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0Abstract

The study of fair algorithms receives growing attention as the awareness of bias
in the input data for machine learning applications that results in discriminatory
output increases. Fair Correlation Clustering is the fair variant of the
well-known Correlation Clustering objective. Given a graph with colored
vertices, it partitions the vertices fairly in the sense that the color distribution in
each cluster matches the color distribution in the overall graph. The task is to
obtain such a clustering with a minimum number of disagreements, i.e., pairs of
adjacent vertices that are not in the same cluster and pairs of vertices that are
not adjacent but in the same cluster.
While �rst results on the NP-hard Fair Correlation Clustering problem

give various approximation algorithms, we focus on exact solutions and investi-
gate whether there are e�ciently solvable instances. As unfair Correlation
Clustering is easily solved in forests, we study Fair Correlation Clustering
in various kinds of forests. We �nd that Fair Correlation Clustering turns
NP-hard very quickly, even when assuming constant degree or diameter of the
forest. Nevertheless, we provide algorithms that have polynomial running time
for certain assumptions on the color distribution in the graph.

Further, we analyze a relaxed fairness setting, where the color distribution of
the clusters does not have to match the global one precisely. Instead, for each
color, there is an upper and lower bound on the ratio of vertices of that color in
each cluster. We prove that our algorithmic and hardness results essentially still
hold in this relaxed setting and thereby show that the hardness of the problem is
not due to the strict fairness de�nition. For the setting of exact fairness on forests,
we give a PTAS that contrasts the APX-hardness of Correlation Clustering
on general graphs. Additionally, we show that key insights on Fair Correlation
Clustering in forests even hold in bipartite graphs and thereby hope to pave
the way for future algorithmic results on more general graph classes.
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0Zusammenfassung

Faire Algorithmen erhalten durch das wachsende Bewusstsein für Bias in den
Eingabedaten des maschinellen Lernens und sich daraus ergebenden diskri-
minierenden Resultaten immer mehr Bedeutung. Diese Arbeit behandelt Fair
Correlation Clustering, welches die faire Variante des bekannten Correlati-
on Clustering darstellt. Hierbei soll bei einem Graphen mit gefärbten Knoten
die Knotenmenge fair zerlegt werden, so dass die Farbverteilung in jedem Cluster
mit der Farbverteilung im Gesamtgraphen übereinstimmt. Die erhaltene Zer-
legung soll dabei möglichst wenig Unstimmigkeiten enthalten, d. h. Paare von
benachbarten Knoten, die nicht im selben Cluster sind, und Paare von Knoten,
die nicht benachbart, aber im selben Cluster sind, sollen vermieden werden.
Während erste Forschungsergebnisse zu dem NP-schweren Fair Correla-

tion Clustering verschiedene Approximationsalgorithmen entwickeln, kon-
zentrieren wir uns in dieser Arbeit auf exakte Lösungen und untersuchen, ob
es Instanzen gibt, die e�zient lösbar sind. Da unfaires Correlation Cluste-
ring in Wäldern leicht zu lösen ist, untersuchen wir hier Fair Correlation
Clustering in verschiedenen Arten von Wäldern. Wir stellen fest, dass Fair
Correlation Clustering selbst bei Wäldern mit konstantem Grad oder Durch-
messer NP-schwer ist. Allerdings entwickeln wir Algorithmen, die für bestimmte
Annahmen über die Farbverteilung im Graphen polynomielle Laufzeiten haben.

Darüber hinaus untersuchen wir eine weiter gefasste Fairness-De�nition.
Nach dieser muss die Farbverteilung der Cluster nicht genau mit der globalen
Verteilung übereinstimmen, sondern es reicht aus wenn der Anteil jeder Farbe in
jedem Cluster in einem von der Farbe anhängigen Bereich liegt. Wir beweisen,
dass unsere Algorithmen und Härteergebnisse sich im Wesentlichen auch auf
diese weiter gefasste Fairnessde�nition übertragen lassen.Weiterhin beschreiben
wir ein PTAS für Fair Correlation Clustering auf Wäldern, der im Gegensatz
zur APX-Schwere von Correlation Clustering auf allgemeinen Graphen
steht. Auch zeigen wir, dass wichtige Erkenntnisse über Fair Correlation
Clustering in Wäldern auch für Biparte Graphen gelten, und ho�en damit, den
Weg für zukünftige Algorithmen in allgemeineren Graphenklassen zu ebnen.
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1 Introduction

A reoccurring task when presented with a set of objects is to partition it into
groups of similar or connected objects. Such a partition is called a clustering.
Due to the many real-world use cases, countless variants of clusterings have
been employed and analyzed. They di�er in their way of de�ning the similarity
of objects and the de�nition of what the properties of optimal clusterings are.
More recently, fair clustering, a new line of research, has emerged that asks to
�nd the optimal clustering only among the partitions that ful�ll some fairness
requirement. This is motivated by the various applications where the objects to
be clustered have sensitive attributes that should not be allowed to be over- or
underrepresented in any cluster. The task is then to �nd the optimum clustering
such that each cluster has a certain distribution over the manifestations of the
sensitive attributes.

In this thesis, we employ a common fairness de�nition that assigns a color to
each object, representing some sensitive attribute. Then, a clustering is called
fair if for each cluster and each color the ratio of objects of that color in the
cluster approximately or exactly corresponds to the total ratio of vertices of that
color. For example, imagine an airport security wants to �nd clusters among the
travelers to assign each group another level of potential risk with corresponding
anticipating measures. There are attributes like skin color that should not
in�uence the assignment to a risk level. A bias in the data, however, may lead to
some colors being over- or underrepresented in some clusters. Simply removing
the skin color attribute from the data may not su�ce as it may correlate with
other attributes. Such problems are especially likely if one of the skin colors is
far less represented in the data than others. A fair clustering �nds the optimum
clustering such that for each risk level the distribution of skin colors is fair,
for example by requiring the distribution of each cluster to roughly match the
distribution of skin colors among all travelers.
We study the fair variant of the well-known Correlation Clustering ob-

jective. There, we are given a graph in which two vertices are connected if and
only if they are considered similar. The task is to �nd a partition of the set of
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Chapter 1 Introduction

vertices that minimizes the number of disagreements, i.e., the number of pairs
of vertices that are either placed in the same cluster but do not share an edge or
are not placed in the same cluster though they share an edge.

For Fair Correlation Clustering, there are �rst results on approximating
the best clustering. This is justi�ed as Fair Correlation Clustering, just like
the normal, unfair variant, is NP-hard. In this thesis, we investigate at which
point Fair Correlation Clustering turns NP-hard. Correlation Clustering
without the fairness constraint is easily solved on forests. Due to the sparseness
of the graph, it su�ces to build clusters of one or two vertices while cutting as
few edges as possible, for example by employing a standard dynamic program.
Such a strategy obtains the minimum cost as, assuming we place more than two
vertices in a cluster in order to cut fewer edges, the bene�t is compensated as
then more pairs of vertices in the cluster are not connected because of the forest
structure.
This raises the question of whether Fair Correlation Clustering is also

solvable on forests. This thesis aims at providing answers to this question. We
�nd that Fair Correlation Clustering is NP-hard even on restricted instances
of forests and trees. However, we do not despair and further investigate whether
under some additional assumptions there is still hope to give polynomial time
algorithms. We aim at gaining a deeper understanding of the implications of
the fairness constraint and what makes Fair Correlation Clustering so hard.
Further, by giving polynomial time algorithms for speci�c instances, we hope to
provide tools to tackle Fair Correlation Clustering and other fair clustering
objectives in future work.

1.1 Outline and Contribution

We provide further insight into the hardness of Fair Correlation Clustering
and algorithms for certain instances by analyzing the problem on forests and
trees. First, we discuss the related work on fairness, Correlation Clustering
and Fair Correlation Clustering in Section 1.2. In Chapter 2, we introduce the
mathematical notation we require and provide precise de�nitions of the problem
variants we examine. Then, in Chapter 3, we capture some helpful properties of
minimum-cost fair clusterings on forests and the more general class of bipartite
graphs. Using these, we give hardness proofs in Chapter 4. We �nd that Fair
Correlation Clustering on trees is NP-hard, even when assuming a constant

2



Outline and Contribution Section 1.1

diameter or constant maximum vertex degree. In Chapter 5, we contrast these
hardness results with algorithms that solve Fair Correlation Clustering
on forests and have polynomial running time under certain assumptions on
the forests. In particular, we give complex dynamic programs that obtain a
polynomial running time if either the expected size of the clusters or the number
of clusters is constant. The size of the clusters in minimum-cost fair clusterings
on forests is determined by the color ratio of the vertex set. To show that the
hardness of the problem does not depend on the strict formulation of the fairness
requirement, in Chapter 6, we transfer both hardness proofs and algorithms from
Chapters 4 and 5 to a setting with a relaxed fairness constraint. In Chapter 7,
we discuss approximation approaches to Fair Correlation Clustering on
forests. Lastly, we evaluate our �ndings and propose directions for future work
in Chapter 8. Tables 1.1 to 1.3 summarize our results.
Considering two colors in a ratio of 1 : 1, we additionally prove that there is

an algorithm solving 𝛼-relaxed Fair Correlation Clustering on forests in
time in O

(
𝑛𝑓 (𝛼) ) for some function 𝑓 depending only on 𝛼 (Theorem 6.12). Also,

Theorem 5.1 does not only hold for forests but also gives that Fair Correlation
Clustering is e�ciently solvable in bipartite graphs with a color ratio of 1 : 1.

Regarding approximation, we give a PTAS to Fair Correlation Clustering
on forests (Theorem 7.3).
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Chapter 1 Introduction

Diameter Color ratio Fairness Trees General Graphs

{2, 3} 1 : 1 exact O(𝑛) ↓ NP-hard
Theorem 4.5

{2, 3} any exact O(𝑛)
Theorem 5.2 NP-hard ↑

4 1 : 𝑐 exact/
relaxed

NP-hard
Theorems 4.2 and 6.9 ← NP-hard

Table 1.1: Hardness and running times of algorithms for (Relaxed) Fair Correlation
Clustering by the diameter of the graph. An arrow indicates that a result is implied by
a particular subset of instances.

Degree Color ratio Fairness Trees Forests

2 1 : 𝑐 exact/
relaxed ? NP-hard

Theorems 4.1 and 6.8

2 𝑛/2 colors,
each 2 vertices

exact/
relaxed

NP-hard
Theorem 4.4 and
Corollary 6.5

← NP-hard

5 1 : 𝑐 exact NP-hard
Theorem 4.3 ← NP-hard

Table 1.2: Hardness and running times of algorithms for (Relaxed) Fair Correlation
Clustering by the maximum degree of the graph. Results from forests directly carry
over to general graphs. An arrow indicates that a result is implied by a particular subset
of instances.
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Outline and Contribution Section 1.1

Color ratio Forests General Graphs

1 : 1 𝑛𝑂 (1)

Theorem 5.1
NP-hard

[Ahm+20a]

1 : 2 O
(
𝑛6

)
Theorem 5.5 ?

𝑐1 : 𝑐2 : . . . : 𝑐𝑘
O

(
𝑛𝑓 (∑𝑖∈[𝑘 ] 𝑐𝑖)

)
Theorem 5.6

NP-hard
[Ahm+20a]

1 : 𝑛/𝑝 − 1 O
(
𝑛𝑓 ′ (𝑝)

)
Theorem 5.10

NP-hard ↓

1 : 𝑛
2 − 1 𝑛𝑂 (1)↑ NP-hard

Theorem 4.6

Table 1.3:Hardness and running times of algorithms for Fair Correlation Clustering
on forests and general graphs. 𝑓 and 𝑓 ′ are functions depending only on the given
parameters and are speci�ed in the respective theorems. Results from forests carry over
to trees. An arrow indicates that a result is implied by a particular subset of instances.
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Chapter 1 Introduction

1.2 Related Work

Here, we discuss the current state of research on Correlation Clustering, fair
clustering, and Fair Correlation Clustering.

1.2.1 Clustering and Correlation Clustering

Clustering objectives and algorithms have been studied extensively. We refer
to Xu and Tian [XT15] for a survey on clustering in general and to Schae�er
[Sch07] and Fortunato [For10] for surveys on graph clustering in particular.

The study of clustering objectives similar or identical to Correlation Clus-
tering dates back to the 1960s [BSY99; Rég83; Zah64]. Bansal, Blum, and
Chawla [BBC04] were the �rst to coin the term Correlation Clustering as
a clustering objective. They prove NP-hardness and also propose a weighted
form, where, for each pair of vertices, there is an edge with weight in [−1, 1]
stating how similar the vertices are. The most general formulation of Corre-
lation Clustering regarding weights considers two positive real values for
each pair of vertices, the �rst to be added to the cost if the objects are placed in
the same cluster and the second to be added if the objects are placed in separate
clusters [ACN08]. In the following, we focus on the unweighted variant. The
state-of-the-art research on Correlation Clustering is summarized by the
recent book by Bonchi, García-Soriano, and Gullo [BGG22], who also give a
detailed introduction of the di�erent variants regarding the weights and the
cost function. Correlation Clustering has many applications for example
in document clustering, biology, and genetics as well as in computer vision
[BGG22].
We note that Correlation Clustering is an alternative formulation of

Cluster Editing. There, the task is to transform the input graph into a cluster
graph by adding and removing as few edges as possible. A cluster graph is
a graph where each connected component is a clique. Hence, the obtained
cluster graph de�nes a partition of the vertices and every added or removed
edge corresponds to one pair of vertices incurring 1 unit to the Correlation
Clustering cost.
In this thesis, we aim at �nding the minimum-cost fair clustering on certain

instances. With approximation algorithms, we also brie�y discuss another ap-
proach. In general, Correlation Clustering is APX-hard [CGW05], meaning
there is no algorithm giving an arbitrarily good approximation unless P = NP.

6



Related Work Section 1.2

However, such an algorithm, a PTAS, exists for the maximum agree variant of
Correlation Clustering [BBC04]. There, the task is to maximize the number
of pairs of vertices that comply with the partition instead of minimizing the
number of disagreements. While both objectives arrive at the same optimum
clusterings, their approximations di�er due to the di�erent ways of computing
the cost, either by counting disagreements or agreements. The best known
approximation factor to (min-disagree) Correlation Clustering is 2.06 and
is achieved by Chawla, Makarychev, Schramm, and Yaroslavtsev [Cha+15] by
the use of new rounding schemes on a linear programming formulation for
Correlation Clustering.
There is various research on solving Correlation Clustering e�ciently

and exactly under certain assumptions on the input graph. Komusiewicz and
Uhlmann [KU12] show that Correlation Clustering remains NP-hard on
graphs with maximum degree 6 or when each vertex may only be incident to
up to 4 disagreements. Further, Bastos, Ochi, Protti, Subramanian, Martins,
and Pinheiro [Bas+16] prove NP-hardness on graphs with diameter 2. Mannaa
[Man10] states that Correlation Clustering is e�ciently solved on unit inter-
val graphs. Veldt, Wirth, and Gleich [VWG20] analyze Weighted Correlation
Clustering in bipartite-like graphs. They �nd that if the vertex set partitions
into two sets 𝑉1,𝑉2 such that in each set all edges have the same weight and all
edges between the sets have less weight, then solving Weighted Correlation
Clustering is equivalent to computing a bipartite matching. They give approxi-
mations for other assumptions on the edge weights. For the unweighted case
that considers only agreements and disagreements between the two vertex sets
of a bipartite graph, Amit [Ami04] showed NP-hardness.

Some papers discuss incomplete Correlation Clustering and assume every
edge in the input graph to be labeled by + or −, meaning it incurs a cost if the
incident vertices are placed in separate or the same cluster, respectively. Pairs of
vertices without an edge never incur any cost. Note that this di�ers from the
way we de�ne (complete) Fair Correlation Clustering in this thesis, where
a missing edge corresponds to an edge labeled by −. For details on the de�ni-
tion of the complete Fair Correlation Clustering variant, see Section 2.2.
The following two results refer to the graph structure of those incomplete Cor-
relation Clustering instances and not to the graph structure as we use it.
Xin gives a treewidth dynamic program that solves Weighted Correlation
Clustering given a nice tree decomposition of width 𝑘 of an 𝑛-vertex graph in
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Chapter 1 Introduction

time in O
(
(𝑘 + 1)𝑘+2𝑛

)
[Xin11]. Bachrach, Kohli, Kolmogorov, and Zadimoghad-

dam [Bac+13] show that Weighted Correlation Clustering remains NP-hard
in planar graphs. However, in our notation for complete Correlation Clus-
tering, Berger, Grigoriev, and Winokurow [BGW17] provide a PTAS for planar
graphs, contrasting the APX-hardness of Correlation Clustering on general
graphs.

CorrelationClustering parametrized by the solution cost is �xed-parameter
tractable (FPT), i.e., there are algorithms solving Correlation Clustering in
polynomial time in the graph size but exponential time in the Correlation
Clustering cost of an optimum solution. The fastest known FPT-algorithm for
Correlation Clustering was proposed by Boecker, Briesemeister, Bui, and
Truss [Böc+09]. Their search tree approach runs in time in O

(
1.82𝑘 + 𝑛3

)
, where

𝑘 is the solution cost and solves both the unweighted and weighted variant.
Chen and Meng [CM12] give a kernel that transforms every input graph with 𝑛
vertices and𝑚 edges into a graph of size at most 2𝑘 in time in O(𝑚𝑛) such that
solving Cluster Editing on the resulting graph is equivalent to solving Cluster
Editing on the input graph. Bannach, Stockhusen, and Tantau [BST15] analyze
Cluster Editing in a parallel-FPT setting. Hanaka and Lampis [HL22] discuss
the Additively-Separable Hedonic Games problem on incomplete graphs,
which can be regarded as a game-theoretic version of Weighted Correlation
Clustering. Next to other lower bounds, they show NP-hardness even on stars
and provide an algorithm parametrized by treewidth and diameter. Recall that
the notion of stars, treewidth, and diameter here does not directly translate to
our setting due to the di�erent notation for incomplete graphs.

Regarding algorithms developed for practical purposes with no guarantee of
a polynomial running time, Berg and Jaervisalo [BJ13] propose a solver based
on MaxSAT. It is also able to solve incomplete Correlation Clustering. More
solvers have been proposed for the 2021 PACE challenge on Cluster Editing
[Kel+21].
Further, Bonchi, Gionis, Gullo, Tsourakakis, and Ukkonen [Bon+15] study

Chromatic Correlation Clustering, a variant that colors the edges of the
graph, other than Fair Correlation Clustering, which colors vertices. Each
edge receives a label. The task is to �nd a clustering of the vertices and assign a
label to each cluster. Then, the incurred cost of that clustering is the number of
edges inside a cluster that do not match the label of the cluster plus the number of
edges that are placed between di�erent clusters (except they are labeled with the

8



Related Work Section 1.2

special ℓ0 label). It is a generalization of standard Correlation Clustering to
which it is equivalent if every edge is either labeled by ℓ0 or the only other label ℓ1.
Thereby, Chromatic Correlation Clustering is NP-hard. Klodt, Seifert, Zahn,
Casel, Issac, and Friedrich [Klo+21] give a 3-approximation by analyzing the
color-blind Pivot algorithm on Chromatic Correlation Clustering instances.
Further, they give a color-sensitive heuristic and claim that it is better suited
for many applications. Froese, Kellerhals, and Niedermeier [FKN22] consider
Modi�cation-Fair Cluster Editing. There, given a vertex-colored graph, the
task is to solve Cluster Editing such that the number of edge modi�cations
incident to vertices of each color has to be proportional to the number of vertices
of that color. They prove the problem to be NP-hard even if there are only
two colors and delete operations are not allowed. For the general case, when
parametrized by the solution size, they give an FPT-algorithm that is linear in
the graph size.

Recall that Correlation Clustering does not take a parameter for the
number of clusters. While this is bene�cial in many cases, in some others one
wants to ensure that there is a �xed number of clusters. We �nd that in forests,
all clusters in minimum-cost fair clusterings have a �xed size, which therefore
is related to this variant of bounding the number of clusters. For every integer
greater than 1, however, this bounded variant of Correlation Clustering is
also NP-hard [SST04]. Other than for the APX-hard, unbounded variant, there
is a known PTAS for this variant [GG06].

Due to the clusters of �xed size, Fair Correlation Clustering on forests
is also related to 𝑘-Balanced Partitioning. There, the task is to partition the
graph into 𝑘 clusters of equal size while minimizing the number of edges that
are cut by the partition. Feldman and Foschini [FF15] study this problem on
trees and their results have interesting parallels with ours. They discuss an
approach of �rst splitting the graph into clusters not exceeding a certain size
and then smartly merging them into clusters of the desired size. We use a similar
idea for our algorithms in Chapter 5. Further, just like us, they observe that
hardness increases when switching from trees of diameter 3 to 4. Lastly, we
reuse a construction proposed by Feldman and Foschini to show that not only
𝑘-Balanced Partitioning but also Fair Correlation Clustering is NP-hard
on trees with maximum degree 5, see Theorem 4.3.

9



Chapter 1 Introduction

1.2.2 Fair Clustering

In the last decade, the notion of fairness in machine learning has increasingly
attracted interest, see for example the review by Pessach and Schmueli [PS22].
Feldman, Friedler, Moeller, Scheidegger, and Venkatasubramanian [Fel+15] for-
malize fairness based on a US Supreme Court decision on disparate impact from
1971. It requires that sensitive attributes like gender or skin color should neither
be explicitly considered in decision processes like hiring but also should the man-
ifestations of sensitive attributes be proportionally distributed in all outcomes of
the decision process. Feldman et al. formalized this notion for classi�cation tasks.
Chierichetti, Kumar, Lattanzi, and Vassilvitskii [Chi+17] adapted this concept
for clustering tasks and formulated algorithms for the 𝑘-center and 𝑘-median
objectives. Their work is seminal to the study of fair clustering algorithms. In
this thesis, we employ the same disparate impact based understanding of fair-
ness. Their algorithms are based on fairlets, minimal sets that satisfy the fairness
constraint, i.e., have the same color (sensitive attribute) distribution as the whole
data set. The principal idea is to �rst partition the data into fairlets and then
apply a clustering approach to the contracted fairlets, as each combination of fair
sets will still be fair. This work was extended by Bera, Chakrabarty, Flores, and
Negahbani [Ber+19], who relax the fairness constraint in the sense of requiring
upper and lower bounds on the representation of a color in each cluster and
consider overlapping colors. Several works improve and extend their results
in metric spaces [Bac+19; Ber+18; Esm+20; GSV22; KAM19; SSS20]. There are
comparatively few results on fairness for graph clustering objectives. Ziko, Yuan,
Granger, and Ayed [Zik+21] propose a di�erent framework to capture fairness
that works for both clustering objectives in metric spaces as well as in graphs.
Vaichenker [Vai21] investigates Fair Ratio Cut. Dinitz, Srinivasan, Tsepenekas,
and Vullikanti [Din+22] study Fair Disaster Containment, a graph cut prob-
lem involving fairness. Further, there are �rst results for Fair Correlation
Clustering.

1.2.3 Fair Correlation Clustering

Fair Correlation Clustering has, to the best of our knowledge, attracted
interest only quite recently. The results evolve around giving approximation
algorithms for instances with limited numbers of colors.
Ahmadian, Epasto, Kumar, and Mahdian [Ahm+20b] initiated the research

10



Related Work Section 1.2

on Fair Correlation Clustering. They employ a similar approach to the one
of Chierichetti et al. [Chi+17] and �rst partition the graph into fairlets. Then,
they contract each fairlet into a single vertex and add weighted edges between
di�erent fairlet-vertices depending on the number of edges between the two
clusters. On the resulting graph, they approximate an (unfair) Correlation
Clustering. Merging two fair clusters produces another fair cluster as the
color ratio stays the same. Hence, they obtain a fair clustering. The quality of
the solution depends on the quality of the fairlet decomposition as well as the
approximation to unfair Correlation Clustering. Intuitively, they de�ne the
cost of a fairlet composition as the number of possible disagreements that are no
longer represented in the contracted graph. Then, an 𝛽-approximation to unfair
Correlation Clustering and an 𝜂-approximation to the fairlet decomposition
gives an (𝛽 (1 + 𝜂) + 𝜂)-approximation to Fair Correlation Clustering. The
advantage of their approach is that using di�erent fairlet decompositions allows
for solving Fair Correlation Clustering for di�erent fairness de�nitions.
They analyze settings where the fairness constraint is given by some 𝛼 and
require that the ratio of each color in each cluster is at most 𝛼 . They analyze 3
possibilities for 𝛼 . For 𝛼 = 1

2 , which corresponds to our fairness understanding if
there are two colors in a ratio of 1 : 1, they obtain a 256-approximation. For 𝛼 = 1

𝑘
,

where 𝑘 is the number of colors in the graph, they give a 16.48𝑘2-approximation
and for 𝛼 = 1

𝑡
for an arbitrary positive integer 𝑡 , they show how to obtain a

O(𝛾𝑡)-approximation provided a 𝛾-approximation to the 1
𝑡
fairlet composition.

While it is interesting to see that the fairlet decomposition approach is applicable
to Correlation Clustering as well, we note that the obtained approximations
are quite far away from optimal solutions. In experiments on real-world data sets,
they show that in both cases 𝛼 = 1

2 and 𝛼 = 1
𝑘
, the Correlation Clustering

cost of the fair variant is slightly worse than the optimum unfair clustering while
the tested unfair Correlation Clustering algorithms produce outputs with
strong violations of the fairness requirement. We note that all their variants
are only equivalent to our fairness notion if there are 𝛼−1 colors that all occur
equally often.

