (1987).
While a FIRLS filter lacks clarity and edge sharpness in com-
parison to the elliptic filter, its reliability makes it perfect to
generate explanations on unknown specimens.
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Figure 7. Frequency responses of the the proposed elliptic and
FIRLS filters for a bandstop between 40 and 60 Hz. Intuitively,
a frequency response shows how the amplitude of each plotted
frequency is reduced by the filter, i.e., how much so-called gain is
applied to each frequency. As one can see, the elliptic filter has
sharp edges, i.e., highly dampens frequencies inside the band and
doesn’t change the amplitude of frequencies outside the band. The
FIRLS filter has blurred edges and more unwanted variety in gain.

3.3. Consequences of Wrong Assumptions

Both time slice mapping and frequency band mapping im-
pose assumptions on the specimen and model. We need to
introduce these systematically and explore the severity of
false assumptions to assess the merits of any explanation
generated through those techniques.

3.3.1. COHERENCE ASSUMPTION

The assumption of coherence is that neighboring values
have similar impact on the prediction of the model, be it in
the time or frequency domain. Intuitively, this assumption
sounds reasonable. A model basing its decisions only on
isolated points in time or isolated frequencies, completely
ignoring the neighborhoods of those points, is considered a
sign of substantial overfitting.

However, increasingly far-reaching coherence, i.e., coher-
ence spanning a longer range of points or frequencies, gen-
erally becomes increasingly implausible. Assuming far-
reaching coherence where there is none results in mislead-
ing explanations, as illustrated in Figure 8. Moreover, one
cannot deduce from just looking at one explanation whether
the coherence assumption, which is implicitly imposed by
the mapping, is correct. Therefore, those who view an im-
pact distribution have to be aware that the truly impactful
portions of the specimen might only be short parts lying
somewhere inside the fragments that might be misleadingly
marked as impactful in their completeness.

To reduce this issue, one is advised to use a high number of
time slices or frequency bands, respectively.

—— Specimen Slice edges B Impactful slices
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Figure 8. Toy example demonstrating the effect of utilizing too
few time slices, implicitly assuming far-reaching coherence. The
upper plot assumes only short-reaching coherence and shows in
detail that the first and last rising slopes have a high impact on the
model’s prediction. In contrast, the lower plot assumes far-reaching
coherence, thus employs less slices and, as a result, suggests a
different and misleading impact distribution.

3.3.2. FEATURE SPACE ASSUMPTION

The feature space assumption is that the model bases its
decisions on the properties of the specimen in a particular
feature space, specifically the time respective frequency
domain. Such properties could, for example, be a spike in
the time domain or the presence of a particular frequency
band.

Let us investigate what happens if one assumes that the
model works in the time domain and applies time slice
mapping, when in reality, the model works in the frequency
domain. When disabling a fragment in the time domain,
e.g., removing a spike in time, that removal also affects the
frequency domain and presumably lowers the amplitude
of some frequencies. If these frequencies are impactful
to the model, lowering them affects the confidence of the
model’s prediction. However, Kernel SHAP only witnesses
that removing the spike is affecting the confidence and thus
considers the spike to be impactful. Obviously, it is only
indirectly impactful.

Those who view impact distributions have to be aware that
the fragments which are marked as impactful might not
be what the model actually attributes importance to, but
instead only artifacts. Unless we are sure which domain the
model operates in, we cannot deduce that, e.g., the model
considers a specific interval in time important just because
it is impactful in a time slice impact distribution.
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3.4. Simplified Input Dimension Trade-off

Till now, the choice of the simplified input space dimension
d’ has been mostly left open. In Section 3.3.1, we have
shown that too low d’ results in low resolution and poten-
tially misleading impacts. Intuitively, the higher we choose
d’, the more fine-grained and faithful to the behavior of the
model our explanation becomes. Or does it?

In reality, a high-dimensional simplified input space makes
the explanation susceptible to noise. The model can only
be probed with a tiny portion of the perturbed specimen
generated by a huge simplified input space. That is because
without access to superior computational resources, it is
unfeasible to run a model billions of times in a reasonable
amount of time to compute just one explanation. If one
ignores this, chooses a high d’, probes the model with only a
couple of thousands of perturbed specimens, and then fits a
linear regression model g with a high number of coefficients
¢; and far too few collected samples, the result is noisy and
overfitted.