The paper by Ahmadi, Galhotra, Saha, and Schwartz [Ahm+20a] is not to be
confused with the one by Ahmadian et al. [Ahm+20b], though the papers are
both from 2020 and share the same title Fair Correlation Clustering.
Ahmadi et al. provide an NP-hardness proof by a reduction from normal,

unfair Correlation Clustering and give an O
(
𝑐2

)
-approximation algorithm

11
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for instances with two colors in a ratio of 1 : 𝑐 . In the special case of a color
ratio of 1 : 1, they show how to approximate Fair Correlation Clustering
using any approximation algorithm for unfair Correlation Clustering. This
way, they obtain a 3𝛽 + 4-approximation for Fair Correlation Clustering
given any 𝛽-approximation to unfair Correlation Clustering. Using the
state-of-the-art 2.06-approximation for unfair Correlation Clustering this
gives a 10.18-approximation, clearly outperforming the 256-approximation by
Ahmadian et al. They generalize their results such that for an instance with
𝑘 colors in a ratio of 1 : 𝑐2 : 𝑐3 : . . . : 𝑐𝑘 for positive integers 𝑐𝑖 , they give
an O

(
𝑘2 ·max2≤𝑖≤𝑘 𝑐𝑖

)
-approximation. Further, they study a relaxed fairness

setting where for each color 1 ≤ 𝑖 ≤ 𝑘 there are positive integers 𝑞𝑖 , 𝑝𝑖 such that
in the graph the ratio of color 1 to color 𝑖 is between 1 : 𝑞𝑖 and 1 : 𝑝𝑖 . Then,
the task is to �nd the minimum-cost clustering such that in each cluster the
ratio of each color 𝑖 to color 1 is between 1 : 𝑞𝑖 and 1 : 𝑝𝑖 . Ahmadi et al. give an
O

(
𝑘2 ·max2≤𝑖≤𝑘 𝑞𝑖

)
-approximation1. The underlying idea of their algorithms is

to construct a bipartite graph by placing the vertices of one color on one side
each, deleting edges between same colored vertices, and modifying the edge
weights between vertices of di�erent colors. Then, they solve normal, unfair
Correlation Clustering on the right-hand side of the bipartite graph. Last,
they compute a matching from the left side to the right side and assign vertices
from the left to the clusters on the right according to the matching. If the ratio
between the colors is not 1 : 1 but 1 : 𝑐 , they compute a 𝑐-matching instead.
They apply their algorithms to several real-world data sets and �nd that the
clustering cost of Fair Correlation Clustering is only slightly worse while
unfair Correlation Clustering produces clusters with very unbalanced color
distributions.

Friggstad and Mousavi [FM21] provide the best known approximation to the
1 : 1 color ratio case with a factor of 6.18 using linear programming relaxations.
Further, they study Fair Correlation Clustering under local guarantees, i.e.,
�nding the fair clustering that minimizes the maximum number of incident
disagreement edges at any vertex.
To the best of our knowledge, the fourth and most recent publication on

Fair Correlation Clustering is by Schwartz and Zats [SZ22]. They discuss

1 Their theorem states they achieve an O
(
max2≤𝑖≤𝑘 𝑞𝑖

)
-approximation but when looking at the

proof it seems they have accidentally forgotten the 𝑘2 factor.
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the more general case of incomplete Fair Correlation Clustering and give
approximations for the max-agree variant.
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2 Preliminaries

In this chapter, we de�ne the mathematical notation we employ and give a formal
de�nition to Fair Correlation Clustering.

2.1 Notation

We refer to the set of natural numbers {0, 1, 2, . . .} by ℕ. For 𝑘 ∈ ℕ, let [𝑘] =
{1, 2, . . . , 𝑘} and ℕ>𝑘 = ℕ \ ({0} ∪ [𝑘]). We write 2[𝑘 ] for the power set of [𝑘].
By gcd(𝑎1, 𝑎2, . . . , 𝑎𝑘 ) we denote the greatest common divisor of 𝑎1, 𝑎2 . . . , 𝑎𝑘 ∈ ℕ.
An undirected graph 𝐺 = (𝑉 , 𝐸) is de�ned by a set of vertices 𝑉 and a set of

edges 𝐸 ⊆
(
𝑉
2
)
= {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 ,𝑢 ≠ 𝑣}. If not stated otherwise, by the size of

𝐺 we refer to 𝑛 +𝑚, where 𝑛 = |𝑉 | and𝑚 = |𝐸 |. A graph is called complete if
𝑚 =

𝑛 (𝑛−1)
2 . We call a graph 𝐺 = (𝐴 ∪ 𝐵, 𝐸) bipartite if there are no edges in 𝐴

nor 𝐵, i.e., 𝐸 ∩
(
𝐴
2
)
= 𝐸 ∩

(
𝐵
2
)
= ∅. For every 𝑆 ⊆ 𝑉 , we let 𝐺 [𝑆] =

(
𝑆, 𝐸 ∩

(
𝑆
2
) )

denote the subgraph induced by 𝑆 . The degree of a vertex 𝑣 ∈ 𝑉 is the number
of edges incident to that vertex, 𝛿 (𝑣) = |{𝑢 | {𝑢, 𝑣} ∈ 𝐸}|. The degree of a graph
𝐺 = (𝑉 , 𝐸) is the maximum degree of any of its vertices 𝛿 (𝐺) = max𝑣∈𝑉 𝛿 (𝑣). A
path of length 𝑘 in 𝐺 is a tuple of vertices (𝑣1, 𝑣2, . . . , 𝑣𝑘−1) such that for each
1 ≤ 𝑖 < 𝑘 − 1 we have {𝑣𝑖 , 𝑣𝑖+1} ∈ 𝐸. In this thesis, we only consider simple
paths, i.e., we have 𝑣𝑖 ≠ 𝑣 𝑗 for all 𝑖 ≠ 𝑗 . A graph is called connected if for every
pair of vertices 𝑢, 𝑣 there is a path connecting 𝑢 and 𝑣. The distance between
two vertices is the length of the shortest path connecting these vertices and the
diameter of a graph is the maximum distance between a pair of vertices. A circle
is a path (𝑣1, 𝑣2, . . . , 𝑣𝑘 ) such that 𝑣1 = 𝑣𝑘 and 𝑣𝑖 ≠ 𝑣 𝑗 only for all other pairs of
𝑖 ≠ 𝑗 .

A forest is a graph without circles. A connected forest is called a tree. There is
exactly one path connecting every pair of vertices in a tree. A tree is rooted by
choosing any vertex 𝑟 ∈ 𝑉 as the root. Then, every vertex 𝑣, except for the root,
has a parent, which is the next vertex on the path from 𝑣 to 𝑟 . All vertices that
have 𝑣 as a parent are referred to as the children of 𝑣. A vertex without children
is called a leaf. Given a rooted tree 𝑇 , by 𝑇𝑣 we denote the subtree induced by 𝑣
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and its descendants, i.e., the set of vertices such that there is a path starting in
𝑣 and ending in that vertex without using the edge to 𝑣’s parent. Observe that
each forest is a bipartite graph, for example by placing all vertices with even
distance to the root of their respective tree on one side and the other vertices on
the other side.
A �nite set𝑈 can be colored by a function 𝑐 : 𝑈 → [𝑘], for some 𝑘 ∈ ℕ>0. If

there are only two colors, i.e., 𝑘 = 2, for convenience we call them red and blue,
instead by numbers.
For a partition P = {𝑆1, 𝑆2, . . . , 𝑆𝑘 } with 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ for 𝑖 ≠ 𝑗 of some set

𝑈 = 𝑆1 ∪ 𝑆2 ∪ . . . ∪ 𝑆𝑘 and some 𝑢 ∈ 𝑈 we use P[𝑢] to refer to the set 𝑆𝑖 for
which 𝑢 ∈ 𝑆𝑖 . Further, we de�ne the term coloring on sets and partitions. The
coloring of a set counts the number of occurrences of each color in the set.

I De�nition 2.1 (Coloring of Sets). Let 𝑆 be a set colored by a function 𝑐 : 𝑆 →
[𝑘]. Then, the coloring of 𝑆 is an array 𝐶𝑆 such that 𝐶𝑆 [𝑖] = |{𝑠 ∈ 𝑆 | 𝑐 (𝑠) = 𝑖}|
for all 𝑖 ∈ [𝑘]. J

The coloring of a partition counts the number of occurrences of set colorings
in the partition.

I De�nition 2.2 (Coloring of Partitions). Let 𝑈 be a colored set and let P
be a partition of 𝑈 . Let C = {𝐶𝑆 | 𝑆 ⊆ 𝑈 } denote the set of set colorings for
which there is a subset of𝑈 with that coloring. By an arbitrarily �xed order, let
𝐶1,𝐶2, . . . ,𝐶ℓ denote the elements of C. Then, the coloring of P is an array 𝐶P
such that 𝐶P [𝑖] = |{𝑆 ∈ P | 𝐶𝑆 = 𝐶𝑖}| for all 𝑖 ∈ [ℓ]. J

2.2 Problem Definitions

In order to de�ne Fair Correlation Clustering, we �rst give a formal de�-
nition of the unfair clustering objective. Correlation Clustering receives a
pairwise similarity measure for a set of objects and aims at minimizing the num-
ber of similar objects placed in separate clusters and the number of dissimilar
objects placed in the same cluster. For the sake of consistency, we reformulate
the de�nition of Bonchi et al. [BGG22] such that the pairwise similarity between
objects is given by a graph rather than an explicit binary similarity function.
Given a graph𝐺 = (𝑉 , 𝐸) and a partition P of 𝑉 , the Correlation Clustering
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cost is

cost(𝐺,P) = | {{𝑢, 𝑣} ∈
(
𝑉
2
)
\ 𝐸 | P [𝑢] = P[𝑣]} | +

| {{𝑢, 𝑣} ∈ 𝐸 | P [𝑢] ≠ P[𝑣]} | .

We refer to the �rst summand as the intra-cluster cost 𝜓 and the second summand
as the inter-cluster cost 𝜒 . Where 𝐺 is clear from context, we abbreviate to
cost(P). Sometimes, we consider the cost of P on an induced subgraph. To this
end, we allow the same cost de�nition as above also if P partitions some set
𝑉 ′ ⊇ 𝑉 . We de�ne (unfair) Correlation Clustering as follows.

Correlation Clustering
Input: Graph 𝐺 = (𝑉 , 𝐸).
Task: Find a partition P of 𝑉 that minimizes cost(P).

We emphasize that this is the complete, unweighted, min-disagree form of
Correlation Clustering. It is complete as every pair of objects is either similar
or dissimilar but none is indi�erent regarding the clustering. It is unweighted
as the (dis)similarity between two vertices is binary. A pair of similar objects
that are placed in separate clusters as well as a pair of dissimilar objects in the
same cluster is called a disagreement, hence the naming of the min-disagree form.
An alternative formulation would be the max-agree form with the objective to
maximize the number of pairs that do not form a disagreement. Note that both
formulations induce the same ordering of clusterings though approximation
factors may di�er because of the di�erent formulations of the cost function.
This thesis tackles the Fair Correlation Clustering problem, which we

de�ne roughly following [Ahm+20b]. The fairness aspect limits the solution
space to fair partitions. A partition is fair if each of its sets has the same color
distribution as the universe that is partitioned.

I De�nition 2.3 (Fair Subset). Let𝑈 be a �nite set of elements colored by a
function 𝑐 : 𝑈 → [𝑘] for some 𝑘 ∈ ℕ>0. Let 𝑈𝑖 = {𝑢 ∈ 𝑈 | 𝑐 (𝑢) = 𝑖} be the set
of elements of color 𝑖 for all 𝑖 ∈ [𝑘]. Then, some 𝑆 ⊆ 𝑈 is fair if and only if for
all colors 𝑖 ∈ [𝑘] we have |𝑆∩𝑈𝑖 |

|𝑆 | =
|𝑈𝑖 |
|𝑈 | . J

I De�nition 2.4 (Fair Partition). Let𝑈 be a �nite set of elements colored by
a function 𝑐 : 𝑈 → [𝑘] for some 𝑘 ∈ ℕ>0. Then, a partition 𝑆1∪𝑆2∪ . . .∪𝑆ℓ = 𝑈

is fair if and only if all sets 𝑆1, 𝑆2, . . . , 𝑆ℓ are fair. J
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With this, we de�ne complete, unweighted, min-disagree Fair Correlation
Clustering as follows.

Fair Correlation Clustering
Input: Graph 𝐺 = (𝑉 , 𝐸), coloring 𝑐 : 𝑉 → [𝑘].
Task: Find a fair partition P of 𝑉 that minimizes cost(P).

In this thesis, when speaking of (Fair) Correlation Clustering, we refer to
the complete, unweighted, min-disagree form, unless speci�ed otherwise.

18



3
Implications of the

Graph Structure

Here, we prove that in bipartite graphs and in forests in particular there is always
a minimum-cost fair clustering such that all clusters are of some �xed size. This
property is very useful, as it helps for building reductions in hardness proofs
as well as algorithmic approaches that enumerate possible clusterings. Further,
by the following lemma, this also implies that minimizing the inter-cluster cost
su�ces to minimize the Correlation Clustering cost, which simpli�es the
development of algorithms solving Fair Correlation Clustering on such
instances.

I Lemma 3.1. Let P be a partition of the vertices of an𝑚-edge graph𝐺 . Let 𝜒
denote the inter-cluster cost incurred by P on 𝐺 . If all sets in the partition are
of size 𝑑 , then cost(P) = (𝑑−1)𝑛2 −𝑚 + 2𝜒 . J

Proof. Note that in each of the 𝑛
𝑑
clusters there are 𝑑 (𝑑−1)

2 pairs of vertices, each
incurring an intra-cost of 1 if not connected by an edge. Let the total intra-cost
be𝜓 . As there is a total of𝑚 edges, we have

cost(P) = 𝜒 +𝜓

= 𝜒 + 𝑛
𝑑
· 𝑑 (𝑑 − 1)2 − (𝑚 − 𝜒)

=
(𝑑 − 1)𝑛

2 −𝑚 + 2𝜒.

�

In particular, if 𝐺 is a tree, this yields cost(P) = (𝑑−3)𝑛
2 + 2𝜒 + 1 as there

𝑚 = 𝑛 − 1.

3.1 Forests

We �nd that in forests, because of the small number of edges, there is always a
minimum-cost partition such that all sets in the partition are of the minimum
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size required to ful�ll the fairness requirement. For example, if there are two
colors of ratio 1 : 2, then there is a minimum-cost clustering such that every
cluster consists of exactly 1 vertex of the �rst color and 2 vertices of the second
color, while every clustering with larger clusters (for example 2 vertices of the
�rst color and 4 vertices of the second one) incurs at least the same cost. For all
cases except two colors with equally many occurrences, the cost is even strictly
greater.

I Lemma 3.2. Let 𝐹 be a forest with 𝑘 ≥ 2 colors in a ratio of 𝑐1 : 𝑐2 : . . . : 𝑐𝑘
with 𝑐𝑖 ∈ ℕ>0 for all 𝑖 ∈ [𝑘], gcd(𝑐1, 𝑐2, . . . , 𝑐𝑘 ) = 1, and

∑𝑘
𝑖=1 𝑐𝑖 ≥ 3. Then, all

clusters of every minimum-cost fair clustering are of size
∑𝑘

𝑖=1 𝑐𝑖 . J

Proof. Let 𝑑 =
∑𝑘

𝑖=1 𝑐𝑖 . For any clustering P of 𝑉 to be fair, all clusters must
be at least of size 𝑑 . We show that if there is a cluster 𝑆 in the clustering with
|𝑆 | > 𝑑 , then we decrease the cost by splitting 𝑆 . First note that in order to ful�ll
the fairness constraint, we have |𝑆 | = 𝑎𝑑 for some 𝑎 ∈ ℕ≥2. Consider a new
clustering P ′ obtained by splitting 𝑆 into 𝑆1, 𝑆2, where 𝑆1 ⊂ 𝑆 is an arbitrary fair
subset of 𝑆 of size 𝑑 and 𝑆2 = 𝑆 \ 𝑆1. Note that the cost incurred by every edge
and non-edge with at most one endpoint in 𝑆 is the same in both clusterings.
Let𝜓 be the intra-cluster cost of P on 𝐹 [𝑆]. Regarding the cost incurred by the
edges and non-edges with both endpoints in 𝑆 , we know

cost(𝐹 [𝑆],P) ≥ 𝜓

≥ 𝑎𝑑 (𝑎𝑑 − 1)
2 − (𝑎𝑑 − 1)

=
𝑎2𝑑2 − 3𝑎𝑑 + 2

2

since the cluster is of size 𝑎𝑑 and as it is part of a forest it contains at most 𝑎𝑑 − 1
edges. In the worst case, the P ′ cuts all the 𝑎𝑑 − 1 edges. However, we pro�t
from the smaller cluster sizes. We have

cost(𝐹 [𝑆],P ′) = 𝜒 +𝜓

≤ 𝑎𝑑 − 1 + 𝑑 (𝑑 − 1)2 + (𝑎 − 1)𝑑 · ((𝑎 − 1)𝑑 − 1)2

=
2𝑑2 + 𝑎2𝑑2 − 2𝑎𝑑2 + 𝑎𝑑 − 2

2 .
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Hence, P ′ is cheaper by

cost(𝐹 [𝑆],P) − cost(𝐹 [𝑆],P ′) ≥ 2𝑎𝑑2 − 2𝑑2 − 4𝑎𝑑 + 4
2

= 𝑎𝑑 (𝑑 − 2) − 𝑑2 + 2.

This term is increasing in 𝑎. As 𝑎 ≥ 2, by plugging in 𝑎 = 2, we hence obtain a
lower bound of

cost(𝐹 [𝑆],P) − cost(𝐹 [𝑆],P ′) ≥ 𝑑2 − 4𝑑 + 2.

For 𝑑 ≥ 2, the bound is increasing in 𝑑 and it is positive for 𝑑 > 3. This means, if
𝑑 > 3 no clustering with a cluster of size more than 𝑑 has minimal cost implying
that all optimum clusterings only consist of clusters of size 𝑑 .
Last, we have to argue the case 𝑑 = 3, i.e., we have a color ratio of 1 : 2 or

1 : 1 : 1. In this case 𝑑2 − 4𝑑 + 2 evaluates to −1. However, we obtain a positive
change if we do not split arbitrarily but keep at least one edge uncut. Note that
this means that one edge less is cut and one more edge is present, which means
that our upper bound on cost(𝑇 [𝑆],P ′) decreases by 2, so P is now cheaper.
Hence, assume there is an edge {𝑢, 𝑣} such that 𝑐 (𝑢) ≠ 𝑐 (𝑣). Then by splitting
𝑆 into {𝑢, 𝑣,𝑤} and 𝑆 \ {𝑢, 𝑣,𝑤} for some vertex 𝑤 ∈ 𝑆 \ {𝑢, 𝑣} that makes the
component {𝑢, 𝑣,𝑤} fair, we obtain a cheaper clustering. If there is no such edge
{𝑢, 𝑣}, then 𝑇 [𝑆] is not connected. This implies there are at most 3𝑎 − 3 edges if
the color ratio is 1 : 1 : 1 since no edge connects vertices of di�erent colors and
there are 𝑎 vertices of each color, each being connected by at most 𝑎−1 edges due
to the forest structure. By a similar argument, there are at most 3𝑎−2 edges if the
color ratio is 1 : 2. Hence, the lower bound on cost(𝑇 [𝑆],P) increases by 1. At
the same time, even if P ′ cuts all edges it cuts at most 3𝑎−2 times, so it is at least
1 cheaper than anticipated. Hence, in this case cost(𝑇 [𝑆],P ′) < cost(𝑇 [𝑆],P)
no matter how we cut. �

Note that Lemma 3.2 makes no statement about the case of two colors in a
ratio of 1 : 1. The statement does not hold in this case as illustrated in Figure 3.1.
However, we prove that a slightly weaker statement holds not only for forests
but for every bipartite graph, see Lemma 3.3.
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Figure 3.1: Example forest where a cluster of size 4 and two clusters of size 2 incur the
same cost. With one cluster of size 4 (left), the inter-cluster cost is 0 and the intra-cluster
cost is 4. With two clusters of size 2 (right), both the inter-cluster and intra-cluster cost
are 2.

3.2 Bipartite Graphs

We are able to partially generalize our �ndings for trees to bipartite graphs.
We show that there is still always a minimum-cost fair clustering with cluster
sizes �xed by the color ratio. However, in bipartite graphs there may also be
minimum-cost clusterings with larger clusters. We start with the case of two
colors in a ratio of 1 : 1 and then generalize to other ratios.

I Lemma 3.3. Let 𝐺 = (𝐴 ∪ 𝐵, 𝐸) be a bipartite graph with two colors in a
ratio of 1 : 1. Then, there is a minimum-cost fair clustering in 𝐺 that has no
clusters with more than 2 vertices. Further, each minimum-cost fair clustering
can be transformed into a minimum-cost fair clustering such that all clusters
contain no more than 2 vertices in linear time. If 𝐺 is a forest, then no cluster in
a minimum-cost fair clustering is of size more than 4. J

Proof. Note that, due to the fairness constraint, each fair clustering consists only
of evenly sized clusters. We prove both statements by showing that in each
cluster of at least 4 vertices there are always two vertices such that by splitting
them from the rest of the cluster the cost does not increase and fairness remains.
Let P be a clustering and 𝑆 ∈ P be a cluster with |𝑆 | ≥ 4. Let 𝑆𝐴 = 𝑆 ∩ 𝐴

and 𝑆𝐵 = 𝑆 ∩ 𝐵. Assume there is 𝑎 ∈ 𝑆𝑎 and 𝑏 ∈ 𝑆𝑏 such that 𝑎 and 𝑏 have not
the same color. Then, the clustering P ′ obtained by splitting 𝑆 into {𝑎, 𝑏} and
𝑆 \ {𝑎, 𝑏} is fair. We now analyze for each pair of vertices 𝑢, 𝑣,𝑢 ≠ 𝑣 how the
incurred Correlation Clustering cost changes. The cost does not change for
every pair of vertices of which at most one vertex of 𝑢 and 𝑣 is in 𝑆 . Further, it
does not change if either {𝑢, 𝑣} = {𝑎, 𝑏} or {𝑢, 𝑣} ⊆ 𝑆 \ {𝑎, 𝑏}. There are at most

|𝑆𝐴 | − 1 + |𝑆𝐵 | − 1 = |𝑆 | − 2
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edges with one endpoint in {𝑎, 𝑏} and the other in 𝑆 \ {𝑎, 𝑏}. Each of them is cut
in P ′ but not in P, so they incur an extra cost of at most |𝑆 | − 2. However, due
to the bipartite structure, there are |𝑆𝐴 | − 1 vertices in 𝑆 \ {𝑎, 𝑏} that have no
edge to 𝑎 and |𝑆𝐵 | − 1 vertices in 𝑆 \ {𝑎, 𝑏} that have no edge to 𝑏. These |𝑆 | − 2
vertices incur a total cost of |𝑆 | − 2 in P but no cost in P ′. This makes up for
any cut edge in P, so splitting the clustering never increases the cost.

If there is no 𝑎 ∈ 𝑆𝑎 and 𝑏 ∈ 𝑆𝑏 such that 𝑎 and 𝑏 have not the same color, then
either 𝑆𝐴 = ∅ or 𝑆𝐵 = ∅. In both cases, there are no edges inside 𝑆 , so splitting
the clustering in an arbitrary fair way never increases the cost.

By iteratively splitting large clusters in any fair clustering, we hence eventually
obtain a minimum-cost fair clustering such that all clusters consist of exactly
two vertices.

Now, assume 𝐺 is a forest and there would be a minimum-cost clustering P
with some cluster 𝑆 ∈ P such that |𝑆 | > 2𝑎 for some 𝑎 ∈ ℕ>2. Consider a new
clustering P ′ obtained by splitting 𝑆 into {𝑢, 𝑣} and 𝑆 \ {𝑢, 𝑣}, where 𝑢 and 𝑣 are
two arbitrary vertices of di�erent color that have at most 1 edge towards another
vertex in 𝑆 . There are always two such vertices due to the forest structure and
because there are 𝑆

2 vertices of each color. Then, P ′ is still a fair clustering. Note
that the cost incurred by each edge and non-edge with at most one endpoint in 𝑆
is the same in both clusterings. Let𝜓 denote the intra-cluster cost of P in 𝐺 [𝑆].
Regarding the edges and non-edges with both endpoints in 𝑆 , we know that

cost(𝐺 [𝑆],P) ≥ 𝜓

≥ 2𝑎(2𝑎 − 1)
2 − (2𝑎 − 1)

= 2𝑎2 − 3𝑎 + 1

as the cluster consists of 2𝑎 vertices and has at most 2𝑎 − 1 edges due to the
forest structure. In the worst case, P ′ cuts 2 edges. However, we pro�t from the
smaller cluster sizes. We have

cost(𝐺 [𝑆],P ′) ≤ 2 +𝜓

≤ 2 + 1 + 2(𝑎 − 1) (2(𝑎 − 1) − 1)
2 − (2𝑎 − 1 − 2)

= 2𝑎2 − 5𝑎 + 6.
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Chapter 3 Implications of the Graph Structure

Hence, P costs at least 2𝑎 − 5 more than P ′, which is positive as 𝑎 > 2. Thus, in
every minimum-cost fair clustering all clusters are of size 4 or 2. �

We employ an analogous strategy if there is a di�erent color ratio than 1 : 1
in the graph. However, then we have to split more than 2 vertices from a cluster.
To ensure that the clustering cost does not increase, we have to argue that we
can take these vertices in some balanced way from both sides of the bipartite
graph.

I Lemma 3.4. Let 𝐺 = (𝐴 ∪ 𝐵, 𝐸) be a bipartite graph with 𝑘 ≥ 2 colors in a
ratio of 𝑐1 : 𝑐2 : . . . : 𝑐𝑘 with 𝑐𝑖 ∈ ℕ>0 for all 𝑖 ∈ [𝑘] and gcd(𝑐1, 𝑐2, . . . , 𝑐𝑘 ) = 1.
Then, there is a minimum-cost fair clustering such that all its clusters are of size
𝑑 =

∑𝑘
𝑖=1 𝑐𝑖 . Further, each minimum-cost fair clustering with larger clusters can

be transformed into a minimum-cost fair clustering such that all clusters contain
no more than 𝑑 vertices in linear time. J

Proof. Due to the fairness constraint, each fair clustering consists only of clusters
that are of size 𝑎𝑑 , where 𝑎 ∈ ℕ>0. We prove the statements by showing that a
cluster of size at least 2𝑑 can be split such that the cost does not increase and
fairness remains.

Let P be a clustering and 𝑆 ∈ P be a cluster with |𝑆 | = 𝑎𝑑 for some 𝑎 ≥ 2. Let
𝑆𝐴 = 𝑆 ∩𝐴 as well as 𝑆𝐵 = 𝑆 ∩ 𝐵 and w.l.o.g. |𝑆𝐴 | ≥ |𝑆𝐵 |. Our proof consists of
three steps.

• First, we show that there is a fair 𝑆 ⊆ 𝑆 such that |𝑆 | = 𝑑 and |𝑆 ∩ 𝐴| ≥
|𝑆 ∩ 𝐵 |.

• Then, we construct a fair set 𝑆 ⊆ 𝑆 by replacing vertices in 𝑆 with vertices
in 𝑆𝐵 \𝑆 such that still |𝑆 | = 𝑑, |𝑆𝐴 | ≥ |𝑆𝐵 |, with 𝑆𝐴 = 𝑆 ∩𝐴 and 𝑆𝐵 = 𝑆 ∩𝐵,
and additionally |𝑆𝐴 | − |𝑆𝐵 | ≤ |𝑆𝐴 | − |𝑆𝐵 |.

• Last, we prove that splitting 𝑆 into 𝑆 and 𝑆 \ 𝑆 does not increase the
clustering cost.

We then observe that the resulting clustering is fair, so the lemma’s statements
hold because any fair clustering with a cluster of more than 𝑑 vertices is trans-
formed into a fair clustering with at most the same cost, and only clusters of size
𝑑 by repeatedly splitting larger clusters.
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For the �rst step, assume there would be no such 𝑆 ⊆ 𝑆 , i.e., that we only
could take 𝑠 < 𝑑

2 vertices from 𝑆𝐴 without taking more than 𝑐𝑖 vertices of each
color 𝑖 ∈ [𝑘]. Let 𝑠𝑖 be the number of vertices of color 𝑖 among these 𝑠 vertices
for all 𝑖 ∈ [𝑘]. Then, if 𝑠𝑖 = 0 there is no vertex of color 𝑖 in 𝑆𝐴 as we could take
the respective vertex into 𝑆 , otherwise. Analogously, if 𝑠𝑖 < 𝑐𝑖 , then there are no
more then 𝑠𝑖 vertices of color 𝑖 in 𝑆𝐴. If we take 𝑠𝑖 = 𝑐𝑖 vertices, then up to all of
the 𝑎𝑐𝑖 = 𝑎𝑠𝑖 vertices of that color are possibly in 𝑆𝐴. Hence,

|𝑆𝐴 | ≤
𝑘∑︁
𝑖=1

𝑎𝑠𝑖 = 𝑎𝑠 <
𝑎𝑑

2 .

This contradicts 𝑆𝐴 ≥ 𝑆𝐵 because |𝐴| + |𝐵 | = 𝑎𝑑 . Thus, there is a fair set 𝑆 of size
𝑑 such that |𝑆 ∩ 𝑆𝐴 | ≥ |𝑆 ∩ 𝑆𝐵 |.

Now, for the second step, we transform 𝑆 into 𝑆 . Note that, if |𝑆𝐴 \𝑆 | ≥ |𝑆𝐵 \𝑆 |
it su�ces to set 𝑆 = 𝑆 . Otherwise, we replace some vertices from 𝑆 ∩ 𝑆𝐴 by
vertices of the respective color from 𝑆𝐵 \ 𝑆 . We have to show that after this we
still take at least as many vertices from 𝑆𝐴 as from 𝑆𝐵 and |𝑆𝐴 | − |𝑆𝐴 | ≥ |𝑆𝐵 | − |𝑆𝐵 |.
Let

𝛿 = |𝑆𝐵 \ 𝑆 | − |𝑆𝐴 \ 𝑆 | > 0.

Recall that |𝑆𝐴 | ≥ |𝑆𝐵 |, so 𝛿 ≤ |𝑆 ∩ 𝐴| − |𝑆 ∩ 𝐵 |. Then, we build 𝑆 from 𝑆 by
replacing 𝛿

2 ≤
𝑑
2 vertices from 𝑆 ∩ 𝑆𝐴 with vertices of the respective color from

𝑆𝐵 \ 𝑆 . If there are such 𝛿
2 vertices, we have |𝑆𝐴 \ 𝑆𝐴 | = |𝑆𝐵 \ 𝑆𝐵 | and |𝑆𝐴 | ≥ |𝑆𝐵 |.

Consequently, 𝑆 ful�lls the requirements.
Assume there would be no such 𝛿

2 vertices but that we could only replace
𝑠 < 𝛿

2 vertices. Let 𝑠𝑖 be the number of vertices of color 𝑖 among these vertices
for all 𝑖 ∈ [𝑘]. By a similar argumentation as above and because there are only
(𝑎 − 1)𝑐𝑖 vertices of each color 𝑖 in 𝑆 \ 𝑆 , we have

|𝑆𝐵 \ 𝑆 | ≤
𝑘∑︁
𝑖=1
(𝑎 − 1)𝑠𝑖

= (𝑎 − 1)𝑠

<
(𝑎 − 1)𝑑

2 .
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This contradicts |𝑆𝐵 \ 𝑆 | > |𝑆𝐴 \ 𝑆 | as | (𝑆𝐴 ∪ 𝑆𝐵) \ 𝑆 | = (𝑎 − 1)𝑑 . Hence, there
are always enough vertices to create 𝑆 .

For the last step, we show that splitting 𝑆 into 𝑆 and 𝑆 \𝑆 does not increase the
cost by analyzing the change for each pair of vertices {𝑢, 𝑣} ∈

(
𝑉
2
)
. If not 𝑢 ∈ 𝑆

and 𝑣 ∈ 𝑆 , the pair is not a�ected. Further, it does not change if either {𝑢, 𝑣} ⊆ 𝑆

or {𝑢, 𝑣} ⊆ (𝑆 \ 𝑆). For the remaining pairs of vertices, there are at most

|𝑆𝐴 | · |𝑆𝐵 \ 𝑆𝐵 | + |𝑆𝐵 | · |𝑆𝐴 \ 𝑆𝐴 | = |𝑆𝐴 | · |𝑆𝐵 | + |𝑆𝐵 | · |𝑆𝐴 | − 2
(
|𝑆𝐴 | · |𝑆𝐵 |

)
edges that are cut when splitting 𝑆 into 𝑆 and 𝑆 \ 𝑆 . At the same time, there are

|𝑆𝐴 | · |𝑆𝐴 \ 𝑆𝐴 | + |𝑆𝐵 | · |𝑆𝐵 \ 𝑆𝐵 | = |𝑆𝐴 | · |𝑆𝐴 | + |𝑆𝐵 | · |𝑆𝐵 | − |𝑆𝐴 |2 − |𝑆𝐵 |2

pairs of vertices that are not connected and placed in separate clusters in P ′ but
not in P. Hence, we have P is more expansive than P ′ by at least

cost(P) − cost(P ′) ≥ |𝑆𝐴 | · |𝑆𝐴 | + |𝑆𝐵 | · |𝑆𝐵 | − |𝑆𝐴 | · |𝑆𝐵 | − |𝑆𝐵 | · |𝑆𝐴 |

−
(
|𝑆𝐴 |2 − 2

(
|𝑆𝐴 | · |𝑆𝐵 |

)
+ |𝑆𝐵 |2

)
≥

(
|𝑆𝐴 | − |𝑆𝐵 |

)
· ( |𝑆𝐴 | − |𝑆𝐵 |) −

(
|𝑆𝐴 | − |𝑆𝐵 |

)2
.

This is non-negative as |𝑆𝐴 | ≥ |𝑆𝐵 | and |𝑆𝐴 | − |𝑆𝐵 | ≤ |𝑆𝐴 | − |𝑆𝐵 |. Hence, splitting
a cluster like this never increases the cost. �

Unlike in forests, however, the color ratio yields no bound on the maximum
cluster size in minimum-cost fair clusterings on bipartite graphs but just states
there is a minimum-cost fair clustering with bounded cluster size. Let 𝐺 =

(𝑅 ∪ 𝐵, {{𝑟, 𝑏} | 𝑟 ∈ 𝑅 ∧ 𝑏 ∈ 𝐵}) be a complete bipartite graph with |𝑅 | = |𝐵 |
such that all vertices in 𝑅 are red and all vertices in 𝐵 are blue. Then, all fair
clusterings in 𝐺 have the same cost, including the one with a single cluster
𝑆 = 𝑅 ∪ 𝐵. This holds because of a similar argument as employed in the last part
of Lemma 3.3 since every edge that is cut by a clustering is compensated for
with exactly one pair of non-adjacent vertices that is then no longer in the same
cluster.
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4 Hardness Results

This chapter provides NP-hardness proofs for Fair Correlation Clustering
under various restrictions.

4.1 Forests and Trees

With the knowledge of the �xed sizes of clusters in a minimum-cost clustering,
we are able to show that the problem is surprisingly hard, even when limited to
certain instances of forests and trees.
To prove the hardness of Fair Correlation Clustering under various

assumptions, we reduce from the strongly NP-complete 3-Partition problem
[GJ79].

3-Partition
Input: 𝑛 = 3𝑝 with 𝑝 ∈ ℕ, positive integers 𝑎1, 𝑎2, . . . , 𝑎𝑛 , and

𝐵 ∈ ℕ such that 𝐵
4 < 𝑎𝑖 <

𝐵
2 as well as

∑𝑛
𝑖=1 𝑎𝑖 = 𝑝𝐵.

Task: Decide if there is a partition of the numbers 𝑎𝑖 into triples
such that the sum of each triple is 𝐵.

Our �rst reduction yields hardness for many forms of forests.

I Theorem 4.1. Fair Correlation Clustering on forests with two colors in
a ratio of 1 : 𝑐 is NP-hard. It remains NP-hard when arbitrarily restricting the
shape of the trees in the forest as long as for every 𝑎 ∈ ℕ it is possible to form a
tree with 𝑎 vertices. J

Proof. We reduce from 3-Partition. For every 𝑎𝑖 we construct an arbitrarily
shaped tree of 𝑎𝑖 red vertices. Further, we let there be 𝑝 isolated blue vertices.
Note that the ratio between blue and red vertices is 1 : 𝐵. We now show that
there is a fair clustering P such that

cost(P) = 𝑝 · 𝐵(𝐵 + 1)2 − 𝑝 (𝐵 − 3)
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Chapter 4 Hardness Results

if and only if the given instance is a yes-instance for 3-Partition.
If we have a yes-instance of 3-Partition, then there is a partition of the set

of trees into 𝑝 clusters of size 𝐵. By assigning the blue vertices arbitrarily to
one unique cluster each, we hence obtain a fair partition. As there are no edges
between the clusters and each cluster consists of 𝐵 + 1 vertices and 𝐵 − 3 edges,
this partition has a cost of 𝑝 · 𝐵 (𝐵+1)2 − 𝑝 (𝐵 − 3).

For the other direction, assume there is a fair clustering of cost 𝐵 (𝐵+1)
2 −𝑝 (𝐵−3).

By Lemma 3.2, each of the clusters consists of exactly one blue and 𝐵 red vertices.
Each cluster requires 𝐵 (𝐵+1)

2 edges, but the graph has only 𝑝 (𝐵 − 3) edges. The
intra-cluster cost alone is hence at least 𝑝 · 𝐵 (𝐵+1)2 − 𝑝 (𝐵 − 3𝑝). This means that
the inter-cluster cost is 0, i.e., the partition does not cut any edges inside the trees.
Since all trees are of size greater than 𝐵

4 and less than 𝐵
2 , this implies that each

cluster consists of exactly one blue vertex and exactly three uncut trees with a
total of 𝐵 vertices. This way, such a clustering gives a solution to 3-Partition,
so our instance is a yes-instance.
As the construction of the graph only takes polynomial time in the instance

size, this implies our hardness result. �

Note that the hardness holds in particular for forests of paths, i.e., for forests
with maximum degree 2.

With the next theorem, we adjust the proof of Theorem 4.1 to show that the
hardness remains if the graph is connected.
I Theorem 4.2. Fair Correlation Clustering on trees with diameter 4 and
two colors in a ratio of 1 : 𝑐 is NP-hard. J

Proof. We reduce from 3-Partition. For every 𝑎𝑖 we construct a star of 𝑎𝑖 red
vertices. Further, we let there be a star of 𝑝 blue vertices. We obtain a tree of
diameter 4 by connecting the center 𝑣 of the blue star to all the centers of the
red stars. The construction is depicted in Figure 4.1. Note that the ratio between
blue and red vertices is 1 : 𝐵. We now show that there is a fair clustering P such
that

cost(P) ≤ 𝑝𝐵2 − 𝑝𝐵
2 + 7𝑝 − 7

if and only if the given instance is a yes-instance for 3-Partition.
If we have a yes-instance of 3-Partition, then there is a partition of the set

of stars into 𝑝 clusters of size 𝐵, each consisting of three stars. By assigning
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a1
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a2
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a3p

Figure 4.1: Constructed tree for the reduction from 3-Partition to Fair Correlation
Clustering.

the blue vertices arbitrarily to one unique cluster each, we hence obtain a fair
partition. We �rst compute the inter-cluster cost 𝜒 . We call an edge blue or red
if it connects two blue or red vertices, respectively. We call an edge blue-red
if it connects a blue and a red vertex. All 𝑝 − 1 blue edges are cut. Further, all
edges between 𝑣 (the center of the blue star) and red vertices are cut except
for the three stars to which 𝑣 is assigned. This causes 3𝑝 − 3 more cuts, so the
inter-cluster cost is

𝜒 = 4𝑝 − 4.

Each cluster consists of𝐵+1 vertices and𝐵−3 edges, except for the one containing
𝑣 which has 𝐵 edges. The intra-cluster cost is hence

𝜓 = 𝑝

(
𝐵(𝐵 + 1)

2 − 𝐵 + 3
)
− 3

=
𝑝𝐵2 − 𝑝𝐵

2 + 3𝑝 − 3.

Combining the intra- and inter-cluster costs yields the desired cost of

cost(P) = 𝜒 +𝜓

=
𝑝𝐵2 − 𝑝𝐵

2 + 7𝑝 − 7.

For the other direction, assume there is a fair clustering of cost at most 𝑝𝐵2−𝑝𝐵
2 +

7𝑝 − 7. As there are 𝑝 (𝐵 + 1) vertices, Lemma 3.2 gives that there are exactly 𝑝
clusters, each consisting of exactly one blue and 𝐵 red vertices. Let 𝑎 denote the
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number of red center vertices in the cluster of 𝑣. We show that 𝑎 = 3. To this
end, let 𝜒𝑟 denote the number of cut red edges. We additionally cut 𝑝 − 1 blue
and 3𝑝 − 𝑎 blue-red edges. The inter-cluster cost of the clustering hence is

𝜒 = 𝜒𝑟 + 4𝑝 − 𝑎 − 1.

Regarding the intra-cluster cost, there are no missing blue edges and as 𝑣 is
the only blue vertex with blue-red edges, there are (𝑝 − 1)𝐵 + 𝐵 − 𝑎 = 𝑝𝐵 − 𝑎
missing blue-red edges. Last, we require 𝑝 · 𝐵 (𝐵−1)2 red edges, but the graph
has only 𝑝𝐵 − 3𝑝 red edges and 𝜒𝑟 of them are cut. Hence, there are at least
𝑝 · 𝐵 (𝐵−1)2 − 𝑝𝐵 + 3𝑝 + 𝜒𝑟 missing red edges, resulting in a total intra-cluster cost
of

𝜓 ≥ 𝑝 · 𝐵(𝐵 − 1)2 + 3𝑝 + 𝜒𝑟 − 𝑎.

This results in a total cost of

cost(P) = 𝜒 +𝜓

≥ 𝑝𝐵2 − 𝑝𝐵
2 + 7𝑝 + 2𝜒𝑟 − 2𝑎 − 1.

As we assumed cost(P) ≤ 𝑝𝐵2−𝑝𝐵
2 + 7𝑝 − 7, we have

2𝜒𝑟 − 2𝑎 + 6 ≤ 0,

which implies 𝑎 ≥ 3 since 𝜒𝑟 ≥ 0. Additionally,

𝜒𝑟 ≥
𝑎𝐵

4 − (𝐵 − 𝑎),

because there are at least 𝐵
4 red vertices connected to each of the 𝑎 chosen red

centers but only a total of 𝐵 − 𝑎 of them can be placed in their center’s cluster.
Thus, we have

𝑎𝐵

2 − 2𝐵 + 6 =
(𝑎 − 4)𝐵

2 + 6 ≤ 0,

implying 𝑎 < 4 and proving our claim of 𝑎 = 3. Further, as 𝑎 = 3, we obtain
𝜒𝑟 ≤ 0, meaning that no red edges are cut, so each red star is completely
contained in a cluster. Given that every red star is of size at least 𝐵

4 and at most
𝐵
2 , this means each cluster consists of exactly three complete red stars with a total
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number of 𝐵 red vertices each and hence yields a solution to the 3-Partition
instance.
As the construction of the graph only takes polynomial time in the instance

size and the constructed tree is of diameter 4, this implies our hardness result. �

The proofs of Theorems 4.1 and 4.2 follow the same idea as the hardness proof
of [FF15, Theorem 2], which also reduces from 3-Partition to prove a hardness
result on the 𝑘-Balanced Partitioning problem. There, the task is to partition
the vertices of an uncolored graph into 𝑘 clusters of equal size [FF15].

𝑘-Balanced Partitioning
Input: Graph 𝐺 = (𝑉 , 𝐸), 𝑘 ∈ [𝑛].
Task: Find a partition P of 𝑉 that minimizes

| {{𝑢, 𝑣} ∈ 𝐸 | P [𝑢] ≠ P[𝑣]} | under the constraint
that |P | = 𝑘 and |𝑆 | ≤

⌈
𝑛
𝑘

⌉
for all 𝑆 ∈ P .

𝑘-Balanced Partitioning is related to Fair Correlation Clustering on
forests in the sense that the clustering has to partition the forest into clusters
of equal sizes by Lemmas 3.2 and 3.3. Hence, on forests we can regard Fair
Correlation Clustering as the fair variant of 𝑘-Balanced Partitioning. By
[FF15, Theorem 8], 𝑘-Balanced Partitioning is NP-hard on trees of degree
5. In their proof, Feldmann and Foschini reduce from 3-Partition. We slightly
adapt their construction to transfer the result to Fair Correlation Clustering.

I Theorem 4.3. Fair Correlation Clustering on trees of degree at most 5
with two colors in a ratio of 1 : 𝑐 is NP-hard. J

Proof. We reduce from 3-Partition. 3-Partition remains strongly NP-hard
when limited to instances where 𝐵 is a multiple of 4 since for every instance
we can create an equivalent instance by multiplying all integers by 4. Hence,
assume a 3-Partition instance such that 𝐵 is a multiple of 4. We construct a
graph for Fair Correlation Clustering by representing each 𝑎𝑖 for 𝑖 ∈ [𝑛]
by a gadget 𝑇𝑖 . Each gadget has a center vertex that is connected to the end of
�ve paths: one path of length 𝑎𝑖 , three paths of length 𝐵

4 , and one path of length
𝐵
4 − 1. Then, for 𝑖 ∈ [𝑛 − 1], we connect the dangling ends of the paths of length
𝐵
4 − 1 in the gadgets 𝑇𝑖 and 𝑇𝑖+1 by an edge. So far, the construction is similar
to the one by Feldmann and Foschini. We color all vertices added so far in red.
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Figure 4.2: Constructed graph with degree 5 for the reduction from 3-Partition to
Fair Correlation Clustering.

Then, we add a path of 4𝑛
3 blue vertices and connect it by an edge to an arbitrary

vertex of degree 1. The resulting graph is depicted in Figure 4.2.

Note that the construction takes polynomial time and we obtain a graph of
degree 5. We now prove that it has a fair clustering P such that

cost(P) ≤ (𝐵 − 2)𝑛2 + 20𝑛
3 − 3

if and only if the given instance is a yes-instance for 3-Partition.
Assume we have a yes-instance for 3-Partition. We cut the edges connecting

the di�erent gadgets as well as the edges connecting the 𝑎𝑖-paths to the center
of the stars. Then, we have 𝑛 components of size 𝐵 and 1 component of size 𝑎𝑖
for each 𝑖 ∈ [𝑛]. The latter ones can be merged into 𝑝 = 𝑛

3 clusters of size 𝐵
without further cuts. Next, we cut all edges between the blue vertices and assign
one blue vertex to each cluster. Thereby, note that the blue vertex that is already
connected to a red cluster should be assigned to this cluster. This way, we obtain
a fair clustering with inter-cluster cost

𝜒 = 𝑛 − 1 + 𝑛 + 4𝑛
3 − 1

=
10𝑛
3 − 2,
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which, by Lemma 3.1, gives

cost(P) = (𝐵 − 2)𝑛2 + 20𝑛
3 − 3.

For the other direction, let there be a minimum-cost fair clustering P of cost at
most (𝐵−2)𝑛2 + 20𝑛

3 − 3. As
∑𝑛

𝑖=1 𝑎𝑖 =
𝑛𝐵
3 , the graph consists of 4𝑛

3 · 𝐵 red and 4𝑛
3

blue vertices. By Lemma 3.2, P hence consists of 4𝑛
3 clusters, each consisting of

one blue vertex and 𝐵 red vertices. Thus, P has to cut the 4𝑛
3 − 1 edges on the

blue path. Also, P has to partition the red vertices into sets of size 𝐵. By [FF15,
Lemma 9] this requires at least 2𝑛 − 1 cuts. This bounds the inter-cluster cost by

𝜒 ≥ 2𝑛 − 1 + 4𝑛
3 − 1 =

10𝑛
3 − 2,

leading to a Correlation Clustering cost of (𝐵−2)𝑛2 + 20𝑛
3 − 3 as seen above,

so we know that no more edges are cut. Further, the unique minimum-sized set
of edges that upon removal leaves no red components of size larger than 𝐵 is
the set of the 𝑛 − 1 edges connecting the gadgets and the 𝑛 edges connecting
the 𝑎𝑖 paths to the center vertices [FF15, Lemma 9]. Hence, P has to cut exactly
these edges. As no other edges are cut, the 𝑎𝑖 paths can be combined to clusters
of size 𝐵 without further cuts, so the given instance has to be a yes-instance for
3-Partition. �

4.2 Fair Correlation Clustering on Paths

Theorem 4.1 yields that Fair Correlation Clustering is NP-hard even in a
forest of paths. The problem when limited to instances of a single connected
path is closely related to the Necklace Splitting problem [Alo87; AW86].

Discrete Necklace Splitting
Input: Opened necklace 𝑁 , represented by a path of 𝑛 · 𝑘 beads,

each in one of 𝑡 colors such that for each color 𝑖 there are
𝑎𝑖 · 𝑘 beads of that color for some 𝑎𝑖 ∈ ℕ.

Task: Cut the necklace such that the resulting intervals can be
partitioned into 𝑘 collections, each containing the same
number of beads of each color.
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The only di�erence to Fair Correlation Clustering on paths, other than the
naming, is that the number of clusters 𝑘 is explicitly given. From Lemmas 3.2
and 3.3 we are implicitly given this value also for Fair Correlation Clustering,
though. However, Alon and West do not constructively minimize the number
of cuts required for a fair partition but non-constructively prove that there is
always a partition of at most (𝑘 − 1) · 𝑡 cuts, if there are 𝑡 colors and the partition
is required to consist of exactly 𝑘 sets with the same amount of vertices of each
color. Thus, it does not directly help us when solving the optimization problem.

Moreover, Fair Correlation Clustering on paths is related to the 1-regular
2-colored variant of the Paint Shop Problem for Words (PPW). For PPW,
a word is given as well as a set of colors, and for each symbol and color a
requirement of how many such symbols should be colored accordingly. The task
is to �nd a coloring that ful�lls all requirements and minimizes the number of
color changes between adjacent letters [EHO04].