Additionally, Alvarez-Melis & Jaakkola (2018a) have pre-
viously observed fluctuating behavior of SHAP and its
predecessor LIME caused by slight changes of the speci-
men. They have concluded that model-agnostic perturbation-
based approaches like SHAP and LIME are prone to unsta-
ble and noisy behavior. Their results make it even more
important for us to choose d’ small enough such that enough
samples for the linear regression can be collected, reducing
instability.

Summing up, both too low and too highly dimensional sim-
plified input spaces lead to severe issues drastically reducing
the quality of the explanation. In the following experimen-
tal section, we choose d’ based on empirical experience.
Finding good bounds for d’ is left open as possible future
work.

4. Classifier Comparison Experiment

We will now employ our proposed techniques to compare
the behavior of a set of different time series classifiers on
a variety of time series from various datasets. Our goal is
to discover similarities in the decision-making process of
different classifiers.

4.1. Classifiers

The extent of this experimental analysis is limited by its
demand for computational resources. Still, we include at
least one classifier from each of the time series classification
paradigms outlined by Bagnall et al. (2017).

1. Whole series techniques compare the time series pair-
wise with a distance measure that operates on the whole

series and typically allows for some shift in phase.
Classification is usually done using 1-nearest-neighbor
(1-NN). For our experiment, we choose state-of-the-art
elastic ensemble (EE), a 1-NN ensemble of various
distance measures including flavors of dynamic time
warping (Bagnall et al., 2017). Also, we include a sup-
port vector machine with the global alignment kernel
(SVM/GAK) that imitates dynamic time warping, as
described by Cuturi (2011).

2. Interval techniques analyze only training-selected,
phase-independent, intervals of a series. This allows to
ignore noisy regions and focus on discriminatory ones.
We choose the time series forest classifier (TSF) as it
is fast and does not perform worse than other, more
advanced interval methods (Bagnall et al., 2017).

3. Shapelet techniques classify series based on the oc-
currence of class-specific phase-independent subseries
called shapelets, which are found during training. We
choose shapelet transform (ST) due to its superior per-
formance over other shapelet methods (Bagnall et al.,
2017) and combine it with random forest for classifica-
tion.

4. Dictionary-based techniques not only take into account
the presence or absence of subseries, but also their
repetition. Histograms are built from these frequency
counts and then fed into a classifier. We choose state-
of-the-art word extraction for time series classification
(WEASEL) and combine it with a logistic regressor, as
proposed by Schifer & Leser (2017).

Additionally, we include random interval spectral ensemble
(RISE), a recent classifier proposed by Lines et al. (2018)
that extracts features in the frequency domain and utilizes
them to learn a time series forest.

We are also interested in whether the decision-making pro-
cess of general purpose classifiers shares any resemblance
with those specific to time series. From this category, we
choose rotation forest (RotF), as Bagnall et al. (2017) have
shown it is leading the field of general purpose classifiers
applied to time series. Moreover, we also include a support
vector machine with a linear kernel (SVM/Lin). Finally, we
employ residual network (ResNet) as the best state-of-the-
art representative of deep learning on time series, as shown
by Fawaz et al. (2019).

Note that we do neither include the DTWr ensemble and
Flat-COTE (Bagnall et al., 2017) nor more recent HIVE-
COTE (Lines et al., 2018) due to their huge training time
complexity. They are just ensembles of the above models
and thus share their properties.
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Figure 9. Toy example demonstrating how the impact vectors oM
and ¢® of two explanations on the same specimen are compared.
For each fragment of the specimen, a correlation point is plotted
whose x- and y-coordinates are the impact of that fragment ac-
cording to oY and ¢, respectively. In other words, the set of
correlation points is defined by {(d)l(-l), ¢Z(-2)) i€ {l,...,d}}.
As one can see, ¢V and ¢ are highly linearly correlated. Thus,
the two explanations are very similar.
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4.2. Experiment Setup

We conducted our computations on a server with four Intel®
Xeon® Gold 5118 CPUs @ 2.30 GHz, providing 48 physical
cores in total, and about 62 GB of RAM. The total wall clock
time measuring our utilization of the server to its maximum
capacity sums up to about 4 weeks.

Data is drawn from the UCR time series classification
archive assembled by Dau et al. (2018). This archive only
contains univariate time series. We exclude datasets whose
time series contain missing values or are of varying lengths
because some models cannot cope with such series.

For each of the remaining 114 datasets, one instance of each
classifier is trained. Next, to limit computation time, five
specimens are selected from each dataset’s test set uniformly
at random such that specimen 1 is of class 1, specimen 2 is
of class 2, and so on. If a dataset has fewer than five classes,
we loop back to the first class.