Paint Shop Problem for Words (PPW)
Input: Word 𝑤 = 𝑤1, 𝑤2, . . . , 𝑤𝑛 ∈ 𝛴∗, number of colors 𝑘 ∈ ℕ>0,

and requirement function 𝑟 : 𝛴 × [𝑘] → ℕ such that for
each symbol 𝑠 used in 𝑤 with 𝑤 [𝑠] occurrences we have∑𝑘

𝑖=1 𝑟 (𝑠, 𝑖) = 𝑤 [𝑠].
Task: Find an assignment function 𝑓 : [𝑛] → [𝑘] of colors to

the letters in 𝑤 such that for each symbol 𝑠 ∈ 𝛴 and
color 𝑖 ∈ [𝑘] the coloring ful�lls the requirement func-
tion, i.e., |{ 𝑗 ∈ [𝑛] | 𝑤 𝑗 = 𝑠 ∧ 𝑓 ( 𝑗) = 𝑖}| = 𝑟 (𝑠, 𝑖). The as-
signment 𝑓 should minimze the number of color changes
|{ 𝑗 ∈ [𝑛 − 1] | 𝑓 ( 𝑗) ≠ 𝑓 ( 𝑗 + 1)}|.

Let for example 𝑤 = 𝑎𝑎𝑏𝑎𝑏 and 𝑟 (𝑎, 1) = 2, 𝑟 (𝑎, 2) = 𝑟 (𝑏, 1) = 𝑟 (𝑏, 2) = 1. Then,
the assignment 𝑓 with 𝑓 (1) = 𝑓 (2) = 𝑓 (3) = 1 and 𝑓 (4) = 𝑓 (5) = 2 ful�lls the
requirement and has 1 color change.
PPW instances with a word containing every symbol exactly twice and two

PPW-colors, each requiring one of each symbol, are called 1-regular 2-colored
and are shown to be NP-hard and even APX-hard [BEH06]. With this, we prove
NP-hardness of Fair Correlation Clustering even on paths.

I Theorem 4.4. Fair Correlation Clustering on paths is NP-hard, even
when limited to instances with exactly 2 vertices of each color. J
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Proof. We reduce from 1-regular 2-colored PPW. Let 𝑤 = 𝑠1𝑠2, . . . , 𝑠ℓ . We rep-
resent the ℓ

2 di�erent symbols by ℓ
2 colors and construct a path of length ℓ ,

where each type of symbol is represented by a unique color. By Lemma 3.2, any
optimum Fair Correlation Clustering solution partitions the paths into two
clusters, each containing every color exactly once, while minimizing the number
of cuts (the inter-cluster cost) by Lemma 3.1. As this is exactly equivalent to
assigning the letters in the word to one of two colors and minimizing the number
of color changes, we obtain our hardness result. �

APX-hardness however is not transferred since though there is a relationship
between the number of cuts (the inter-cluster cost) and the Correlation Clus-
tering cost, the two measures are not identical. In fact, as Fair Correlation
Clustering has a PTAS on forests by Theorem 7.3, APX-hardness on paths
would imply P = NP.

On a side note, observe that for every Fair Correlation Clustering instance
on paths we can construct an equivalent PPW instance (though not all of them
are 1-regular 2-colored) by representing symbols by colors and PPW-colors by
clusters.
We note that it may be possible to e�ciently solve Fair Correlation Clus-

tering on paths if there are e.g. only two colors. There is an NP-hardness result
on PPW with just two letters in [EHO04], but a reduction from these instances
is not as easy as above since its requirements imply an unfair clustering.

4.3 Beyond Trees

By Theorem 4.2, Fair Correlation Clustering is NP-hard even on trees with
diameter 4. Here, we show that if we allow the graph to contain circles, the
problem is already NP-hard for diameter 2. Also, this nicely contrasts that Fair
Correlation Clustering is solved on trees of diameter 2 in linear time, as we
see in Section 5.1.

I Theorem 4.5. Fair Correlation Clustering on graphs of diameter 2 with
two colors in a ratio of 1 : 1 is NP-hard. J

Proof. Cluster Editing, which is an alternative formulation of Correlation
Clustering, is NP-hard on graphs of diameter 2 [Bas+16]. Further, Ahmadi
et al. [Ahm+20a] give a reduction from Correlation Clustering to Fair
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Figure 4.3: Graph as constructed by Ahmadi et al. [Ahm+20a] for the reduction from
Correlation Clustering to Fair Correlation Clustering. The blue vertices and
edges correspond to the original graph 𝐺 = (𝑉 , 𝐸), red vertices and edges to its mirror,
i.e., 𝑉 ′ and 𝐸 ′, and black edges to 𝐸.

Correlation Clustering with a color ratio of 1 : 1. They show that one
can solve Correlation Clustering on a graph 𝐺 = (𝑉 , 𝐸) by solving Fair
Correlation Clustering on the graph 𝐺 ′ = (𝑉 ∪𝑉 ′, 𝐸 ∪ 𝐸 ′ ∪ 𝐸) that mirrors
𝐺 . The vertices in 𝑉 are colored blue and the vertices in 𝑉 ′ are colored red.
Formally, 𝑉 ′ = {𝑢 ′ | 𝑢 ∈ 𝑉 } and 𝐸 ′ = {{𝑢 ′, 𝑣 ′} | {𝑢, 𝑣} ∈ 𝐸}. Further, 𝐸 connects
every vertex with its mirrored vertex as well as the mirrors of adjacent vertices,
i.e., 𝐸 = {{𝑢,𝑢 ′} | 𝑢 ∈ 𝑉 }∪{{𝑢, 𝑣 ′} | 𝑢 ∈ 𝑉 ∧ 𝑣 ′ ∈ 𝑉 ′ ∧ {𝑢, 𝑣} ∈ 𝐸}, see Figure 4.3.

Observe that if 𝐺 has diameter 2 then 𝐺 ′ also has diameter 2 as follows. As
every pair of vertices {𝑢, 𝑣} ∈

(
𝑉
2
)
is of maximum distance 2 and the vertices

as well as the edges of 𝐺 are mirrored, every pair of vertices {𝑢 ′, 𝑣 ′} ∈
(
𝑉 ′

2
)
is

of maximum distance 2. Further, every vertex and its mirrored vertex have a
distance of 1. For every pair of vertices 𝑢 ∈ 𝑉 , 𝑣 ′ ∈ 𝑉 ′ we distinguish two cases.
If {𝑢, 𝑣} ∈ 𝐸, then {𝑢, 𝑣 ′} ∈ 𝐸, so the distance is 1. Otherwise, as the distance
between 𝑢 and 𝑣 is at most 2 in 𝐺 , there is 𝑤 ∈ 𝑉 such that {𝑢,𝑤} ∈ 𝐸 and
{𝑣,𝑤} ∈ 𝐸. Thus, {𝑢,𝑤 ′} ∈ 𝐸 and {𝑤 ′, 𝑣 ′} ∈ 𝐸 ′, so the distance of 𝑢 and 𝑣 ′ is at
most 2.

As Correlation Clustering on graphs with diameter 2 is NP-hard and the
reduction by Ahmadi et al. [Ahm+20a] constructs a graph of diameter 2 if the
input graph is of diameter 2, we have proven the statement. �

Further, we show that on general graphs Fair Correlation Clustering is NP-
hard, even if the colors of the vertices allow for no more than 2 clusters in any fair
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clustering. This contrasts our algorithm in Section 5.4 solving Fair Correlation
Clustering on forests in polynomial time if the maximum number of clusters
is constant. To this end, we reduce from the NP-hard Bisection problem [GJ79],
which is the 𝑘 = 2 case of 𝑘-Balanced Partitioning.

Bisection
Input: Graph 𝐺 = (𝑉 , 𝐸).
Task: Find a partition P = {𝐴, 𝐵} of 𝑉 that minimizes

|{{𝑢, 𝑣} ∈ 𝐸 | 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐵}| under the constraint that
|𝐴| = |𝐵 |.

I Theorem 4.6. Fair Correlation Clustering on graphs with two colors in
a ratio of 1 : 𝑐 is NP-hard, even if 𝑐 = 𝑛

2 − 1 and the graph is connected. J

Proof. We reduce from Bisection. Let 𝐺 = (𝑉 , 𝐸) be a Bisection instance and
assume it has an even number of vertices (otherwise it is a trivial no-instance).
The idea is to color all of the vertices in 𝑉 red and add two cliques, each con-
sisting of one blue and |𝑉 | red vertices to enforce that a minimum-cost Fair
Correlation Clustering consists of exactly two clusters and thereby parti-
tions the vertices of the original graph in a minimum-cost bisection. The color
ratio is 2 : 3|𝑉 | which equals 1 : |𝑉

′ |
2 − 1 with 𝑉 ′ being the set of the newly

constructed graph. We have to rule out the possibility that a minimum-cost Fair
Correlation Clustering is just one cluster containing the whole graph. We do
this by connecting the new blue vertices 𝑣1, 𝑣2 to only one arbitrary red vertex
𝑣 ∈ 𝑉 . We illustrate the scheme in Figure 4.4. We �rst argue that every clustering
with two clusters is cheaper than placing all vertices in the same cluster. Let
𝑛 = |𝑉 | as well as𝑚 = |𝐸 |. Let P be a clustering that places all vertices in a
single cluster. Then,

cost(P) = (3𝑛 + 2) (3𝑛 + 1)2 −
(
𝑚 + 2 + 2 · 𝑛(𝑛 + 1)2

)
=
7𝑛2
2 +

7𝑛
2 −𝑚 − 1,

as the cluster is of size 3𝑛+2, there is a total of𝑚+2 plus the edges of the cliques,
and no edge is cut. Now assume we have a clustering P ′ with an inter-cluster
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v v2

Clique1

v1
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Figure 4.4: Graph constructed for the reduction from Bisection to a Fair Correlation
Clustering instance with just 2 large clusters. The middle part corresponds to the
input graph𝐺 and is colored red. 𝐶𝑙𝑖𝑞𝑢𝑒1 and𝐶𝑙𝑖𝑞𝑢𝑒2 are both cliques of |𝑉 | red vertices
and one blue vertex each.

cost of 𝜒 ′ that puts each clique in a di�erent cluster. Then,

cost(P ′) = 𝜒 ′ + 2 ·
( 3𝑛2 + 1) (

3𝑛
2 )

2 −
(
𝑚 − 𝜒 ′ + 𝑛(𝑛 + 1)2

)
=
7𝑛2
4 + 𝑛 −𝑚 + 2𝜒

′

≤ 9𝑛2
4 + 𝑛 −𝑚 + 2,

since there are at most 𝑛
2 ·

𝑛
2 inter-cluster edges between vertices of 𝑉 and one

inter-cluster edge from 𝑣 to either 𝑣1 or 𝑣2, so 𝜒 ≤ 𝑛2

4 + 1. Placing all vertices in
the same cluster is hence more expansive by

cost(P) − cost(P ′) ≥ 7𝑛2
2 +

7𝑛
2 −𝑚 − 1 −

(
9𝑛2
4 + 𝑛 −𝑚 + 2

)
=
5𝑛2
4 +

5𝑛
2 − 3

than any clustering with two clusters. This is positive for 𝑛 ≥ 2. Thus, Fair
Correlation Clustering will always return at least two clusters. Also, due to
the fairness constraint and there being only two blue vertices, it creates exactly
two clusters.

Further, it does not cut vertices from one of the two cliques for the following
reason. As the clusters are of �xed size, by Lemma 3.1 we can focus on the
inter-cluster cost to argue that a minimum-cost Fair Correlation Clustering
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only cuts edges in 𝐸. First, note that it is never optimal to cut vertices from both
cliques as just cutting the di�erence from one clique cuts fewer edges. This also
implies that at most 𝑛

2 red vertices are cut from the clique as otherwise, the other
cluster would have more than the required 3𝑛

2 red vertices. So, assume 0 < 𝑎 ≤ 𝑛
2

red vertices are cut from one clique. Any such solution has an inter-cluster cost
of 𝑎 · (𝑛 + 1 − 𝑎) + 𝜒𝐸 , where 𝜒𝐸 is the number of edges in 𝐸 that are cut to split
𝑉 into two clusters of size 𝑛

2 + 𝑎 and 𝑛
2 − 𝑎 as required to make a fair partition.

We note that by not cutting the cliques and instead cutting o� 𝑎 vertices from
the cluster of size 𝑛

2 + 𝑎, we obtain at most 𝑎 · 𝑛2 + 𝜒𝐸 cuts. As 𝑛
2 < 𝑛 + 1 − 𝑎,

this implies that no optimal solution cuts the cliques. Hence, every optimum
solution partitions the vertices in 𝑉 in a minimum-cost bisection.
Thus, by solving Fair Correlation Clustering on the constructed graph

we can solve Bisection in𝐺 . As further, the constructed graph is of polynomial
size in |𝑉 |, we obtain our hardness result. �
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The results from Chapter 4 make it unlikely that there is a polynomial time
algorithm solving Fair Correlation Clustering on trees as this would imply
P = NP. However, we are able to give polynomial time algorithms for certain
instances of forests.

5.1 Convenient Instances

First, we observe that Fair Correlation Clustering on forests and even on
bipartite graphs is equivalent to the Maximum Bipartite Matching problem and
thereby e�ciently solvable if there are just two colors that occur equally often.
This is due to there being a minimum-cost fair clustering such that each cluster
consists of exactly one vertex of each color.
I Theorem 5.1. Computing a minimum-cost fair clustering on bipartite graphs
with two colors in a ratio of 1:1 is as hard as �nding a maximum bipartite
matching. J

Proof. Let the colors be red and blue. By Lemma 3.3, there is an optimum cluster-
ing for which all clusters are of size at most 2. Due to the fairness constraint, each
such cluster consists of exactly 1 red and 1 blue vertex. By Lemma 3.1, the lowest
cost is achieved by the lowest inter-cluster cost, i.e., when the number of clusters
where there is an edge between the two vertices is maximized. This is exactly the
matching problem on the bipartite graph𝐺 ′ = (𝑅∪𝐵, 𝐸 ′), with 𝑅 and 𝐵 being the
red and blue vertices, respectively, and 𝐸 ′ = {{𝑢, 𝑣} ∈ 𝐸 | 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝐵}. After
computing an optimum matching, each edge of the matching de�nes a cluster
and unmatched vertices are packed into fair clusters arbitrarily.

For the other direction, if we are given an instance𝐺 ′ = (𝑅∪𝐵, 𝐸 ′) for bipartite
matching, we color all the vertices in 𝑅 red and the vertices in 𝐵 blue. Then, a
minimum-cost fair clustering is a partition that maximizes the number of edges
in each cluster as argued above. As each vertex is part of exactly one cluster and
all clusters consist of one vertex in 𝑅 and one vertex in 𝐵, this corresponds to a
maximum bipartite matching in 𝐺 ′. �
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Figure 5.1: Shape of every tree with diameter 3.

As theHopcroft-Karp-Karzanov algorithm solvesmaximumbipartitematching
on 𝑛-vertex𝑚-edge graphs in time in O

(
𝑚
√
𝑛
)
[HK71], Theorem 5.1 gives that

Fair Correlation Clustering on forests with two colors in a ratio of 1 : 1 is
solved in the same asymptotic running time.
Next, recall that Theorem 4.2 states that Fair Correlation Clustering on

trees with a diameter of at least 4 is NP-hard. With the next theorem, we show
that we e�ciently solve Fair Correlation Clustering on trees with a diameter
of at most 3, so our threshold of 4 is tight unless P = NP.

I Theorem 5.2. Fair Correlation Clustering on trees with a diameter of at
most 3 can be solved in linear time. J

Proof. Diameters of 0 or 1 are trivial and the case of two colors in a ratio of
1 : 1 is handled by Theorem 5.1. So, assume 𝑑 > 2 to be the minimum size of
a fair cluster. A diameter of two implies that the tree is a star. In a star, the
inter-cluster cost equals the number of vertices that are not placed in the same
cluster as the center vertex. By Lemma 3.2, every clustering of minimum cost
has minimum-sized clusters. As in a star, all these clusterings incur the same
inter-cluster cost of 𝑛 − 𝑑 + 1 they all have the same Correlation Clustering
cost by Lemma 3.1. Hence, outputting any fair clustering with minimum-sized
clusters solves the problem. Such a clustering can be computed in time in O(𝑛).
If we have a tree of diameter 3, it consists of two adjacent vertices 𝑢, 𝑣 such

that every vertex𝑤 ∈ 𝑉 \ {𝑢, 𝑣} is connected to either 𝑢 or 𝑣 and no other vertex,
see Figure 5.1. This is due to every graph of diameter 3 having a path of four
vertices. Let the two in the middle be 𝑢 and 𝑣. The path has to be an induced
path or the graph would not be a tree. We can attach other vertices to 𝑢 and 𝑣
without changing the diameter but as soon as we attach a vertex elsewhere, the
diameter increases. Further, there are no edges between vertices in 𝑉 \ {𝑢, 𝑣} as
the graph would not be circle-free.
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For the clustering, there are now two possibilities, which we try out separately.
Either 𝑢 and 𝑣 are placed in the same cluster or not. In both cases, Lemma 3.2
gives that all clusters are of minimal size 𝑑 . If 𝑢 and 𝑣 are in the same cluster, all
clusterings of fair minimum sized clusters incur an inter-cluster cost of𝑛−𝑑+2 as
all but 𝑑 − 2 vertices have to be cut from 𝑢 and 𝑣. In O(𝑛), we greedily construct
such a clustering P1. If we place 𝑢 and 𝑣 in separate clusters, the minimum
inter-cluster is achieved by placing as many of their respective neighbors in their
respective clusters as possible. After that, all remaining vertices are isolated and
are used to make these two clusters fair and if required form more fair clusters.
Such a clustering P2 is also computed in O(𝑛). We then return the cheaper
clustering. This is a fair clustering of minimum cost as either 𝑢 and 𝑣 are placed
in the same cluster or not, and for both cases, P1 and P2 are of minimum cost,
respectively. �

5.2 Color Ratio 1 : 2

We now aim at giving algorithms for Fair Correlation Clustering on forests
that do not require a certain diameter or degree. As a �rst step to solve these
less restricted instances, we develop an algorithm to solve Fair Correlation
Clustering on forests with a color ratio of 1 : 2.
Let w.l.o.g. the vertices be colored blue and red with twice as many red ver-

tices as blue ones. We call a connected component of size 1 a 𝑏-component or
𝑟 -component, depending on whether the contained vertex is blue or red. Analo-
gously, we apply the terms 𝑏𝑟 -component, 𝑟𝑟 -component, and 𝑏𝑟𝑟 -component to
components of size 2 and 3.

5.2.1 Linear Time Approach

Because of Lemma 3.2, we know that in every minimum-cost fair clustering
each cluster contains exactly 1 blue and 2 red vertices. Our high-level idea is to
employ two phases.
In the �rst phase, we partition the vertices of the forest 𝐹 in a way such that

in every cluster there are at most 1 blue and 2 red vertices. We call such a
partition a splitting of 𝐹 . We like to employ a standard tree dynamic program
that bottom-up collects vertices to be in the same connected component and
cuts edges if otherwise there would be more than 1 blue or 2 red vertices in the
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component. We have to be smart about which edges to cut, but as only up to 3
vertices can be placed in the topmost component, we have only a limited number
of possibilities we have to track to �nd the splitting that cuts the fewest edges.

After having found that splitting, we employ a second phase, which �nds the
best way to assemble a fair clustering from the splitting by merging components
and cutting as few additional edges as possible. As, by Lemma 3.1, a fair partition
with the smallest inter-cluster cost has a minimum Correlation Clustering
cost, this would �nd a minimum-cost fair clustering.

Sadly, this approach does not work that easily. We �nd that the number of cuts
incurred by the second phase depends on the number of 𝑏𝑟 - and 𝑟 -components.

I Lemma 5.3. Let 𝐹 = (𝑉 , 𝐸) be an 𝑛-vertex forest with colored vertices in blue
and red in a ratio of 1 : 2. Let in each connected component be at most 1 blue
vertex and at most 2 red vertices. Let #(𝑏𝑟 ) and #(𝑟 ) be the number of 𝑏𝑟 - and
𝑟 -components, respectively. Then, after cutting max {0, #(𝑏𝑟 )−#(𝑟 )2 } edges, the
remaining connected components can be merged such that all clusters consist
of exactly 1 blue and 2 red vertices. Such a set of edges can be found in time in
O(𝑛). Further, when cutting less than max {0, #(𝑏𝑟 )−#(𝑟 )2 } edges, such merging is
not possible. J

Proof. As long as possible, we arbitrarilymerge𝑏-componentswith 𝑟𝑟 -components
as well as 𝑏𝑟 -components with 𝑟 -components. For this, no edges have to be
cut. Then, we split the remaining 𝑟𝑟 -components and merge the resulting 𝑟 -
components with one 𝑏𝑟 -component each. This way, we incur max {0, #(𝑏𝑟 )−#(𝑟 )2 }
more cuts and obtain a fair clustering as now each cluster contains two red and
one blue vertex. This procedure is done in time in O(𝑛).

Further, there is no cheaper way. For each𝑏𝑟 -component to be merged without
further cuts we require an 𝑟 -component. There are #(𝑟 ) 𝑟 -components and each
cut creates either at most two 𝑟 -components or one 𝑟 -component while removing
a 𝑏𝑟 -component. Hence, max {0, #(𝑏𝑟 )−#(𝑟 )2 } cuts are required. �

For our approach to work, the �rst phase has to simultaneously minimize the
number of cuts as well as the di�erence between 𝑏𝑟 - and 𝑟 -components. This is,
however, not easily possible. Consider the tree in Figure 5.2.
There, with one additional cut edge we have three 𝑏𝑟 -components less and

one 𝑟 -component more. Using a standard tree dynamic program, therefore, does
not su�ce as when encountering the tree as a subtree of some larger forest or
tree, we would have to decide between optimizing for the number of cut edges or
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Figure 5.2: A tree for which the splitting with the minimum number of cuts (right) has
3 more 𝑏𝑟 -components and 1 less 𝑟 -component than a splitting with one more cut edge
(left).

the di�erence between 𝑏𝑟 - and 𝑟 -components. There is no trivial answer here as
the choice depends on how many 𝑏𝑟 - and 𝑟 -components are obtained in the rest
of the graph. For our approach to work, we hence have to track both possibilities
until we have seen the complete graph, setting us back from achieving a linear
running time.

5.2.2 Join-subroutine

In the �rst phase, we might encounter situations that require us to track multiple
ways of splitting various subtrees. When we reach a parent vertex of the roots
of these subtrees, we join these various ways of splitting. For this, we give a
subroutine called Join. We �rst formalize the output by the following lemma,
then give an intuition on the variables, and lastly prove the lemma by giving the
algorithm.

I Lemma 5.4. Let 𝑅1, 𝑅2, . . . , 𝑅ℓ1 for ℓ1 ∈ ℕ>1 with 𝑅𝑖 ∈ (ℕ ∪ {∞})ℓ2 for ℓ2 ∈
ℕ, 𝑖 ∈ [ℓ1] and 𝑓 be a computable function 𝑓 : [ℓ2] × [ℓ2] → 2[ℓ2 ] . For 𝑥 ∈ [ℓ2],
let

𝐴𝑥 = {𝑀 ∈ ([ℓ2])ℓ1 | 𝑥 ∈ 𝑓 (𝑀 [1], 𝑀 [2], . . . , 𝑀 [ℓ2])},

whereby for all 𝑥1, 𝑥2, . . . ∈ [ℓ2]

𝑓 (𝑥1, 𝑥2) = 𝑓 (𝑥1, 𝑥2)
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v

u1 u2 u3

Figure 5.3: Exemplary graph for a Join-subroutine.

and for all 2 ≤ 𝑘 ≤ ℓ2

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) =
⋃

𝑥 ∈𝑓 (𝑥1,𝑥2,...,𝑥𝑘−1)

𝑓 (𝑥, 𝑥𝑘 ) .

Then, an array 𝑅 ∈ (ℕ∪ {∞})ℓ2 such that 𝑅 [𝑥] = min𝑀 ∈𝐴𝑥

∑ℓ1
𝑖=1 𝑅𝑖 [𝑀 [𝑖]] for all

𝑥 ∈ [ℓ2] can be computed in time in O
(
ℓ1 · ℓ22 ·𝑇𝑓

)
, where𝑇𝑓 is the time required

to compute 𝑓 . J

As we later reuse the routine, it is formulated more generally than required
for this section. Here, for the 1 : 2 case, assume we want to join the splittings
of the children 𝑢1, 𝑢2, . . . , 𝑢ℓ1 of some vertex 𝑣. For example, assume 𝑣 has three
children as depicted in Figure 5.3. Then, for each child 𝑢𝑖 , let there be an array
𝑅𝑖 such that 𝑅𝑖 [𝑥] is the minimum number of cuts required to obtain a splitting
of the subtree 𝑇𝑢𝑖 that has exactly 𝑥 more 𝑏𝑟 -components than 𝑟 -components.
For our example, assume all edges between 𝑣 and its children have to be cut. We
see, that 𝑅1 [−1] = 1 and 𝑅1 [𝑥] = ∞ for 𝑥 ≠ −1, as the only possible splitting for
the subtree of 𝑢1 cuts only the edge to 𝑣 and has one more 𝑟 -component than
𝑏𝑟 -components. Further, we have 𝑅2 [1] = 1 (by only cutting {𝑣,𝑢2}), 𝑅2 [−1] = 2
(by cutting both edges of 𝑢2), and 𝑅2 [𝑥] = ∞ for 𝑥 ∉ {−1, 1}. Last, note that
𝑅3 = 𝑅2.

The function 𝑓 returns the set of indices that should be updated when merg-
ing two possibilities. When a splitting of one child’s subtree has 𝑥1 more 𝑏𝑟 -
components and a splitting of another child’s subtree has 𝑥2 more𝑏𝑟 -components,
then the combination of these splittings has 𝑥1 + 𝑥2 more 𝑏𝑟 -components than
𝑟 -components. Hence, the only index to update is 𝑓 (𝑥1, 𝑥2) = {𝑥1 + 𝑥2}. Later,
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we will require to update more than a single index, so 𝑓 is de�ned to return a
set instead of a single index. Note that by the de�nition of 𝑓 and 𝑓 , each value
placed in 𝑅 [𝑥] by the routine corresponds to choosing exactly one splitting
from each array 𝑅𝑖 such that the total di�erence between 𝑏𝑟 -components and
𝑟 -components sums up to exactly 𝑥 .

In our example, assume any splitting is chosen for each of the three subtrees.
Let 𝑥𝑖 denote the di�erence of 𝑏𝑟 - and 𝑟 -components of the chosen splitting for
the subtree rooted at 𝑢𝑖 for 1 ≤ 𝑖 ≤ 3. Then, Join sets 𝑅 [𝑥] for 𝑥 = 𝑥1 +𝑥2 +𝑥3. If
there are multiple ways to achieve an index 𝑥 , the one with the minimum number
of cuts is stored in 𝑅 [𝑥]. In the example, we have 4 possibilities, as 𝑥1 = −1 and
𝑥2, 𝑥3 ∈ {−1, 1}. Note that 𝑥1 = −1, 𝑥2 = −1, 𝑥3 = 1 and 𝑥1 = −1, 𝑥2 = 1, 𝑥3 = −1
both evaluate to 𝑥 = −1. Hence, only one of the two combinations is stored (the
one with fewer cuts, here an arbitrary one as both variants imply 4 cuts). For
the resulting array 𝑅, we have 𝑅 [−3] = 5, 𝑅 [−1] = 4, 𝑅 [1] = 3, and 𝑅 [𝑥] = ∞ for
𝑥 ∉ {−3,−1, 1}. Observe that the numbers of cuts in 𝑅 correspond to the sums
of the numbers of cuts in the subtrees for the respective choice of 𝑥𝑖 .
In the following, we give how the Join-subroutine is computed.

Proof of Lemma 5.4. The algorithm works in an iterative manner. Assume it has
found the minimum value for all indices using the �rst 𝑖 − 1 arrays and they
are stored in 𝑅𝑖−1. It then joins the 𝑖-th array by trying every index 𝑥1 in 𝑅𝑖−1

with every index 𝑥2 in 𝑅𝑖 . Each time, for all indices 𝑥 ∈ 𝑓 (𝑥1, 𝑥2), it sets 𝑅𝑖 [𝑥] to
𝑅𝑖−1 [𝑥1] + 𝑅𝑖 [𝑥2] if it is smaller than the current element there. Thereby, it tries
all possible ways of combining the interim solution with 𝑅𝑖 and for each index
tracks the minimum that can be achieved. Formally, we give the algorithm in
Algorithm 1.

The algorithm terminates after O
(
𝑘 · ℓ2 ·𝑇𝑓

)
iterations due to the nested loops.

We prove by induction that 𝑅 is a solution to the Join over the arrays 𝑅1, . . . , 𝑅𝑖
after each iteration 𝑖 . The �rst iteration simply tries all allowed combinations
of the arrays 𝑅1, 𝑅2 and tracks the minimum value for each index, this matches
exactly our de�nition of the Join. Now assume the statement holds for any �xed
𝑖 . Observe that we only update a value 𝑅 [𝑥] if there is a respective𝑀 ∈ 𝐴𝑥 , so
none of the values is too small. To show that no value is too large, take any
𝑥 ∈ [ℓ2] and let 𝑎 be the actual minimum value that can be obtained for 𝑅 [𝑥]
in this iteration. Let 𝑗1, 𝑗2, . . . , 𝑗𝑖+1 with 𝑥 ∈ 𝑓 ( 𝑗1, 𝑗2, . . . , 𝑗𝑖+1) be the indices that
obtain 𝑎. Then, there is 𝑦 ∈ [ℓ2] such that after joining the �rst 𝑖 arrays the
value at index 𝑦 is 𝑎 − 𝑅𝑖+1 [ 𝑗𝑖+1] and 𝑦 ∈ 𝑓 ( 𝑗1, 𝑗2, . . . , 𝑗𝑖). This implies 𝑅 [𝑦] ≤
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Algorithm 1: Join
Input: 𝑅1, 𝑅2, . . . , 𝑅ℓ1 for ℓ1 ≥ 2 with 𝑅𝑖 ∈ (ℕ ∪ {∞})ℓ2 for 0 ≤ 𝑖 < ℓ1, and

a computable function 𝑓 : [ℓ2] × [ℓ2] → 2[ℓ2 ] .
Output: 𝑅 ∈ (ℕ ∪ {∞})ℓ2 such that, for all 𝑥 ∈ [ℓ2],

𝑅 [𝑥] = min𝑀 ∈𝐴𝑥

∑ℓ1
𝑖=1 𝑅𝑖 [𝑀 [𝑖]] with

𝐴𝑥 = {𝑀 ∈ ([ℓ2])ℓ1 | 𝑥 ∈ 𝑓 (𝑀 [1], 𝑀 [2], . . . , 𝑀 [ℓ2])},
𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) =

⋃
𝑥 ∈𝑓 (𝑥1,𝑥2,...,𝑥𝑘−1) 𝑓 (𝑥, 𝑥𝑘 ), and

𝑓 (𝑥1, 𝑥2) = 𝑓 (𝑥1, 𝑥2).
1 𝑅 ← 𝑅1
2 for 𝑖 ← 2 to ℓ1 do
3 𝑅′← 𝑅

4 foreach (𝑥1, 𝑥2) ∈ ([ℓ2])2 do
5 foreach 𝑥 ∈ 𝑓 (𝑥1, 𝑥2) do
6 𝑅′[𝑥] ← min(𝑅′[𝑥], 𝑅 [𝑥1] + 𝑅𝑖 [𝑥2])

7 𝑅 ← 𝑅′

𝑎 − 𝑅𝑖+1 by our induction hypothesis. Further, as both 𝑥 ∈ 𝑓 ( 𝑗1, 𝑗2, . . . , 𝑗𝑖+1) and
𝑦 ∈ 𝑓 ( 𝑗1, 𝑗2, . . . , 𝑗𝑖) we have 𝑥 ∈ 𝑓 (𝑦, 𝑗𝑖+1). Thus, in this iteration, 𝑅 [𝑥] is set to
at most 𝑅 [𝑦] +𝑅𝑖+1 [ 𝑗𝑖+1] ≤ 𝑎. With this, all values are set correctly and the proof
is complete. �

Observe that in the case of 𝑓 (𝑥1, 𝑥2) = {𝑥1 + 𝑥2}, which is relevant to this
section, the loop in Lines 4 to 6 computes the (min, +)-convolution of the ar-
rays 𝑅 and 𝑅𝑖 . Simply trying all possible combinations as done in the algo-
rithm has a quadratic running time. This cannot be improved without breaking
the MinConv Conjecture, which states there is no algorithm computing the
(min, +)-convolution of two arrays of length 𝑛 in time in O

(
𝑛2−𝜀

)
for every 𝜀 > 0

[Cyg+19].

5.2.3 Tracking Algorithm

With the Join-subroutine at hand, we are able to build a dynamic program
solving Fair Correlation Clustering on forests with two colors in a ratio of
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1 : 2. We �rst describe how to apply the algorithm to trees and then generalize
it to work on forests.
In the �rst phase, for each possible di�erence between the number of 𝑏𝑟 -

components and 𝑟 -components, we compute the minimum number of cuts to
obtain a splitting with that di�erence. In the second phase, we �nd the splitting
for which the sum of edges cut in the �rst phase and the number of edges
required to turn this splitting into a fair partition is minimal. This sum is the
inter-cluster cost of that partition, so by Lemma 3.1 this �nds a fair partition
with the smallest Correlation Clustering cost.

Spli�ing the tree. In the �rst phase, our aim is to compute an array 𝐷 , such
that, for all integers −𝑛 ≤ 𝑥 ≤ 𝑛

3 , 𝐷 [𝑥] ⊆ 𝐸 is a minimum-sized set of edges
such that 𝑥 = 𝑏𝑟 (𝑇 −𝐷 [𝑥]) − 𝑟 (𝑇 −𝐷 [𝑥]), where 𝑏𝑟 (𝑇 −𝐷 [𝑥]) and 𝑟 (𝑇 −𝐷 [𝑥])
are the number of 𝑏𝑟 - and 𝑟 -components in 𝑇 − 𝐷 [𝑥], respectively. To mark
the case if no such set exists, we expect 𝐷 [𝑥] = ℕ to have an in�nitely large
entry. We �ll the array in a dynamic programming way, by computing an array
𝐷ℎ
𝑣 for each vertex 𝑣, and every possible head ℎ ∈ {∅, 𝑟 , 𝑏, 𝑟𝑟, 𝑏𝑟 }. Here, 𝐷ℎ

𝑣 [𝑥],
is a minimum-sized set of edges such that in the subtree 𝑇𝑣 rooted at 𝑣 upon
removal we have exactly 𝑥 more 𝑏𝑟 -components than 𝑟 -components. The head
ℎ refers to the colors in the topmost component, which is of particular interest
as it might later contain vertices from outside 𝑇𝑣 as well. Head ℎ = 𝑟 refers to a
component with a red vertex, ℎ = 𝑏𝑟 with a blue and a red vertex so on. This
component is empty (ℎ = ∅) if the edge above 𝑣 is cut. The head is not counted
as an 𝑏𝑟 -component or 𝑟 -component for the computation of 𝑥 . Figure 5.4 gives
examples of how a head is composed from the splittings of the children.
In the following, we only show how to compute 𝛥ℎ

𝑣 [𝑥] = |𝐷ℎ
𝑣 [𝑥] |, the size

of the set of edges to obtain a respective splitting. The set 𝐷ℎ
𝑣 [𝑥] is, however,

obtained by a simple backtracking approach in the same asymptotic running
time. If 𝐷ℎ

𝑣 [𝑥] = ℕ, we have 𝛥ℎ
𝑣 [𝑥] = ∞. We initialize all values with 𝛥ℎ

𝑣 [𝑥] = ∞,
meaning we know of no set of edges which upon removal give that head and
that di�erence between 𝑏𝑟 - and 𝑟 -components. Then, for every red leaf 𝑣 we set
𝛥𝑟
𝑣 [0] = 0 and 𝛥∅𝑣 [−1] = 1. For every blue leaf 𝑣 we set 𝛥𝑏

𝑣 [0] = 0 and 𝛥∅𝑣 [0] = 1.
This concludes the computations for the leaves, as the only possibilities are to cut
the edge above the leaf or not. Now suppose we have �nished the computation
for all children 𝑢1, 𝑢2, . . . , 𝑢𝑘 of some vertex 𝑣. Observe that at most two children
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(a) (b)

(c) (d) (e)

Figure 5.4: Exemplary subtree with various possibilities to obtain a head. Figures 5.4 (a)
and 5.4 (b) show splittings with an 𝑟𝑟 -head (dark green). The choice for the heads of the
children (light green) is unambiguous as the only way to obtain an 𝑟𝑟 -head is to choose
the 𝑟 -head for the left child and an ∅-head for the right one. Both the left and the right
variants have to be considered as they di�er in the number of 𝑏𝑟 -components minus the
number of 𝑟 -components. The splittings in Figures 5.4 (c) to 5.4 (e) create an ∅-head, as
they cut the edge above the root of the subtree, so no vertices of the subtree can be part
of a component with vertices outside the subtree. Out of these 3 splittings, however,
only Figures 5.4 (c) and 5.4 (d) will be further considered as Figure 5.4 (e) obtains the
same di�erence between 𝑏𝑟 - and 𝑟 -components as Figure 5.4 (c) but cuts one more edge.
We note that other splittings obtain an ∅-head as well that are not listed here.
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of 𝑣 are placed in a head with 𝑣. For every headℎ ∈ {∅, 𝑟 , 𝑏, 𝑟𝑟, 𝑏𝑟 } that is formable
at vertex 𝑣, we try all possibilities to obtain that head.
If ℎ ∈ {𝑟, 𝑏} and 𝑐 (𝑣) corresponds to ℎ, this is done by choosing ∅ heads for

all children. There is no unique splitting of the subtrees however, as for each
subtree rooted at some child vertex 𝑢𝑖 there is a whole array 𝐷 ∅𝑢𝑖 of possible
splittings with di�erent numbers of 𝑏𝑟 - and 𝑟 -components. To �nd the best
choices for all child vertices, we employ the Join-subroutine that, when called
with 𝑓 (𝑥1, 𝑥2) = {𝑥1 + 𝑥2} and a list of arrays, returns an array 𝑅 such that, for
all indices 𝑥 𝑅 [𝑥] is the minimum value obtained by summing up exactly one
value from each of the input arrays such that the indices of the chosen values
sum up to 𝑖 . We hence set 𝛥ℎ

𝑣 = Join(𝛥∅𝑢1, . . . , 𝛥
∅
𝑢𝑘
). Here and in the following,

we only call the Join-subroutine with at least two arrays. If we would only input
a single array, we go on as if the Join-subroutine returned that array. We note
that here our indexing ranges from −𝑛 to 𝑛

3 while the Join-subroutine assumes
positive indices. We hence implicitly assume that an index of 𝑥 here maps to an
index 𝑥 + 𝑛 + 1 in the subroutine.
If ℎ = 𝑏𝑟 or both ℎ = 𝑟𝑟 and 𝑐 (𝑣) corresponds to 𝑟 , then the heads for all chil-

dren should be ∅ except for one child that we place in the same component as 𝑣. It
then has a headℎ′ ∈ {𝑟, 𝑏}, depending onℎ and 𝑐 (𝑣). We haveℎ′ = 𝑟 ifℎ = 𝑟𝑟 and
𝑐 (𝑣) corresponds to 𝑅 or ℎ = 𝑟𝑏 and 𝑐 (𝑣) corresponds to 𝑏. Otherwise, ℎ′ = 𝑏. For
all 𝑖 ∈ [𝑘], we compute an array 𝛥 ′𝑢𝑖 = Join(𝛥∅𝑢1, . . . , 𝛥

∅
𝑢𝑖−1, 𝛥

ℎ′
𝑢𝑖
, 𝛥∅𝑢𝑖+1, . . . , 𝛥

∅
𝑢𝑘
),

referring to 𝑢𝑖 having the non-empty head. Lastly, for all −𝑛 ≤ 𝑥 ≤ 𝑛
3 , we set

𝛥ℎ
𝑣 [𝑥] = min𝑖∈[𝑘 ] 𝛥 ′𝑢𝑖 [𝑥].
If ℎ = ∅, then we have to try out all di�erent possibilities for the component 𝑣

is in and, in each case, cut the edge above 𝑣. First assume we want to place 𝑣 in a
𝑏𝑟𝑟 -component. Then it has to be merged with to vertices, either by taking a
head ℎ′ ∈ {𝑏𝑟, 𝑟𝑟 } at one child or by taking heads ℎ1, ℎ2 ∈ {𝑟, 𝑏} at two children.
The exact choices for ℎ′, ℎ1, ℎ2 of course depend on 𝑐 (𝑣). We compute an array
𝛥ℎ′ = Join(𝛥∅𝑢1, . . . , 𝛥

∅
𝑢𝑖−1, 𝛥

ℎ′
𝑢𝑖
, 𝛥∅𝑢𝑖+1, . . . , 𝛥

∅
𝑢𝑘
) for the �rst option. For the second

option we compute arrays
𝛥𝑖, 𝑗 = 𝐽𝑜𝑖𝑛(𝛥∅𝑢1, . . . , 𝛥

∅
𝑢𝑖−1, 𝛥

ℎ1
𝑢𝑖 , 𝛥

∅
𝑢𝑖+1, . . . , 𝛥

∅
𝑢 𝑗−1, 𝛥

ℎ2
𝑢 𝑗
, 𝛥∅𝑢 𝑗+1, . . . , 𝛥

∅
𝑢𝑘
) for all pairs of

children 𝑢𝑖 , 𝑢 𝑗 of 𝑣 such that 𝑖 < 𝑗 and {𝑣,𝑢𝑖 , 𝑢 𝑗 } is a 𝑏𝑟𝑟 -component. We now
have stored the minimum number of cuts for all ways to form a 𝑏𝑟𝑟 -component
with 𝑣 and for all possibilities for 𝑥 in the arrays 𝛥ℎ′ and 𝛥𝑖, 𝑗 for all possibilities
of 𝑖, 𝑗 . However, 𝑣 may also be in an 𝑟 -, 𝑏-, 𝑟𝑟 -, or 𝑏𝑟 -component. Hence, when
computing 𝛥∅𝑣 [𝑥] we take the minimum value at position 𝑥 not only among
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the arrays 𝛥ℎ′ and 𝛥𝑖, 𝑗 but also of the arrays 𝛥𝑟
𝑣 , 𝛥

𝑏𝑟
𝑣 , 𝛥𝑟𝑟

𝑣 , and 𝛥𝑏𝑟
𝑣 . Note that

here we have to shift all values in 𝛥𝑟
𝑣 to the left by one since by isolating 𝑣 we

create another 𝑟 -component. An entry we have written into 𝛥𝑟
𝑣 [𝑥] hence should

actually be placed in 𝛥𝑟
𝑣 [𝑥 − 1]. Similarly, we have to shift 𝛥𝑏𝑟

𝑣 to the right, since
here we create a new 𝑏𝑟 -component at the top of the subtree. Lastly, as long as 𝑣
is not the root of 𝑇 , we have to increase all values in 𝛥∅𝑣 by one, re�ecting the
extra cut we have to make above 𝑣.

After all computations are completed by the correctness of the Join-subroutine
and an inductive argument, 𝛥ℎ

𝑣 is correctly computed for all vertices 𝑣 and heads
ℎ. Note that in the Join-subroutine, as 𝑓 (𝑥1, 𝑥2) returns the correct index for
merging two subtrees, 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑘 ) gives the correct index of merging 𝑘

subtrees. In particular, 𝛥∅𝑟 is the array containing for each −𝑛 ≤ 𝑥 ≤ 𝑛
3 the

minimum number of edges to cut such that the there are exactly 𝑥 more 𝑏𝑟 -
components than 𝑟 -components, where 𝑟 is the root of 𝑇 . By adjusting the
Join-subroutine to track the exact combination that leads to the minimum value
at each position, we also obtain an array 𝐷 that contains not only the numbers
of edges but the sets of edges one has to cut or is marked with ℕ if no such set
exists.

At each node, computing the arrays takes time O
(
𝑛5

)
, which is dominated by

computing O
(
𝑛2

)
arrays𝐷𝑢,𝑤 in time O

(
𝑛3

)
each by Lemma 5.4 since ℓ1, ℓ2 ∈ O(𝑛).

This phase hence takes time in O
(
𝑛6

)
.

Assembling a fair clustering. Let 𝐷 be the set computed in the �rst phase.
Note that each set of edges 𝐷 [𝑥] directly gives a splitting, namely the partition
induced by the connected components in 𝑇 − 𝐷 [𝑥].
By Lemma 5.3, the cheapest way to turn the splitting given by 𝐷 [𝑥] into a

clustering of sets of 1 blue and 2 red vertices is found in linear time and incurs
max 0,𝑥

2 more cuts. Hence, we �nd the −𝑛 ≤ 𝑥 ≤ 𝑛
3 for which |𝐷 [𝑥] | +max 0, 𝑥2

is minimal. We return the corresponding clustering as it has the minimum
inter-cluster cost.

This phase takes only constant time per splitting if we tracked the number of
components of each type in the �rst phase and is therefore dominated by the
�rst phase.

Forests. Our algorithm is easily generalized to also solve Fair Correlation
Clustering on unconnected forests with two colors in a ratio of 1 : 2 by slightly
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adapting the �rst phase. We run the dynamic program as described above for
each individual tree. This still takes overall time in O

(
𝑛6

)
. For each tree 𝑇𝑖 in

the forest and every ℎ ∈ {∅, 𝑟 , 𝑏, 𝑟𝑟, 𝑏𝑟 }, let then 𝛥∅
𝑇𝑖
denote the array 𝛥∅𝑟 with 𝑟

being the root of tree 𝑇𝑖 . To �nd a splitting of the whole forest and not just on
the individual trees, we perform an additional run of the Join-subroutine using
these arrays 𝛥𝑇𝑖 and the function 𝑓 (𝑥1, 𝑥2) = {𝑥1 + 𝑥2}. This gives us an array
𝑅 such that 𝑅 [𝑥] is the minimum number of cuts required to obtain a splitting
with exactly 𝑥 more 𝑏𝑟 -components than 𝑟 -components for the whole tree rather
than for the individual trees. Note that we choose the ∅-head at each tree as the
trees are not connected to each other, so in order to �nd a splitting we do not
yet have to consider how components of di�erent trees are merged, this is done
in the second phase. The �rst phase then outputs an array 𝐷 that contains the
set of edges corresponding to 𝑅, which is obtained by a backtracking approach.
As the additional subroutine call takes time in O

(
𝑛3

)
, the asymptotic run time of

the algorithm does not change. This gives the following result.

I Theorem 5.5. Fair Correlation Clustering on forests with two colors in
a ratio of 1 : 2 can be solved in time in O

(
𝑛6

)
. J

5.3 Small Clusters

To obtain an algorithm that handles more colors and di�erent color ratios, we
generalize our approach for the 1 : 2 color ratio case from the previous section.
We achieve the following result.

I Theorem 5.6. Let 𝐹 be a forest of 𝑛 vertices, each colored in one of 𝑘 ≥ 2
colors. Let the colors be distributed in a ratio of 𝑐1 : 𝑐2 : . . . : 𝑐𝑘 with 𝑐𝑖 ∈ ℕ>0
for all 𝑖 ∈ [𝑘] and gcd(𝑐1, 𝑐2, . . . , 𝑐𝑘 ) = 1. Then Fair Correlation Clustering
on 𝐹 can be solved in time in O

(
𝑛2setvars+setmax+2 · setvarssetmax) , where setvars =∏𝑘

𝑖=1(𝑐𝑖 + 1) and setmax =
∑𝑘

𝑖=1 𝑐𝑖 . J

Once more, the algorithm runs in two phases. First, it creates a list of possible
splittings, i.e., partitions in which, for every color, every component has at most
as many vertices of that color as a minimum-sized fair component has. In the
second phase, it checks for these splittings whether they can be merged into a
fair clustering. Among these, it returns the one of minimum cost. We �rst give
the algorithm solving the problem on trees and then generalize it to also capture
forests.
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Spli�ing the forest. For the �rst phase in the 1:2 approach, we employed a
dynamic program that kept track of the minimum number to obtain a splitting
for each possible cost incurred by the reassembling in the second phase. Unfor-
tunately, if we are given a graph with 𝑘 ≥ 2 colors in a ratio of 𝑐1 : 𝑐2 : . . . : 𝑐𝑘 ,
then the number of cuts that are required in the second phase is not always as
easily bounded by the di�erence of the number of two component types like 𝑟 -
and 𝑏𝑟 -components in the 1 : 2 case. However, we �nd that it su�ces to track the
minimum number of cuts required to obtain any possible coloring of a splitting.

We �rst bound the number of possible colorings of a splitting. As during the
dynamic program we consider splittings of a subgraph of 𝐺 most of the time,
we also have to count all possible colorings of splittings of less than 𝑛 vertices.

I Lemma 5.7. Let𝑈 be a set of 𝑛 elements, colored in 𝑘 ∈ ℕ>1 colors, and let
𝑑1, 𝑑2, . . . , 𝑑𝑘 ∈ ℕ. Let S be the set of all possible partitions of subsets of𝑈 such
that for every color 𝑖 there are at most 𝑑𝑖 vertices of that color in each cluster.
Let C be the set of all colorings of partitions in S. Then, |C| ≤ (𝑛 + 1)setvars−1,
where setvars =

∏𝑘
𝑖=1(𝑑𝑖 + 1). J

Proof. The number of sets with di�erent colorings is at most setvars as there are
0 to 𝑑𝑖 many vertices of color 𝑖 in each component. Thus, a coloring of a partition
P using only these sets is characterized by an array of size setvars with values
in [𝑛] ∪ {0} as no component occurs more than 𝑛 times. There are (𝑛 + 1)setvars
ways to �ll such an array. However, as the set colorings together have to form a
partition, the last entry is determined by the �rst setvars − 1 entries, giving only
(𝑛 + 1)setvars−1 possibilities. �

With this, we now employ a dynamic program similar to the one presented in
Section 5.2 but track the minimum cut cost for all colorings of splittings. It is
given by the following lemma.