For each combination of classifier and specimen, we com-
pute two impact vectors via Kernel SHAP, one with time
slice mapping and one with frequency band mapping. Each
pass probes the classifier with 10,000 random perturbations
of the specimen. The parameter d’ is chosen based on em-
pirical experience. For time slice mapping, each time slice
is configured to consist of about 5 points in time, specifi-
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Figure 10. Medians correlations computed between pairs of classi-
fiers using the time slice mapping.

cally, d’ = |4/5]. Conversely, for frequency band mapping,
the number of frequency bands is 1/15 the length of the
specimen, i.e., d’ = |4/15].

Our final goal now is to investigate how similar the expla-
nations of different classifiers are. For each combination
of a specimen and a mapping, we compare the computed
impact vectors of all available classifiers pairwise. One such
comparison between two impact vectors ¢(*) and ¢(?) from
different classifiers is done by computing the Person corre-
lation coefficient between the two, which determines how
strong the linear relationship between the two vectors is, as
illustrated in Figure 9. We use this correlation as similarity
score.

4.3. Results

First, we discuss correlations obtained through time slice
mapping. Figure 10 shows the median correlations between
all pairs of classifiers. Take note that all medians are positive
since negative correlations are, while they do exist, rare. We
immediately spot multiple occurrences of relatively high
median correlation.

e With a median correlation of 53 %, RISE is notably
similar to TSF. This is surprising since TSF is a time-
based interval technique while RISE only operates in
the frequency domain. Apart from TSF, RISE displays
relatively high median correlation with other concep-
tually different classifiers too, namely ST (22 %) and
SVM/Lin (21 %).

* TSF also shares a relatively high median correlation
of 34 % with the primitive SVM/Lin classifier. Con-
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sidering that SVM/Lin views a time series only as a
collection of points and has no knowledge of their true
sequential structure, while TSF has such insight, this is
astounding. Moving on, TSF has a median correlation
of 24 % with RotF, again a classifier that is not spe-
cialized on time series. Between RotF and SVM/Lin,
a median correlation of 23 % completes this triangle
of similarity between TSF and two non-specialized
classifiers.

* WEASEL shares a considerable median similarity of
23 % with RISE. Both classifiers consider the concept
of frequency and repetition in their predictions.

* The neural network ResNet does not share a single
notable similarity with any other one of the compared
classifiers. This suggests that the decision-making pro-
cess of ResNet is unique and substantially distinct from
the other tested classifiers.

Due to computation time exceeding the deadline for this
thesis, we were not able to include the EE and SVM/GAK
classifiers in this comparison. That experiment is left to
future work.

Conversely, the medians of pairwise similarities computed
via frequency band mapping are shown in Figure 11. Inter-
estingly, these median similarities are substantially higher
overall compared to the time domain. To clarify this cu-
rious observation, we have conducted extensive manual
spot checks. From examining many time series spectra,
we conjecture that in most UCR datasets, most of the in-
formation of a time series is contained in its lowermost
frequencies. Moreover, when surveying many impact distri-
butions and their correlations, we witnessed that the number
of bands in these lower frequencies seems to be too low to
engender meaningful differences. Consequently, the impact
distributions all look the same in these lower bands. We
are presumably experiencing a violation of the coherence
assumption in the frequency domain, as illustrated in Sec-
tion 3.3.1. Follow-up experiments with smaller bands and
thus higher resolution are left to future work.

5. Conclusion

The increasing adoption of ML systems brings the need
to explain them. Kernel SHAP, the basis for our work,
is a model-agnostic framework that explains the decision-
making process behind the individual predictions of any
model operating on images, texts, or tabular rows.

With time slice mapping and frequency band mapping, we
presented two mapping functions that transfer Kernel SHAP
to the domain of time series. They facilitate the explanation
of individual predictions of any time series classifier. Ad-
ditionally, we carefully analyzed the assumptions made by
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Figure 11. Medians correlations computed between pairs of classi-
fiers using the frequency band mapping.

our mapping functions and studied the behaviors users must
be aware of when interpreting the explanations to properly
derive insight from them. We found this rigor to be crucial
when working on the sensitive field of explainable Al.

Finally, we presented an experimental comparison of ex-
planations generated for a variety of different time series
classifiers. Our analysis of the results surfaced surprising
similarities between pairs of models which are seemingly
very different. Promising future work could drill down
on these similarities and maybe discover hidden parallels
between these different categories of models.
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