I Lemma 5.8. Let 𝐹 = (𝑉 , 𝐸) be a forest with vertices in 𝑘 colors. Further, let
𝑑1, 𝑑2, . . . , 𝑑𝑘 ∈ ℕ and S be the set of all possible partitions of 𝑉 such that there
are at most 𝑑𝑖 vertices of color 𝑖 in each cluster for 𝑖 ∈ [𝑘]. Let C be the set of all
colorings of partitions in S. Then, in time in O

(
𝑛2setvars+setmax+2 · setvarssetmax)

with setvars =
∏𝑘

𝑖=1(𝑑𝑖 + 1) and setmax =
∑𝑘

𝑖=1 𝑑𝑖 , for all 𝐶 ∈ C, we �nd a
minimum-sized set 𝐷𝐶 ⊆ 𝐸 such that the connected components in 𝐹 −𝐷𝐶 form
a partition of the vertices with coloring 𝐶 or state that there is no such set. J
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Proof. We �rst describe how to solve the problem on a tree𝑇 and then generalize
the approach to forests. We call a partition of the vertices such that for every
color 𝑖 there are at most 𝑑𝑖 vertices of that color in each cluster a splitting.
We employ a dynamic program that computes the set 𝐷𝐶 for the colorings

of all possible splittings and all subtrees rooted at each vertex in 𝑇 . We do
so iteratively, by starting to compute all possible splittings at the leaves and
augmenting them towards the root. Thereby, the connected component that is
connected to the parent of the current subtree’s root is of particular importance
as it is the only connected component that can be augmented by vertices outside
the subtree. We call this component the head. Note that the head is empty if the
edge between the root and its parent is cut. We do not count the head in the
coloring of the splitting and only give it explicitly. Formally, for every 𝑣 ∈ 𝑉 ,
every possible coloring of a splitting𝐶 , and every possible coloring ℎ of the head
we compute𝐷ℎ

𝑣 [𝐶] ⊆ 𝐸, the minimum-sized set of edges such that the connected
components of 𝑇𝑣 − 𝐷ℎ

𝑣 [𝐶] form a splitting with coloring 𝐶 and head ℎ. We set
𝐷ℎ
𝑣 [𝐶] = ℕ, an in�nitely large set, if no such set exists.
Let all 𝐷ℎ

𝑣 [𝐶] be initialized with ℕ. Then, for every leaf 𝑣 with parent 𝑤, we
set 𝐷ℎ𝑐 (𝑣)

𝑣 [𝐶∅] = ∅, where ℎ𝑐 (𝑣) is the coloring of the component {𝑣} and 𝐶∅ the
coloring of the partition over the empty set. Also, we set 𝐷ℎ∅

𝑣 [𝐶𝑐 (𝑣) ] = {{𝑣,𝑤}},
where the vertex 𝑣 is not placed in the head as the edge to its parent is cut. As to
cut or not to cut the edge above are the only options for leaves, this part of the
array is now completed.

Next, suppose we have �nished the computation for all children of some vertex
𝑣. For every possible coloring ℎ of the head that is formable at vertex 𝑣, we try
all possibilities to obtain that coloring.
To this end, �rst assume ℎ to be non-empty. Therefore, 𝑣 has to be placed in

the head. Let ℎ−𝑐 (𝑣) denote the coloring obtained by decreasing ℎ by one at color
𝑐 (𝑣). To obtain head ℎ, we hence have to choose colorings of splittings of the
subtrees rooted at the children 𝑢1, 𝑢2, . . . , 𝑢ℓ of 𝑣 such that their respective heads
ℎ𝑢1, ℎ𝑢2, . . . , ℎ𝑢ℓ

combine toℎ−𝑐 (𝑣) . A combination of colorings𝐶1,𝐶2, . . . ,𝐶ℓ refers
to the coloring of the union of partitions𝑀1, 𝑀2, . . . , 𝑀ℓ that have the respective
colorings and is de�ned as the element-wise sum over the arrays 𝐶1,𝐶2, . . . ,𝐶ℓ .
Often, there are multiple ways to choose heads for the child vertices that ful�ll
this requirement. As every head is of size at most setmax, ℎ−𝑐 (𝑣) and contains
𝑣, it is composed of less than setmax non-empty heads. As there are at most
setvars possible heads and we have to choose less than setmax children, there
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are at most
(

𝑛
setmax−1

)
· setvarssetmax−1 < 𝑛setmax−1 · setvarssetmax−1 possible ways

to form ℎ−𝑐 (𝑣) with the children of 𝑣. Let each way be described by a function 𝐻

assigning each child of 𝑣 a certain, possibly empty, head. Then, even for a �xed
𝐻 , there are multiple splittings possible. This stems from the fact that even if the
head 𝐻 (𝑢) for a child 𝑢 is �xed, there might be multiple splittings of the subtree
of 𝑢 with di�erent colorings resulting in that head. For each possible 𝐻 , we
hence employ the Join-subroutine with the arrays 𝐷𝐻 (𝑢)

𝑢 for all children 𝑢 using
the cardinality of the sets as input for the subroutine. For the sake of readability,
we index the arrays here by some vector𝐶 instead of a single numerical index as
used in the algorithmic description of the Join-subroutine. We implicitly assume
that each possible coloring is represented by a positive integer. By letting these
indices enumerate the vectors in a structured way, converting between the two
formats only costs an additional time factor in O(𝑛).

For 𝑓 (𝑥1, 𝑥2) we give the function returning a set containing only the index of
the coloring obtained by combining the colorings indexed by 𝑥1 and 𝑥2, which is
computable in time in O(𝑛). Combining the colorings means for each set coloring
summing the occurrences in both partition colorings. Thereby, 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑘 )
as de�ned in the Join-subroutine returns the index of the combination of the
colorings indexed by 𝑥1, 𝑥2, . . . , 𝑥𝑘 . Note that there are at most 𝑛 arrays and
each is of length less than (𝑛 + 1)setvars−1 as there are so many di�erent color-
ings by Lemma 5.7. After executing the Join-subroutine, by Lemma 5.4, we
obtain an array 𝐷𝐻 that contains the minimum cut cost required for all possible
colorings that can be achieved by splitting according to 𝐻 . By modifying the
Join-subroutine slightly to use a simple backtracking approach, we also obtain
the set 𝐷 ⊆ 𝐸 that achieves this cut cost. We conclude our computation of 𝐷ℎ

𝑣

by element-wisely taking the minimum-sized set over all computed arrays 𝐷𝐻

for the possible assignments 𝐻 .
If ℎ is the empty head, i.e., the edge above 𝑣 is cut, then 𝑣 is placed in a

component that is either of size setmax or has a coloring corresponding to some
head ℎ′. In the �rst case, we compute an array 𝐷full in the same manner as
described above by trying all suitable assignments 𝐻 and employing the Join-
subroutine. In the second case, we simply take the already �lled array 𝐷ℎ′

𝑣 .
Note that in both cases we have to increment all values in the array by one to
re�ect cutting the edge above 𝑣, except if 𝑣 is the root vertex. Also, we have to
move the values in the arrays around, in order to re�ect that the component
containing 𝑣 is no longer a head but with the edge above 𝑣 cut should also be
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counted in the coloring of the splitting. Hence, the entry 𝐷full [𝐶] is actually
stored at 𝐷full [𝐶−full] with 𝐶−full being the coloring 𝐶 minus the coloring of a
minimum-sized fair cluster. If no such entry 𝐷full [𝐶−full] exists, we assume it to
be∞. The same goes for accessing the arrays 𝐷ℎ′

𝑣 where we have to subtract the
coloring ℎ′ from the index. Taking the element-wise minimum-sized element
over the such modi�ed arrays 𝐷full and 𝐷ℎ′

𝑣 for all possibilities for ℎ′ yields 𝐷 ∅𝑣 .
By the correctness of the Join-subroutine and as we try out all possibilities to

build the speci�ed heads and colorings at every vertex, we thus know that after
completing the computation at the root 𝑟 of 𝑇 , the array 𝐷 ∅𝑟 contains for every
possible coloring of a splitting of the tree the minimum cut cost to achieve that
coloring.
For each of the 𝑛 vertices and the setvars possible heads, we call the Join-

subroutine at most 𝑛setmax−1 · setvarssetmax−1 many times. Each time, we call
it with at most 𝑛 arrays and, as by Lemma 5.7 there are O

(
𝑛setmax) possible

colorings, all these arrays have that many elements. Hence, each subroutine
call takes time in O

(
𝑛 ·

(
𝑛setvars

)2)
= O

(
𝑛2setvars+1

)
, so the algorithm takes time

in O
(
𝑛2setvars+setmax+2 · setvarssetmax) , including an additional factor in O(𝑛) to

account for converting the indices for the Join-subroutine.
When the input graph is not a tree but a forest 𝐹 , we apply the dynamic pro-

gram on every tree in the forest. Then, we additionally run the Join-subroutine
with the arrays for the ∅-head at the roots of all trees in the forest. The resulting
array contains all minimum-cost solutions from all possible combinations from
colorings of splittings from the individual trees and is returned as output. The
one additional subroutine does not change the asymptotic running time. �

Because of Lemmas 3.2 and 3.3 it su�ces to consider partitions as possible
solutions that have at most 𝑐𝑖 vertices of color 𝑖 in each cluster, for all 𝑖 ∈ [𝑘].
We hence apply Lemma 5.8 on the forest 𝐹 and set 𝑑𝑖 = 𝑐𝑖 for all 𝑖 ∈ [𝑘]. This
way, for every possible coloring of a splitting we �nd the minimum set of edges
to obtain a splitting with that coloring.

Assembling a fair clustering. Let 𝐷 be the array produced in the �rst phase,
i.e., for every coloring𝐶 of a splitting, 𝐷 [𝐶] is a minimum-sized set of edges such
that the connected components in 𝐹 − 𝐷 [𝐶] induce a partition with coloring
𝐶 . In the second phase, we have to �nd the splitting that gives the minimum
Correlation Clustering cost. We do so by deciding for each splitting whether
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it is assemblable, i.e., whether its clusters can be merged such that it becomes
a fair solution with all clusters being no larger than setmax. Among these, we
return the one with the minimum inter-cluster cost computed in the �rst phase.

This su�ces because of the following reasons. First, note that deciding assem-
blability only depends on the coloring of the splitting so it does not hurt that
in the �rst phase we tracked only all possible colorings of splittings and not all
possible splittings themselves. Second, we do not have to consider further edge
cuts in this phase: Assume we have a splitting 𝑆 with coloring 𝐶𝑆 and we would
obtain a better cost by further cutting 𝑎 edges in 𝑆 , obtaining another splitting
𝑆 ′ of coloring 𝐶𝑆′ . However, as we �lled the array 𝐷 correctly, there is an entry
𝐷 [𝐶𝑆′] and |𝐷 [𝐶𝑆′] | ≤ |𝐷 [𝐶𝑆 ] | + 𝑎. As we will consider this value in �nding
the minimum anyway, there is no need to think about cutting the splittings any
further. Third, the minimum inter-cluster cost yields the minimum Correlation
Clustering cost by Lemma 3.1. When merging clusters, the inter-cluster cost
computed in the �rst phase may decrease but not increase. If it decreases, we
overestimate the cost. However, this case implies that there is an edge between
the two clusters and as they are still of size at most setmax when merged, in the
�rst phase we will also have found another splitting considering this case.
We employ a dynamic program to decide the assemblability for all possible

O
(
𝑛setvars

)
colorings of splittings. Let the size of a partition coloring be the

number of set colorings in that partition coloring (not necessarily the number of
di�erent set colorings). We decide assemblability for all possible colorings of
splittings from smallest to largest. Note that each such coloring is of size at least

𝑛
setmax . If it is of size exactly

𝑛
setmax , then all contained set colorings are of size

setmax, so this partition coloring is assemblable if and only if all set colorings
are fair. Now assume we have found all assemblable colorings of splittings of
size exactly 𝑗 ≥ 𝑛

setmax . Assume a partition coloring𝐶 of size 𝑗 + 1 is assemblable.
Then, at least two set colorings 𝐶1,𝐶2 from 𝐶 are merged together. Hence, let
𝐶 ′ be the partition coloring obtained by removing the set colorings 𝐶1,𝐶2 from
𝐶 and adding the set coloring of the combined coloring of 𝐶1 and 𝐶2. Now, 𝐶 ′
is of size 𝑗 and is assemblable. Thus, every assemblable splitting with 𝑗 + 1
components has an assemblable splitting with 𝑗 components. The other way
round, if we split a set coloring of an assemblable partition coloring of size 𝑗

we obtain an assemblable partition coloring of size 𝑗 + 1. Hence, we �nd all
assemblable colorings of splittings of size 𝑗 + 1 by for each assemblable partition
coloring of size 𝑗 (less than 𝑛setvars many) trying each possible way to split one of
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its set colorings (less than 𝑖 ·2setmax as there are 𝑗 set colorings each of size at most
setmax). Thus, to compute all assemblable colorings of splittings of size 𝑗 + 1, we
need time in O

(
𝑛setvars · 𝑗 · 2setmax) , which implies a total time for the 𝑛 − 𝑛

setmax
iterations in the second phase in O

(
𝑛setvars+2 · 2setmax) . This is dominated by the

running time of the �rst phase. The complete algorithm hence runs in time in
O

(
𝑛2setvars+setmax+2 · setvarssetmax) , which yields Theorem 5.6.
This gives an algorithm that solves Fair Correlation Clustering on arbi-

trary forests. The running time however may be exponential in the number of
vertices depending on the color ratio in the forest.

5.4 Few Clusters

The algorithm presented in the previous section runs in polynomial time if the
colors in the graph are distributed in a way such that each cluster in a minimum-
cost solution is of constant size. The worst running time is obtained when there
are very large but few clusters. For this case, we o�er another algorithm, which
runs in polynomial time if the number of clusters is constant. However, it is
limited to instances where the forest is colored in two colors in a ratio of 1 : 𝑐
for some 𝑐 ∈ ℕ.

The algorithm uses a subroutine that computes the minimum number of cuts
that are required to slice o� clusters of speci�c sizes from the tree. It is given by
Lemma 5.9.

I Lemma 5.9. Let 𝑇 = (𝑉 , 𝐸) be a tree rooted at 𝑟 ∈ 𝑉 and 𝑘 ∈ ℕ. Then, we
can compute an array 𝑅 such that, for each 𝑎0 ∈ [𝑛] and 𝑎 = 𝑎1, 𝑎2, . . . , 𝑎𝑘 ∈
([𝑛 − 1] ∪ {0})𝑘 with 𝑎𝑖 ≥ 𝑎𝑖+1 for 𝑖 ∈ [𝑘 − 1] and ∑𝑘

𝑖=0 𝑎𝑖 = 𝑛, we have that
𝑅 [𝑎0, 𝑎] is the partition P = {𝑆0, 𝑆1, . . . , 𝑆𝑘 } of 𝑉 with minimum inter-cluster
cost that su�ces 𝑟 ∈ 𝑆0 and |𝑆𝑖 | = 𝑎𝑖 for 𝑖 ∈ [𝑘]. The computation time is in
O

(
(𝑘 + 3)! · 𝑛2𝑘+3

)
. J

Proof. We give a construction such that 𝑅 [𝑎0, 𝑎] stores not the partition itself but
the incurred inter-cluster cost. By a simple backtracking approach, the partitions
are obtained as well.
We employ a dynamic program that involves using the Join-subroutine. For

the sake of readability, we index the arrays here by some vector 𝑎 ∈ [𝑛]𝑘
and 𝑎0 ∈ [𝑛] instead of a single numerical index as used in the algorithmic
description of the Join-subroutine. We implicitly assume that each possible 𝑎0, 𝑎
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is represented by some index in [𝑛𝑘+1]. By letting these indices enumerate the
vectors in a structured way, converting between the two formats only costs an
additional time factor in O(𝑘).
Starting at the leaves and continuing at the vertices for which all children

have �nished their computation, we compute an array 𝑅𝑣 with the properties
described for 𝑅 but for the subtree 𝑇𝑣 for each vertex 𝑣 ∈ 𝑉 . In particular, for
every vertex 𝑣 we do the following. Let 𝑅0

𝑣 be an array with ∞-values at all
indices except for 𝑅0

𝑣 [1, (0, 0, . . . , 0)] = 0, as this is the only possible entry for
the tree 𝑇 [{𝑣}].

If 𝑣 has no children, then𝑅 = 𝑅0
𝑣 . Otherwise, let the children of 𝑣 be𝑢1, 𝑢2, . . . , 𝑢ℓ .

Then we call the Join-subroutine with the arrays 𝑅0
𝑣 , 𝑅𝑢1, 𝑅𝑢2, . . . , 𝑅𝑢ℓ

. We have to
de�ne 𝑓 such that it gives all possibilities to combine the children’s subtrees parti-
tions and 𝑣. For all possible values of 𝑎0, 𝑎 and 𝑎′0, 𝑎′ recall that 𝑓 ((𝑎0, 𝑎), (𝑎′0, 𝑎′))
should return a set of indices of the form (𝑎′′0 , 𝑎′′). Each such index describes a
combination of all possibilities for 𝑣 and the already considered children (𝑎0, 𝑎)
and the possibilities for the next child (𝑎′0, 𝑎′). First, we consider the possibility to
cut the edge between 𝑣 and the child 𝑢 that is represented by (𝑎′0, 𝑎′′). Then, we
add all possible ways of merging the two sets with their 𝑘 + 1 clusters each. As
we cut the edge {𝑢, 𝑣}, there are 𝑘 possible ways to place the cluster containing
𝑢 (all but the cluster containing 𝑣) and then there are 𝑘! ways to assign the
remaining clusters. All these are put into the set 𝑓 ((𝑎0, 𝑎), (𝑎′0, 𝑎′)). Second, we
assume the edge {𝑢, 𝑣} is not cut. Then, the clusters containing 𝑣 and 𝑢 have to
be merged, so there are only 𝑘! possible ways to assign the other clusters. In
particular, for all indices (𝑎′′0 , 𝑎′′) put into 𝑓 ((𝑎0, 𝑎), (𝑎′0, 𝑎′)) this way, we have
𝑎′′0 = 𝑎0+𝑎′0. Note that 𝑓 can be computed in O(𝑘 · 𝑘!). Note that 𝑓 (𝑥1, 𝑥2, . . . , 𝑥ℓ )
as de�ned in the Join-subroutine lists all possibilities to cut the combined tree
as it iteratively combines all possibilities for the �rst child and the vertex 𝑣 and
for the resulting tree lists all possible combinations with the next child and so
on. The Join-subroutine takes time in O

(
(𝑘 + 1) ·

(
𝑛𝑘+1

)2 · (𝑘 · 𝑘!) · 𝑘) , which
is in O

(
(𝑘 + 3)! · 𝑛2𝑘+2

)
. All O(𝑛) calls of the subroutine hence take time in

O
(
(𝑘 + 3)! · 𝑛2𝑘+3

)
�

With this, we are able to give an algorithm for graphs with two colors in a
ratio of 1 : 𝑐 , which runs in polynomial time if there is only a constant number
of clusters, i.e., if 𝑐 ∈ 𝛩 (𝑛).
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I Theorem 5.10. Let 𝐹 be an 𝑛-vertex forest with two colors in a ratio of 1 : 𝑐
with 𝑐 ∈ ℕ>0 and let 𝑝 = 𝑛

𝑐+1 . Then, Fair Correlation Clustering on 𝐹 can be
solved in O

(
𝑛𝑝

3+𝑝2+𝑝
)
. J

Proof. Note that, if there are 𝑐 red vertices per 1 blue vertex, 𝑝 = 𝑛
𝑐+1 is the

number of blue vertices. By Lemma 3.2, any minimum-cost clustering consists
of 𝑝 clusters, each containing exactly one blue vertex, and from Lemma 3.1 we
know that it su�ces to minimize the number of edges cut by any such clustering.
All blue vertices are to be placed in separate clusters. They are separated by
cutting at most 𝑝 − 1 edges, so we try all of the O

(
(𝑝 − 1) ·

(
𝑛−1
𝑝−1

) )
subsets of

edges of size at most 𝑝 − 1. Having cut these edges, we have ℓ trees 𝑇1,𝑇2, . . . ,𝑇ℓ ,
with 𝑝 of them containing exactly one blue vertex and the others no blue vertices.
We root the trees at the blue vertex if they have one or at an arbitrary vertex
otherwise. For each tree𝑇𝑖 , let 𝑟𝑖 be the number of red vertices. If we have exactly
𝑝 trees and 𝑟𝑖 = 𝑐 for all 𝑖 ∈ [𝑝], we have found a minimum-cost clustering,
where the 𝑖-th cluster is simply the set of vertices of𝑇𝑖 for all 𝑖 ∈ [𝑝]. Otherwise,
we must cut o� parts of the trees and assign them to other clusters in order to
make the partition fair. To this end, for each tree 𝑇𝑖 we compute an array 𝑅𝑖 that
states the cost of cutting up to 𝑝 − 1 parts of certain sizes o�. More precisely,
𝑅𝑖 [(𝑎1, 𝑎2, . . . , 𝑎𝑝−1)] is the number of cuts required to cut o� 𝑝 − 1 clusters of
size 𝑎1, 𝑎2, . . . , 𝑎𝑝−1, respectively, and∞ if there is no such way as

∑𝑝−1
𝑖=1 > 𝑟𝑖 . It

su�ces to compute 𝑅𝑖 [(𝑎1, 𝑎2, . . . , 𝑎𝑝−1)] with 0 ≤ 𝑎𝑖 ≤ 𝑎𝑖+1 ≤ 𝑛 for 𝑖 ∈ [𝑝 − 2].
We compute these arrays employing Lemma 5.9. Note that here we omitted

the 𝑎0 used in the lemma, which here refers to the number of vertices not cut
from the tree. However, 𝑎0 is still unambiguously de�ned over 𝑎 as all the values
sum up to the number of vertices in this tree. Further, by connecting all trees
without blue vertices to some newly added auxiliary vertex 𝑧 and using this tree
rooted at 𝑧 as input to Lemma 5.9, we reduce the number of subroutine calls
to 𝑝 + 1. Then, the only entries from the array obtained for the all-red tree we
consider are the ones with 𝑎0 = 1 as we do not want to merge 𝑧 in a cluster but
every vertex except 𝑧 from this tree has to be merged into another cluster. We
call the array obtained from this tree 𝑅0 and the arrays obtained for the other
trees 𝑅1, 𝑅2, . . . , 𝑅𝑝 , respectively.
Note that every fair clustering is characterized by choosing one entry from

each array 𝑅𝑖 and assigning the cut-o� parts to other clusters. As each array
has less than 𝑛𝑝

𝑝! entries and there are at most (𝑝!)𝑝 ways to assign the cut-o�
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parts to clusters, there are at most 𝑛𝑝2 possibilities in total. For each of these, we
compute in linear time whether they result in a fair clustering. Among these fair
clusterings, we return the one with the minimum inter-cluster cost, computed
by taking the sum over the chosen entries from the arrays 𝑅𝑖 . By Lemma 3.1,
this clustering has the minimum Correlation Clustering cost. We obtain a
total running time of O

(
(𝑝 − 1) ·

(
𝑛−1
𝑝−1

)
·
(
(𝑝 + 1) ·

(
𝑛𝑝+3 + 𝑛𝑝2+𝑝−2

)
+ 𝑛𝑝2+1

))
⊆

O
(
𝑛𝑝

3+𝑝2+𝑝
)
. �

Combining the results of Theorems 5.6 and 5.10, we see that for the case of a
forest with two colors in a ratio of 1 : 𝑐 for some 𝑐 ∈ ℕ>0, there are polynomial
time algorithms when the clusters are either of constant size or size in𝛩 (𝑛). As
Theorem 4.1 states that Fair Correlation Clustering on forests is NP-hard, we
hence know that this hardness evolves somewhere between the two extremes.
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6 Relaxed Fairness

It might look like the hardness results for Fair Correlation Clustering are
due to the very strict de�nition of fairness, which enforces clusters of a speci�c
size on forests. However, in this chapter, we prove that even when relaxing the
fairness requirements our results essentially still hold.

6.1 Definitions

We use the relaxed fairness constraint as proposed by Bera et al. [Ber+19] and
employed for Fair Correlation Clustering by Ahmadi et al. [Ahm+20a]. For
the following de�nitions, given a set 𝑈 colored by a function 𝑐 : 𝑈 → 𝑘 , by
𝑈𝑖 = {𝑢 ∈ 𝑈 | 𝑐 (𝑢) = 𝑖} we denote the set of vertices of color 𝑖 for all 𝑖 ∈ [𝑘].

I De�nition 6.1 (Relaxed Fair Set). Let𝑈 be a �nite set of elements colored
by a function 𝑐 : 𝑈 → [𝑘] for some 𝑘 ∈ ℕ>0 and let 𝑝𝑖 , 𝑞𝑖 ∈ ℚ with 0 < 𝑝𝑖 ≤
|𝑈𝑖 |
|𝑈 | ≤ 𝑞𝑖 < 1 for all 𝑖 ∈ [𝑘]. Then, some 𝑆 ⊆ 𝑈 is relaxed fair with regard to the
𝑞𝑖 and 𝑝𝑖 if and only if for all colors 𝑖 ∈ [𝑘] we have 𝑝𝑖 ≤ |𝑆∩𝑈𝑖 |

|𝑆 | ≤ 𝑞𝑖 . J

Note that we require 𝑝𝑖 and 𝑞𝑖 to be such that an exact fair solution is also
relaxed fair. Further, we exclude setting 𝑝𝑖 or 𝑞𝑖 to 0 as this would allow clusters
that do not include every color, which we do not consider fair.

I De�nition 6.2 (Relaxed Fair Partition). Let 𝑈 be a �nite set of elements
colored by a function 𝑐 : 𝑈 → [𝑘] for some 𝑘 ∈ ℕ>0 and let 𝑝𝑖 , 𝑞𝑖 ∈ ℚ with
0 < 𝑝𝑖 ≤ |𝑈𝑖 |

|𝑈 | ≤ 𝑞𝑖 < 1 for all 𝑖 ∈ [𝑘]. Then, a partition 𝑆1 ∪ 𝑆2 ∪ . . . ∪ 𝑆ℓ = 𝑈

is relaxed fair with regard to the 𝑞𝑖 and 𝑝𝑖 if and only if all sets 𝑆1, 𝑆2, . . . , 𝑆ℓ are
relaxed fair with regard to the 𝑞𝑖 and 𝑝𝑖 . J
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Chapter 6 Relaxed Fairness

Relaxed Fair Correlation Clustering
Input: Graph 𝐺 = (𝑉 , 𝐸), coloring 𝑐 : 𝑉 → [𝑘], 𝑝𝑖 , 𝑞𝑖 ∈ ℚ with

0 < 𝑝𝑖 ≤ |𝑈𝑖 |
|𝑈 | ≤ 𝑞𝑖 < 1 for all 𝑖 ∈ [𝑘].

Task: Find a relaxed fair partition P of 𝑉 with regard to the 𝑝𝑖
and 𝑞𝑖 that minimizes cost(P).

While we use the above de�nition for our hardness results, we restrict the
possibilities for the 𝑝𝑖 and 𝑞𝑖 for our algorithms.

I De�nition 6.3 (𝜶 -relaxed Fair Set). Let𝑈 be a �nite set of elements colored
by a function 𝑐 : 𝑈 → [𝑘] for some 𝑘 ∈ ℕ>0 and let 0 < 𝛼 < 1. Then, some
𝑆 ⊆ 𝑈 is 𝛼-relaxed fair if and only if it is relaxed fair with regard to 𝑝𝑖 = 𝛼 |𝑈𝑖 |

|𝑈 |
and 𝑞𝑖 = |𝑈𝑖 |

𝛼 |𝑈 | for all 𝑖 ∈ [𝑘]. J

I De�nition 6.4 (𝜶 -relaxed Fair Partition). Let𝑈 be a �nite set of elements
colored by a function 𝑐 : 𝑈 → [𝑘] for some 𝑘 ∈ ℕ>0 and let 0 < 𝛼 < 1. Then, a
partition 𝑆1 ∪𝑆2 ∪ . . .∪𝑆ℓ = 𝑈 is 𝛼-relaxed fair if and only if all sets 𝑆1, 𝑆2, . . . , 𝑆ℓ
are 𝛼-relaxed fair. J

𝛼-relaxed Fair Correlation Clustering
Input: Graph 𝐺 = (𝑉 , 𝐸), coloring 𝑐 : 𝑉 → [𝑘], 0 < 𝛼 < 1.
Task: Find a 𝛼-relaxed fair partition P of 𝑉 that minimizes

cost(P).

.

6.2 Hardness

The hardness result for exact fairness on paths, see Theorem 4.4, directly carries
over to the relaxed fairness setting. This is due to it only considering instances in
which there are exactly two vertices of each color. As any relaxed fair clustering
still requires at least one vertex of every color in each cluster, this means that
every relaxed clustering either consists of a single cluster or two clusters, each
with one vertex of every color. Thereby, relaxing fairness makes no di�erence in
these instances.
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I Corollary 6.5. Relaxed Fair Correlation Clusteringon paths is NP-hard,
even when limited to instances with exactly 2 vertices of each color. J

Our other hardness proofs for relaxed fairness are based on the notion that
we can use similar constructions as for exact fairness and additionally prove
that in these instances the minimum-cost solution has to be exactly fair and not
just relaxed fair. To this end, we require a lemma giving a lower bound on the
intra-cluster cost of clusterings.

I Lemma 6.6. Let 𝐺 = (𝑉 , 𝐸) be an 𝑛-vertex𝑚-edge graph and P a partition
of 𝑉 with an inter-cluster cost of 𝜒 . Then, the intra-cluster cost of P is at least
𝑛2

2 |P | −
𝑛
2 −𝑚 + 𝜒 . If |𝑆 | =

𝑛
|P | for all clusters 𝑆 ∈ P, then the intra-cluster cost of

P is𝜓 = 𝑛2

2 |P | −
𝑛
2 −𝑚 + 𝜒 . J

Proof. We �rst prove the lower bound. We employ the Cauchy-Schwarz In-
equality in the ℓ-dimensional Euclidean space. It states that for every ℓ ∈ ℕ,
𝑥1, 𝑥2, . . . , 𝑥ℓ , and 𝑦1, 𝑦2, . . . , 𝑦ℓ , we have(

ℓ∑︁
𝑖=1

𝑥𝑖𝑦𝑖

)2
≤

(
ℓ∑︁

𝑖=1
𝑥2𝑖

)
·
(

ℓ∑︁
𝑖=1

𝑦2𝑖

)
.

In particular, with 𝑦𝑖 = 1 for all 𝑖 ∈ [ℓ], we have(
ℓ∑︁

𝑖=1
𝑥𝑖

)2
≤ ℓ ·

ℓ∑︁
𝑖=1

𝑥2𝑖 .

Observe that we can write the intra-cluster cost𝜓 of P as

𝜓 =

(∑︁
𝑆 ∈P

|𝑆 | · ( |𝑆 | − 1)
2

)
− (𝑚 − 𝜒)

=
1
2

(∑︁
𝑆 ∈P
|𝑆 |2

)
−

(∑︁
𝑆 ∈P

|𝑆 |
2

)
−𝑚 + 𝜒

=
1
2

(∑︁
𝑆 ∈P
|𝑆 |2

)
− 𝑛

2 −𝑚 + 𝜒.
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By Cauchy-Schwarz, we have

∑︁
𝑆 ∈P
|𝑆 |2 ≥ 1

|P | ·
(∑︁
𝑆 ∈P
|𝑆 |

)2
=

𝑛2

|P | .

This bounds the intra-cluster cost from below by

𝜓 ≥ 𝑛2

2|P | −
𝑛

2 −𝑚 + 𝜒.

For the second statement, assume all clusters of P to be of size 𝑛
|P | . Then, there

are 1
2 ·

𝑛
|P | ·

(
𝑛
|P | − 1

)
pairs of vertices in each cluster. Thereby, we have

𝜓 = |P | · 12 ·
𝑛

|P | ·
(
𝑛

|P | − 1
)
− (𝑚 − 𝜒)

=
𝑛2

2|P | −
𝑛

2 −𝑚 + 𝜒.

�

We further show that no clustering with clusters of unequal size achieves the
lower bound given by Lemma 6.6.

I Lemma 6.7. Let 𝐺 = (𝑉 , 𝐸) be an 𝑛-vertex𝑚-edge graph and P a partition
of 𝑉 with an inter-cluster cost of 𝜒 such that there is a cluster 𝑆 ∈ P with
|𝑆 | = 𝑛

|P | + 𝑎 for some 𝑎 ≥ 0. Then, the intra-cluster cost of P is 𝜓 ≥ 𝑎2 |P |
2 |P |−2 +

𝑛2

2 |P | −
𝑛
2 −𝑚 + 𝜒 . J

Proof. If 𝑎 = 0, the statement is implied by Lemma 6.6. So, assume 𝑎 > 0. We
write the intra-cluster cost as

𝜓 =
1
2 ·

(
𝑛

|P | + 𝑎
)
·
(
𝑛

|P | + 𝑎 − 1
)
+𝜓rest

with𝜓rest being the intra-cluster cost incurred by P\{𝑆}. By applying Lemma 6.6
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on P \ {𝑆}, we have

𝜓 ≥ 1
2 ·

(
𝑛

|P | + 𝑎
)
·
(
𝑛

|P | + 𝑎 − 1
)
+

(
𝑛 − ( 𝑛

|P | + 𝑎)
)2

2( |P| − 1) −
𝑛 − ( 𝑛

|P | + 𝑎)
2 −𝑚 + 𝜒

=
𝑛2

2|P |2 +
𝑎𝑛

|P | +
𝑎2

2 −
𝑛

2|P | −
𝑎

2 +
𝑛2 − 2𝑛2/|P| − 2𝑎𝑛 + 𝑛2/|P|2 + 2𝑎 𝑛

|P | + 𝑎
2

2|P | − 2
− 𝑛

2 +
𝑛

2|P | +
𝑎

2 −𝑚 + 𝜒.

Bringing the �rst summands to a common denominator of 2|P | − 2 yields

𝜓 ≥
(
𝑛2( |P| − 1)
|P|2 + 𝑎𝑛(2|P | − 2)|P| + 𝑎2( |P| − 1) + 𝑛2 − 2𝑛2

|P | − 2𝑎𝑛 +
𝑛2

|P |2 +
2𝑎𝑛
|P | + 𝑎

2
)

/
(2|P | − 2) − 𝑛

2 −𝑚 + 𝜒

=

(
𝑛2 |P |
|P |2 +

2𝑎𝑛 |P |
|P | + 𝑎

2 |P | + 𝑛2 − 2𝑛2
|P | − 2𝑎𝑛

)/
(2|P | − 2) − 𝑛

2 −𝑚 + 𝜒

=

(
− 𝑛2

|P | + 𝑎
2 |P | + 𝑛2

)/
(2|P | − 2) − 𝑛

2 −𝑚 + 𝜒.

We then add 0 = − 𝑛2

2 |P | ·
2 |𝑃 |−2
2 |𝑃 |−2 +

𝑛2

2 |P | and obtain

𝜓 ≥
(
− 𝑛2

|P | + 𝑎
2 |P | + 𝑛2 − 𝑛2( |P| − 1)

|P|

)/
(2|P | − 2) + 𝑛2

2|P | −
𝑛

2 −𝑚 + 𝜒

=
𝑎2 |P |

2|P | − 2 +
𝑛2

2|P | −
𝑛

2 −𝑚 + 𝜒.

�

Observe that as |P | > 1 and 𝑎 ≠ 0 this means that such a clustering never
achieves the lower bound given by Lemma 6.6. In particular, this means that for
�xed inter-cluster costs in minimum-cost fair clusterings in forests all clusters
are of equal size. This way, we are able to transfer some hardness results obtained
for exact fairness to relaxed fairness.

I Theorem 6.8. For every choice of 0 < 𝑝1 ≤ 1
𝑐+1 ≤ 𝑞1 < 1 and 0 < 𝑝2 ≤ 𝑐

𝑐+1 ≤
𝑞2 < 1, Relaxed Fair Correlation Clusteringon forests with two colors in

67



Chapter 6 Relaxed Fairness

a ratio of 1 : 𝑐 is NP-hard. It remains NP-hard when arbitrarily restricting the
shape of the trees in the forest as long as for every 𝑎 ∈ ℕ it is possible to form a
tree with 𝑎 vertices. J

Proof. We reduce from 3-Partition. Recall that there are 3𝑝 values𝑎1, 𝑎2, . . . , 𝑎3𝑝
and the task is to partition them in triplets that each sum to 𝐵. We construct a
forest 𝐹 as follows. For every 𝑎𝑖 we construct an arbitrary tree of 𝑎𝑖 red vertices.
Further, we let there be 𝑝 isolated blue vertices. Note that the ratio between blue
and red vertices is 1 : 𝐵. We now show that there is a relaxed fair clustering P
such that

cost(P) ≤ 𝑝 · 𝐵(𝐵 + 1)2 − 𝑝 (𝐵 − 3)

if and only if the given instance is a yes-instance for 3-Partition.
If we have a yes-instance of 3-Partition, then there is a partition of the set

of trees into 𝑝 clusters of size 𝐵. By assigning the blue vertices arbitrarily to one
unique cluster each, we hence obtain an exactly fair partition, which is thus also
relaxed fair. As there are no edges between the clusters and each cluster consists
of 𝐵 + 1 vertices and 𝐵 − 3 edges, this partition has a cost of 𝑝 · 𝐵 (𝐵+1)2 − 𝑝 (𝐵 − 3).
For the other direction, assume there is a relaxed fair clustering P such that

cost(P) ≤ 𝑝 · 𝐵 (𝐵+1)2 − 𝑝 (𝐵 − 3). We prove that this clustering has to be not just
relaxed fair but exactly fair. Note that |𝑉 | = 𝑝 (𝐵 + 1) and |𝐸 | = 𝑝 (𝐵 − 3). As the
inter-cluster cost 𝜒 is non-negative, by Lemma 6.6 the intra-cluster cost has a
lower bound of

𝜓 ≥ (𝑝 (𝐵 + 1))
2

2|P | − 𝑝 (𝐵 + 1)
2 − 𝑝 (𝐵 − 3).

As there are exactly 𝑝 blue vertices and the relaxed fairness constraint requires
putting at least one blue vertex in each cluster, we have |P | ≤ 𝑝 . Hence,

𝜓 ≥ 𝑝 (𝐵 + 1)2
2 − 𝑝 (𝐵 + 1)

2 − 𝑝 (𝐵 − 3)

= 𝑝 · 𝐵(𝐵 + 1)2 − 𝑝 (𝐵 − 3)

≥ cost(P).

This implies that the inter-cluster cost of P is 0 and |P | = 𝑝 . Lemma 6.7 then
gives that all clusters in P consist of exactly 𝐵 + 1 vertices. As each of the 𝑝
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clusters has at least 1 blue vertex and there are 𝑝 blue vertices in total, we know
that each cluster consists of 1 blue and 𝐵 red vertices. Since all trees are of size
greater than 𝐵

4 and less than 𝐵
2 , this implies each cluster consists of exactly one

blue vertex and exactly three uncut trees with a total of 𝐵 vertices. This way, such
a clustering gives a solution to 3-Partition, so our instance is a yes-instance.
As the construction of the graph only takes polynomial time in the instance

size, this implies our hardness result. �

Indeed, we note that we obtain our hardness result for any fairness constraint
that allows the exactly fair solution and enforces at least 1 vertex of each color
in every cluster. The same holds when transferring our hardness proof for trees
of diameter 4.

I Theorem 6.9. For every choice of 0 < 𝑝1 ≤ 1
𝑐+1 ≤ 𝑞1 < 1 and 0 < 𝑝2 ≤ 𝑐

𝑐+1 ≤
𝑞2 < 1, Relaxed Fair Correlation Clusteringon trees with diameter 4 and
two colors in a ratio of 1 : 𝑐 is NP-hard. J

Proof. We reduce from 3-Partition. We assume 𝐵2 > 16𝑝 . We can do so as we
obtain an equivalent instance of 3-Partition when multiplying all 𝑎𝑖 and 𝐵 by
the same factor, here some value in O(𝑝). For every 𝑎𝑖 we construct a star of 𝑎𝑖
red vertices. Further, we let there be a star of 𝑝 blue vertices. We obtain a tree of
diameter 4 by connecting the center 𝑣 of the blue star to all the centers of the red
stars. Note that the ratio between blue and red vertices is 1 : 𝐵. We now show
that there is a relaxed fair clustering P such that

cost(P) ≤ 𝑝𝐵2 − 𝑝𝐵
2 + 7𝑝 − 7

if and only if the given instance is a yes-instance for 3-Partition.
If we have a yes-instance of 3-Partition, then there is a partition of the set

of stars into 𝑝 clusters of size 𝐵, each consisting of three stars. By assigning the
blue vertices arbitrarily to one unique cluster each, we hence obtain an exact fair
partition, which is thus also relaxed fair. We �rst compute the inter-cluster cost.
We call an edge blue or red if it connects two blue or red vertices, respectively.
We call an edge blue-red if it connects a blue and a red vertex. All 𝑝 − 1 blue
edges are cut. Further, all edges between 𝑣 (the center of the blue star) and red
vertices are cut except for the three stars to which 𝑣 is assigned. This causes
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3𝑝 − 3 more cuts, so the inter-cluster cost is

𝜒 = 4𝑝 − 4.

Each cluster consists of𝐵+1 vertices and𝐵−3 edges, except for the one containing
𝑣 which has 𝐵 edges. The intra-cluster cost is hence

𝜓 = 𝑝

(
𝐵(𝐵 + 1)

2 − 𝐵 + 3
)
− 3 = 𝑝𝐵2 − 𝑝𝐵

2 + 3𝑝 − 3.

Combining the intra- and inter-cluster costs yields the desired cost of

cost(P) = 𝜒 +𝜓

=
𝑝𝐵2 − 𝑝𝐵

2 + 7𝑝 − 7.

For the other direction, assume there is a relaxed fair clustering P such that
cost(P) ≤ 𝑝𝐵2−𝑝𝐵

2 + 7𝑝 − 7. We prove that this clustering has to be not just
relaxed fair but exactly fair.

To this end, we �rst show |P | = 𝑝 . Because each cluster requires one of the
𝑝 blue vertices, we have |P | ≤ 𝑝 . Now, let 𝜒 denote the inter-cluster cost of P.
Note that |𝑉 | = 𝑝 (𝐵 + 1) and |𝐸 | = 𝑝 (𝐵 − 3) + 3𝑝 + 𝑝 − 1 = 𝑝 (𝐵 + 1) − 1. Then,
by Lemma 6.6, we have

𝜓 ≥ (𝑝 (𝐵 + 1))
2

2|P | − 𝑝 (𝐵 + 1)
2 − (𝑝 (𝐵 + 1) − 1) + 𝜒

=
𝑝2𝐵2 + 2𝑝2𝐵 + 𝑝2

2|P | − 3𝑝 (𝐵 + 1)
2 + 1 + 𝜒. (6.1)

Note that the lower bound is decreasing in |P |. If we had |P | ≤ 𝑝 − 1, then

𝜓 ≥ 𝑝2𝐵2 + 2𝑝2𝐵 + 𝑝2
2(𝑝 − 1) − 3𝑝 (𝐵 + 1)

2 + 1 + 𝜒.

As the inter-cluster cost 𝜒 is non-negative, we would thereby get

cost(P) ≥ 𝑝2𝐵2 + 2𝑝2𝐵 + 𝑝2
2(𝑝 − 1) − 3𝑝 (𝐵 + 1)

2 + 1 + 𝜒
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≥ 𝑝2𝐵2 + 2𝑝2𝐵 + 𝑝2
2(𝑝 − 1) − 3𝑝2𝐵 − 3𝑝𝐵 + 3𝑝2 − 3𝑝

2(𝑝 − 1) + 2𝑝 − 2
2(𝑝 − 1)

≥ 𝑝2𝐵2 − 𝑝2𝐵 − 2𝑝2 + 3𝑝𝐵 + 5𝑝 − 2
2(𝑝 − 1) .

However, we know

cost(P) ≤ 𝑝𝐵2 − 𝑝𝐵
2 + 7𝑝 − 7

=
𝑝2𝐵2 − 𝑝𝐵2 − 𝑝2𝐵 + 𝑝𝐵 + 14𝑝2 − 14𝑝 − 14𝑝 + 14

2(𝑝 − 1)

=
𝑝2𝐵2 − 𝑝𝐵2 − 𝑝2𝐵 + 𝑝𝐵 + 14𝑝2 − 28𝑝 + 14

2(𝑝 − 1) .

Hence, |P | ≤ 𝑝 − 1 holds only if

−2𝑝2 + 3𝑝𝐵 + 5𝑝 − 2 ≤ −𝑝𝐵2 + 𝑝𝐵 + 14𝑝2 − 28𝑝 + 14

which is equivalent to

𝑝𝐵2 − 16𝑝2 + 2𝑝𝐵 + 33𝑝 − 16 ≤ 0.

As we assume 𝐵2 > 16𝑝 , this is always false, so |P | = 𝑝 .

Plugging this into Equation (6.1) yields

𝜓 ≥ 𝑝𝐵2 + 2𝑝𝐵 + 𝑝
2 − 3𝑝 (𝐵 + 1)

2 + 1 + 𝜒

=
𝑝𝐵2 − 𝑝𝐵

2 − 𝑝 + 1 + 𝜒.

As cost(P) = 𝜒 +𝜓 , we have

𝑝𝐵2 − 𝑝𝐵
2 − 𝑝 + 1 + 2𝜒 ≤ cost(P) ≤ 𝑝𝐵2 − 𝑝𝐵

2 + 7𝑝 − 7, (6.2)

which yields
𝜒 ≤ 4𝑝 − 4.
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As no two blue vertices are placed in the same cluster, the cuts between blue
vertices incur an inter-cluster cost of exactly 𝑝 − 1. To estimate the number of
cut blue-red edges, let 𝑎 denote the number of red center vertices placed in the
cluster of the blue center vertex 𝑣. Then, there are 3𝑝 − 𝑎 of the 3𝑝 red edges cut.
Let 𝜒𝑟 denote the number of cut red edges. Note that

𝜒 = 𝑝 − 1 + 3𝑝 − 𝑎 + 𝜒𝑟
= 4𝑝 − 𝑎 − 1 + 𝜒𝑟 .

We show that 𝑎 = 3. As 𝜒 ≤ 4𝑝 − 4 we have 𝜒𝑟 − 𝑎 ≤ −3. Hence, 𝑎 ≥ 3. Next,
we bound 𝜒𝑟 by 𝑎. Let 𝛿 ∈ ℤ be such that 𝐵 + 𝛿 is the number of red vertices in
the cluster containing the blue center vertex 𝑣. Then,

𝜒𝑟 ≥
𝑎𝐵

4 − (𝐵 + 𝛿 − 𝑎)

=
(𝑎 − 4)𝐵

4 − 𝛿 + 𝑎

as each red center vertex is connected to at least 𝐵
4 red leaves but in the cluster

of 𝑣 there is only space for 𝐵 + 𝛿 − 𝑎 of them. First, assume 𝛿 ≤ 0. Then,

𝜒𝑟 − 𝑎 ≥
(𝑎 − 4)𝐵

4 .

As we required 𝜒𝑟 − 𝑎 ≤ −3, this gives 𝑎 < 4. Now assume 𝛿 ≥ 1. Then, by
Lemma 6.7, we have

𝜓 ≥ 𝛿2 |P |
2|P | − 2 +

(𝑝 (𝐵 + 1))2

2|P | − 𝑝 (𝐵 + 1)
2 −𝑚 + 𝜒

=
𝛿2𝑝

2𝑝 − 2 +
𝑝𝐵2 + 2𝑝𝐵 + 𝑝

2 − 3𝑝 (𝐵 + 1)
2 + 𝜒 + 1

as 𝑝 = |P | and𝑚 = 𝑛 − 1 = 𝑝 (𝐵 + 1) − 1. This yields

𝛿2𝑝

2𝑝 − 2 +
𝑝𝐵2 − 𝑝𝐵

2 − 𝑝 + 2𝜒 + 1 ≤ cost(P) ≤ 𝑝𝐵2 − 𝑝𝐵
2 + 7𝑝 − 7.
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so 𝜒 ≤ 4𝑝 − 4 − 𝛿2𝑝
4𝑝−4 . Thereby,

𝜒𝑟 − 𝑎 ≤ −3 −
𝛿2𝑝

4𝑝 − 4 ,

which implies

(𝑎 − 4)𝐵
4 − 𝛿 ≤ −3 − 𝛿2𝑝

4𝑝 − 4

so

(𝑎 − 4)𝐵
4 ≤ −3 − 𝛿2𝑝 − 𝛿 (4𝑝 − 4)

4𝑝 − 4

and we have

(𝑎 − 4)𝐵
4 ≤ −2 − 𝑝

4𝑝 − 4 ,

by noting that the right-hand side is decreasing in 𝛿 for 𝛿 ≥ 1 and plugging in
𝛿 = 1. Hence, here also 𝑎 < 4. Thus, we have proven 𝑎 = 3, which also gives
𝜒𝑟 = 0 and 𝜒 = 4𝑝 − 4. So, not only do we have that cost(P) ≤ 𝑝𝐵2−𝑝𝐵

2 + 7𝑝 − 7
but cost(P) = 𝑝𝐵2−𝑝𝐵

2 + 7𝑝 − 7. In Equation (6.2) we see that for 𝜒 = 4𝑝 − 4 this
hits exactly the lower bound established by Lemma 6.6. Hence, by Lemma 6.7,
this implies that all clusters consist of exactly 1 blue and 𝐵 red vertices and the
clustering is exactly fair.

As 𝜒𝑟 = 0, all red stars are complete. Given that every red star is of size at least
𝐵
4 and at most 𝐵

2 , this means each cluster consists of exactly three complete red
stars with a total number of 𝐵 red vertices each and hence yields a solution to the
3-Partition instance. As the construction of the graph only takes polynomial
time in the instance size and the constructed tree is of diameter 4, this implies
our hardness result. �

In the hardness proofs in this section, we argued that for the constructed
instances clusterings that are relaxed fair, but not exactly fair would have a
higher cost than exactly fair ones. However, this is not generally true. It does not
even hold when limited to paths and two colors in a 1 : 1 ratio, as illustrated in
Figure 6.1. Because of this, we have little hope to provide a general scheme that

73



Chapter 6 Relaxed Fairness

Figure 6.1: Exemplary path with a color ratio of 1 : 1 where there is a 2
3 -relaxed fair

clustering of cost 3 (marked by the orange lines) and the cheapest exactly fair clustering
costs 4.

transforms all our hardness proofs from Chapter 4 to the relaxed fairness setting
at once. Thus, we have to individually prove the hardness results in this setting
as done for Theorems 6.8 and 6.9. We are optimistic that the other hardness
results still hold in this setting, especially as the construction for Theorem 4.3 is
similar to the ones employed in this section. We leave the task of transferring
these results to future work.

6.3 Algorithm

We are also able to transfer the algorithmic result of Theorem 5.6 to a speci�c
𝛼-relaxed fairness setting. We exploit that the algorithm does not really depend
on exact fairness but on the fact that there is an upper bound on the cluster size,
which allows us to compute respective splittings. In the following, we show that
such upper bounds also exist for 𝛼-relaxed fairness with two colors in a ratio of
1 : 1 and adapt the algorithm accordingly. To compute the upper bound, we �rst
prove Lemma 6.10, which analogously to Lemma 3.2 bounds the size of clusters
but in uncolored forests. Using this lemma, with Lemma 6.11, we then prove an
upper bound on the cluster size in minimum-cost 𝛼-relaxed fair clusterings for
forests with two colors in ratio 1 : 1.

I Lemma 6.10. Let 𝐹 = (𝑉 , 𝐸) be an 𝑛-vertex𝑚-edge forest and let P1 = {𝑉 }.
Further, let 𝑆 ⊂ 𝑉 with 4 < |𝑆 | ≤ 𝑛 − 3 and let P2 = {𝑆,𝑉 \ 𝑆}. Then, cost(P1) >
cost(P2). J

Proof. We have cost(P1) = 𝑛 (𝑛−1)
2 −𝑚 as there are 𝑛 (𝑛−1)

2 pairs of vertices and
𝑚 edges, none of which is cut by P1. In the worst case, P2 cuts all of the at most
𝑛 − 1 edges in the forest. It has one cluster of size |𝑆 | and one of size 𝑛 − |𝑆 |, so

cost(P2) ≤ 𝑛 − 1 + (𝑛 − |𝑆 |) (𝑛 − |𝑆 | − 1)2 + |𝑆 | ( |𝑆 | − 1)2 − (𝑚 − 𝑛 − 1)
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=
𝑛(𝑛 − 1)

2 + −2𝑛 |𝑆 | + |𝑆 |
2 + |𝑆 |

2 + |𝑆 |
2 − |𝑆 |
2 −𝑚 + 2𝑛 − 2

=
𝑛(𝑛 − 1)

2 − 𝑛 |𝑆 | + |𝑆 |2 −𝑚 + 2𝑛 − 2.

Then, we have

cost(P1) − cost(P2) ≥ 𝑛 |𝑆 | − |𝑆 |2 − 2𝑛 + 2 ≥ (|𝑆 | − 2)𝑛 − |𝑆 |2 + 2.

Note that the bound is increasing in 𝑛. As we have, 𝑛 ≥ |𝑆 | + 3, this gives

cost(P1) − cost(P2) ≥ (|𝑆 | − 2) ( |𝑆 | + 3) − |𝑆 |2 + 2
= |𝑆 | − 4
> 0.

as we assume |𝑆 | > 4. This completes our proof. �

With the knowledge of when it is cheaper to split a cluster, we now prove that
also for 𝛼-relaxed Fair Correlation Clustering there is an upper bound on
the cluster size in minimum-cost solutions in forests. The idea is to assume a
cluster of a certain size and then argue that we can split it in a way that reduces
the cost and keeps 𝛼-relaxed fairness.
I Lemma 6.11. Let 𝐹 be a forest with two colors in a ratio of 1 : 1. Let
0 < 𝛼 < 1 and let 𝛼 ∈ ℕ be minimal such that 2𝛼

𝛼
∈ ℕ and 2𝛼

𝛼
> 4. Then, if

P is a minimum-cost 𝛼-relaxed fair clustering on 𝐹 , we have |𝑆 | < 4 𝛼
𝛼2 for all

𝑆 ∈ P. J

Proof. Assume otherwise, i.e., there is a cluster 𝑆 with |𝑆 | ≥ 4 𝛼
𝛼2 . Let 𝑏 and 𝑟

denote the number of blue and red vertices in 𝑆 , respectively, and assume w.l.o.g.
that 𝑏 ≤ 𝑟 . Because |𝑆 | ≥ 4 𝛼

𝛼2 we have 𝛼
2 ≥

2𝛼
𝛼 |𝑆 | . Due to the 𝛼-relaxed fairness

constraint, this yields 𝑏
|𝑆 | ≥

2𝛼
𝛼 |𝑆 | and thereby 𝑟 ≥ 𝑏 ≥ 2𝛼

𝛼
.

Then, consider the clustering obtained by splitting o� 𝛼 blue and 2𝛼
𝛼
− 𝛼 red

vertices of from 𝑆 into a new cluster 𝑆1 and let 𝑆2 = 𝑆 \ 𝑆1. Note that we choose
𝛼 in a way that this is possible, i.e., that both sizes are natural numbers. As the
cost induced by all edges with at most one endpoint in 𝑆 remains the same and
the cost induced by the edges with both endpoints in 𝑆 decreases, as shown in
Lemma 6.10, the new clustering is cheaper than P. As we now prove that the
new clustering is also 𝛼-relaxed Fair, this contradicts the optimality of P.
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We �rst prove the 𝛼-relaxed fairness of 𝑆1. Regarding the blue vertices, we
have a portion of 𝛼

𝛼+ 2𝛼̂
𝛼
−𝛼 = 𝛼

2 in 𝑆1, which �ts the 𝛼-relaxed fairness constraint.

Regarding the red vertices, we have
2𝛼̂
𝛼
−𝛼

𝛼+ 2𝛼̂
𝛼
−𝛼 = 1 − 𝛼

2 , which �ts the 𝛼-relaxed

fairness constraint as 0 < 𝛼 < 1, so 1 − 𝛼
2 ≥

𝛼
2 and 1 − 𝛼

2 = 2𝛼−𝛼2

2𝛼 ≤ 1
2𝛼 .

Now we prove the 𝛼-relaxed fairness of 𝑆2. The portion of blue vertices in 𝑆2
is 𝑏−𝛼

𝑟+𝑏− 2𝛼̂
𝛼

, so we have to show that this value lays between 𝛼
2 and 1

2𝛼 . We start

with showing the value is at least 𝛼
2 by proving 𝛼

2 ·
(
𝑟 + 𝑏 − 2𝛼

𝛼

)
≤ 𝑏 − 𝛼 . As 𝑆 is

𝛼-relaxed fair, we have 𝑟 ≤ 2𝑏
𝛼
− 𝑏 because otherwise 𝑏

𝑏+𝑟 < 𝑏

𝑏+ 2𝑏
𝛼
−𝑏 = 𝛼

2 . Hence,
we have

𝛼

2 ·
(
𝑟 + 𝑏 − 2𝛼

𝛼

)
≤ 𝛼

2 ·
(
2𝑏
𝛼
− 𝑏 + 𝑏 − 2𝛼

𝛼

)
= 𝑏 − 𝛼.

Similarly, we show the ratio is at most 1
2𝛼 by proving the equivalent statement

of 2𝛼 (𝑏 − 𝛼) ≤ 𝑟 + 𝑏 − 2𝛼
𝛼
. As we assume 𝑟 ≥ 𝑏, we know

𝑟 + 𝑏 − 2𝛼
𝛼
≥ 2𝑏 − 2𝛼

𝛼
≥ 2

(
𝑏 − 𝛼

𝛼
−

(
(1 − 𝛼)𝑏 + (𝛼2 − 1)𝛼

𝛼

))
= 2𝛼 (𝑏 − 𝛼) .

The second step holds because we assume 𝑏 ≥ 2𝛼
𝛼
≥ 𝛼𝛼+𝛼

𝛼
=

𝛼̂
𝛼
−𝛼𝛼
1−𝛼 , so we have

(1 − 𝛼)𝑏 + (𝛼2 − 1) 𝛼
𝛼
≥ 0. Now, we regard the portion of red vertices in 𝑆2. It is

𝑟−( 2𝛼̂𝛼 −𝛼)
𝑟+𝑏− 2𝛼̂

𝛼

. We know

𝑟 ≥ 2𝛼
𝛼

which is equivalent to

(1 − 𝛼)𝑟 ≥ 2𝛼
𝛼
− 2𝛼

and thereby gives

𝑟 −
(
2𝛼
𝛼
+ 𝛼

)
≥ 𝛼𝑟 − 𝛼.
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As 𝑟 ≥ 𝑏, this implies

𝑟 −
(
2𝛼
𝛼
+ 𝛼

)
≥ 𝛼

2 ·
(
𝑟 + 𝑏 − 2𝛼

𝛼

)
,

so we have

𝑟 −
(
2𝛼
𝛼
− 𝛼

)
𝑟 + 𝑏 − 2𝛼

𝛼

≥ 𝛼

2 .

It remains to prove that the ratio is at most 1
2𝛼 . We have

𝑟 ≥ 2𝛼
𝛼
− 𝛼,

which is equivalent to(
2𝛼 − 1 − 𝛼

2 − 𝛼

)
𝑟 ≤ 4𝛼 − 2𝛼𝛼 − 2𝛼

𝛼
.

Note that 2𝛼 − 1− 𝛼
2−𝛼 = − 2𝛼2−4𝛼+2

2−𝛼 = − 2(𝛼−1)2
2−𝛼 < 0. Further, note that 𝑟 ≤ 2𝑏

𝛼
−𝑏

gives 𝑏 ≥ 𝑟
2
𝛼
−1 = 𝛼𝑟

2−𝛼 . With this, the above inequality implies

(2𝛼 − 1)𝑟 − 𝑏 ≤ 4𝛼 − 2𝛼𝛼 − 2𝛼
𝛼
,

which is equivalent to

2𝛼 ·
(
𝑟 −

(
2𝛼
𝛼
− 𝛼

))
≤ 𝑟 + 𝑏 − 2𝛼

𝛼

and thereby yields

𝑟 −
(
2𝛼
𝛼
− 𝛼

)
𝑟 + 𝑏 − 2𝛼

𝛼

≤ 1
2𝛼 .

With this, we have proven that both 𝑆1 and 𝑆2 are𝛼-relaxed fair. As splitting 𝑆 into
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𝑆1 and 𝑆2 remains 𝛼-relaxed fair and it of cheaper cost, this contradicts 𝑆 being
in any minimum-cost 𝛼-relaxed fair clustering and completes our proof. �

We are now able to adapt the algorithm presented in Section 5.3 to solve
Relaxed Fair Correlation Clusteringon forests with two colors in a ratio of
1 : 1. While the original algorithm exploited that any optimum solution has fair
clusters of minimum size, with Lemma 6.11 we are able to bound the clusters
also in the 𝛼-relaxed setting.

Like the original algorithm, we �rst create a list of possible splittings. However,
these splittings can contain not only components with one or two vertices, as we
know would su�ce for the exact fairness with two colors in a 1 : 1 ratio, but each
component may contain up to 4 𝛼

𝛼2 vertices with 𝛼 being the smallest natural
number such that 2𝛼

𝛼
∈ ℕ and 2𝛼

𝛼
> 4 as de�ned in Lemma 6.11. In the following,

we set 𝑑 = 4 𝛼
𝛼2 to refer to this maximum size of a cluster. In the second phase, it

checks which of these splitting can be merged into an 𝛼-relaxed fair clustering
and among these returns the one of minimum cost.

Spli�ing the forest. To get the optimal way to obtain a splitting of each
possible coloring, we simply apply Lemma 5.8 and set 𝑑1 = 𝑑2 = 𝑑 as we
know the optimum solution has to be among clusters with no more than 𝑑

vertices of either color. This phase takes time in O
(
𝑛2(𝑑+1)

2+2𝑑+2 ·
(
(𝑑 + 1)2

)2𝑑 )
=

O
(
𝑛2𝑑

2+6𝑑+4 · (𝑑 + 1)4𝑑
)
.

Assembling a fair clustering. In the second phase, we have to �nd a splitting
in 𝐷 ∅𝑟 that can be transformed into an 𝛼-relaxed fair clustering and yields the
minimum Correlation Clustering cost. As we tracked the minimum inter-
cluster cost for each possible partition coloring of splittings in the �rst phase,
we do not have to consider cutting more edges in this phase, because for the
resulting splittings coloring we already have tracked a minimum inter-cluster
cost. Hence, the only questions are whether a splitting is assemblable, i.e.,
whether its components can be merged such that it becomes an 𝛼-relaxed fair
clustering, and, if so, what the cheapest way to do so is.

Regarding the �rst question, observe that the assemblability only depends on
the partition coloring of the splitting. Hence, it does not hurt that in the �rst
phase we tracked only all possible partition colorings of splittings and not all
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possible splittings themselves. First, note that the coloring of a splitting may
itself yield an 𝛼-relaxed fair clustering. We mark all such partition colorings as
assemblable, taking time in O

(
𝑛𝑑

2+1
)
. For the remaining partition colorings, we

employ the following dynamic program.
Recall that the size of a partition coloring refers to the number of set colorings

it contains (not necessarily the number of di�erent set colorings). We decide
assemblability for all possible partition colorings from smallest to largest. Note
that each partition coloring is of size at least

⌈
𝑛
𝑑

⌉
. If it is of size exactly

⌈
𝑛
𝑑

⌉
, then

there are no two set colorings that can be merged and still be of size at most 𝑑 ,
as all other set colorings are of size at most 𝑑 . Hence, in this case, a splitting is
assemblable if and only if it is already an 𝛼-relaxed fair clustering so we have
already marked the partition colorings correctly. Now, assume that we decided
assemblability for all partition colorings of size 𝑖 ≥

⌈
𝑛
𝑑

⌉
. We take an arbitrary

partition coloring𝐶 of size 𝑖 +1, which is not yet marked as assemblable. Then, it
is assemblable if and only if at least two of its set colorings are merged together
to form an 𝛼-relaxed fair clustering. In particular, it is assemblable if and only
if there are two set colorings 𝐶1,𝐶2 in 𝐶 such that the coloring 𝐶 ′ obtained by
removing the set colorings 𝐶1,𝐶2 from 𝐶 and adding the set coloring of the
combined coloring of 𝐶1 and 𝐶2 is assemblable. Note that 𝐶 ′ is of size 𝑖 . Given
all assemblable partition colorings of size 𝑖 , we therefore �nd all assemblable
partition colorings of size 𝑖 + 1 by for each partition coloring of size 𝑖 trying each
possible way to split one of its set colorings into two. As there are at most 𝑖𝑑2

partition colorings of size 𝑖 , this takes time in O
(
𝑖𝑑

2 · 𝑖 · 2𝑑
)
. The whole dynamic

program then takes time in O
(
𝑛𝑑

2+1 · 2𝑑
)
⊆ O

(
𝑛𝑑

2+𝑑+1
)
.

It remains to answer how we choose the assembling yielding the minimum
cost. In the algorithm for exact fairness, we do not have to worry about that as
there we could assume that the Correlation Clustering cost only depends
on the inter-cluster cost. Here, this is not the case as the 𝛼-relaxed fairness
allows clusters of varying size, so Lemma 3.1 does not apply. However, recall
that we can write the Correlation Clustering cost of some partition P of
the vertices as

∑
𝑆 ∈P

|𝑆 | ( |𝑆−1 |)
2 + 2𝜒 , where 𝜒 is the inter-cluster cost. The cost

hence only depends on the inter-cluster cost and the sizes of the clusters, which
in turn depends on the partition coloring. To compute the cost of a splitting,
we take the inter-cluster cost computed in the �rst phase for 𝜒 . Once more,
we neglect decreasing inter-cluster cost due to the merging of clusters as the
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resulting splitting is also considered in the array produced in the �rst phase.
By an argument based on the Cauchy-Schwarz Inequality, we see that merging
clusters only increases the value of

∑
𝑆 ∈P

|𝑆 | ( |𝑆−1 |)
2 as we have fewer but larger

squares. Hence, the cheapest cost obtainable from a splitting which is itself
𝛼-relaxed fair is just this very clustering. If a splitting is assemblable but not
𝛼-relaxed fair itself, the sum is the minimum among all the values of the sums
of 𝛼-relaxed fair splittings it can be merged into. This value is easily computed
by not only passing down assemblability but also the value of this sum in the
dynamic program described above and taking the minimum if there are multiple
options for a splitting. This does not change the running time asymptotically
and the running time of the second phase is dominated by the one of the �rst
phase.
The complete algorithm hence runs in time in O

(
𝑛2𝑑

2+6𝑑+4 · (𝑑 + 1)4𝑑
)
.

I Theorem 6.12. Let 𝐹 be an 𝑛-vertex forest in which the vertices are colored
with two colors in a ratio of 1 : 1. Then 𝛼-relaxed Fair Correlation Cluster-
ing on 𝐹 can be solved in time in O

(
𝑛2𝑑

2+6𝑑+4 · (𝑑 + 1)4𝑑
)
, where 𝑑 = 4 𝛼

𝛼2 and
𝛼 ∈ ℕ is minimal such that 2𝛼

𝛼
∈ ℕ and 2𝛼

𝛼
> 4. J

We are con�dent that Lemma 6.11 can be generalized such that for an arbitrary
number of colors in arbitrary ratios the maximum cluster size is bounded by
some function in 𝛼 and the color ratio. Given the complexity of this lemma
for the 1 : 1 case, we leave this task open to future work. If such a bound is
proven, then the algorithmic approach employed in Theorem 6.12 is applicable
to arbitrarily colored forests. Similarly, bounds on the cluster size in the more
general relaxed fair clusterings can be proven. As an intermediate solution,
we note that for Relaxed Fair Correlation Clusteringwe can employ the
approach used for 𝛼-relaxed Fair Correlation Clustering by setting 𝛼 large
enough to contain all allowed solutions and �ltering out solutions that do not
match the relaxed fairness constraint in the assembling phase. We do not give
this procedure explicitly in this thesis as we suspect for these cases it is more
promising to calculate the precise upper bound on the maximum cluster size and
perform the algorithm accordingly instead of reducing to the 𝛼-relaxed variant.
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7
Approximating Fair Cor-

relation Clusterings

So far, we have concentrated on �nding an optimal solution to Fair Correla-
tion Clustering in various instances. Approximation algorithms that do not
necessarily �nd an optimum but near-optimum solutions e�ciently are often
used as a remedy for hard problems, for example, the 2.06-approximation to
(unfair) Correlation Clustering [Cha+15]. In this chapter, we �nd that just
taking any fair clustering is a quite close approximation and the approximation
becomes even closer to the optimum if the minimum size of any fair cluster, as
given by the color ratio, increases.
Formally, a problem is an optimization problem if for every instance 𝐼 there

is a set of permissible solutions 𝑆 (𝐼 ) and an objective function𝑚 : 𝑆 (𝐼 ) → ℝ>0
assigning a score to each solution. Then, some 𝑆 ∈ 𝑆 (𝐼 ) is an optimal solution if
it has the highest or lowest score among all permissible solutions, depending on
the problem de�nition. We call the score of this solution𝑚∗(𝐼 ). For example, for
Fair Correlation Clustering, the instance is given by a graph with colored
vertices, every fair clustering of the vertices is a permissible solution, the score
is the Correlation Clustering cost, and the objective is to minimize this cost
2. An 𝛼-approximation an optimization problem is an algorithm that, for each
instance 𝐼 , outputs a permissible solution 𝑆 ∈ 𝑆 (𝐼 ) such that 1

𝛼
≤ 𝑚 (𝑆)

𝑚∗(𝐼 ) ≤ 𝛼 . For
Fair Correlation Clustering in particular, this means the algorithm outputs
a fair clustering with a cost of at most 𝛼 times the minimum clustering cost.
APX (abbreviation of approximable) is the class of problems that admit an

𝛼-approximation with 𝛼 ∈ O(1). A PTAS, a polynomial-time approximation
scheme, is an algorithm that for each optimization problem instance as well as
parameter 𝜀 > 0 computes a (1 + 𝜀)-approximation for a minimization problem
or a (1 − 𝜀)-approximation for a maximization problem in time in O

(
𝑛𝑓 (𝜀) ) , for

some computable function 𝑓 depending only on 𝜀. We use the name PTAS also
to refer to the class of optimization problems admitting a PTAS. An optimization

2 We note that the cost is possibly 0, which contradicts the de�nition𝑚 : 𝑆 (𝐼 ) → ℝ>0. However,
every 0-cost clustering simply consists of all maximal-sized connected components in the
graph. In this chapter, we exclude these trivial instances.
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problem 𝐿 is called APX-hard if every problem in APX has a PTAS-reduction
to 𝐿, i.e., a PTAS for 𝐿 implies there is a PTAS for every problem in APX. If 𝐿
is additionally in APX itself, 𝐿 is called APX-complete. By de�nition, we have
PTAS ⊆ APX. Further, PTAS ≠ APX unless P = NP.

We �nd that taking any fair clustering of a forest yields a good approximation.

I Theorem 7.1. Let 𝐹 be an 𝑛-vertex 𝑚-edge forest with 𝑘 ≥ 2 colors in a
ratio of 𝑐1 : 𝑐2 : . . . : 𝑐𝑘 and 𝑑 =

∑𝑘
𝑖=1 𝑐𝑖 ≥ 4. Then, there is a (𝑑

2−𝑑)𝑛+2𝑑𝑚
(𝑑2−5𝑑+4)𝑛+2𝑑𝑚 -

approximation for Fair Correlation Clustering on 𝐹 computable in time in
O(𝑛). J

Proof. By �rst sorting the vertices by color and then iteratively adding the next
𝑐𝑖 vertices of each color 𝑖 to the next cluster, we obtain a fair clustering P with
clusters of size 𝑑 in linear time. In the worst-case, P cuts all𝑚 edges. Hence, by
Lemma 3.1, we have

cost(P) ≤ (𝑑 − 1)𝑛2 −𝑚 + 2𝑚

=
(𝑑 − 1)𝑛

2 +𝑚.

We compare this cost to the one of a minimum-cost fair clustering P∗. By
Lemma 3.2, P∗ to consist of clusters of size 𝑑 . Each of the 𝑛

𝑑
clusters contains at

most 𝑑 − 1 edges due to the forest structure. Hence, at most 𝑛
𝑑
· (𝑑 − 1) edges are

placed inside a cluster. Then, for the inter-cluster cost, we have

𝜒 ≥ 𝑚 − 𝑛

𝑑
· (𝑑 − 1) = 𝑛

𝑑
− 𝑛 +𝑚.

Then, Lemma 3.1 gives

cost(P∗) ≥ (𝑑 − 1)𝑛2 −𝑚 + 2
(𝑛
𝑑
− 𝑛 +𝑚

)
=
(𝑑 − 5)𝑛

2 + 2𝑛
𝑑
+𝑚.

Thereby, P yields an 𝛼-approximation to Fair Correlation Clustering, where

𝛼 =

(
(𝑑 − 1)𝑛

2 +𝑚
)/ (
(𝑑 − 5)𝑛

2 + 2𝑛
𝑑
+𝑚

)
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=

( (
𝑑2 − 𝑑

)
𝑛 + 2𝑑𝑚
2𝑑

)/ ( (
𝑑2 − 5𝑑 + 4

)
𝑛 + 2𝑑𝑚

2𝑑

)
=

(
𝑑2 − 𝑑

)
𝑛 + 2𝑑𝑚

(𝑑2 − 5𝑑 + 4)𝑛 + 2𝑑𝑚 .

�

Observe that 𝛼 is decreasing in 𝑑 for 𝑑 ≥ 4 and converges to 1 as 𝑑 → ∞.
Further, for 𝑑 = 5 we obtain 𝛼 = 20𝑛+10𝑚

4𝑛+10𝑚 < 5. Thus, for 𝑑 ≥ 5 we have a
5-approximation to Fair Correlation Clustering on forests. For 𝑑 = 4, 𝛼
becomes linear in 𝑚

𝑛
and for smaller 𝑑 it is not necessarily positive or not even

de�ned if
(
𝑑2 − 5𝑑 + 4

)
𝑛 + 2𝑑𝑚 = 0. This is because if there are very small

clusters, then in forests there are solutions of almost no cost. If 𝑑 = 2, i.e., there
are two colors in a 1 : 1 ratio, there are even forests with a cost of 0, namely
the ones where all vertices have degree 1 and each edge connects 2 vertices
of di�erent colors. A solution cutting every edge is then much worse than an
optimum solution. If the factor becomes negative or not de�ned, this is due to us
bounding the inter-cluster cost of the optimum clustering by 𝑛

𝑑
−𝑛 +𝑚, which is

possibly negative, while the inter-cluster cost is guaranteed to be non-negative.
On trees, however, if the clusters are small even an optimum solution has to

cut some edges as now there always are edges between the clusters. Hence, in
this case, we obtain a good approximation for all possible 𝑑 . Note that the proof
of Theorem 7.1 does not really require 𝑑 ≥ 4 but for 𝑑 < 4 the approximation
factor is just not helpful or de�ned. This changes, if we assume the forest to be
a tree and plug in𝑚 = 𝑛 − 1.

I Corollary 7.2. Let 𝑇 be an 𝑛-vertex tree with 𝑘 ≥ 2 colors in a ratio of
𝑐1 : 𝑐2 : . . . : 𝑐𝑘 and 𝑑 =

∑𝑘
𝑖=1 𝑐𝑖 . Then, there is a

(𝑑2+𝑑)𝑛−2𝑑
(𝑑2−3𝑑+4)𝑛−2𝑑 -approximation to

Fair Correlation Clustering on 𝑇 that is computed in time in O(𝑛). J

Now, the approximation factor is still decreasing in 𝑑 and converges to 1
as 𝑑 → ∞. However, it is positive and de�ned for all 𝑑 ≥ 2. For 𝑑 = 2 we
obtain 6𝑛−4

2𝑛−4 < 3. Therefore, we have a 3-approximation to Fair Correlation
Clustering on trees.
Nevertheless, also our results for forest su�ce to place Fair Correlation

Clustering in APX and even PTAS. First, for 𝑑 ≥ 5 we have a 5-approximation
to Fair Correlation Clustering on forests. If 𝑑 ≤ 4, a minimum-cost fair
clustering is found on the forest in polynomial time by Theorem 5.6. Hence,
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Fair Correlation Clustering on forests is in APX. Next, recall that the
larger the minimum fair cluster size 𝑑 , the better the approximation becomes.
Recall that our dynamic program for Theorem 5.6 has better running time
the smaller the value 𝑑 . By combining these results, we obtain a PTAS for
Fair Correlation Clustering on forests. This contrasts Fair Correlation
Clustering on general graphs, as even unfair Correlation Clustering is
APX-hard there [CGW05] and therefore does not admit a PTAS unless P = NP.

I Theorem 7.3. There is a PTAS for Fair Correlation Clustering on forests.
J

Proof. If 𝑑 ≤ 4, we �nd a minimum-cost fair clustering in polynomial time by
Theorem 5.6. Else, if (𝑑

2−𝑑)𝑛+2𝑑𝑚
(𝑑2−5𝑑+4)𝑛+2𝑑𝑚 ≤ 1+𝜀, it su�ces to return any fair clustering

by Theorem 7.1. Otherwise, we have 𝑑 ≥ 5 and

1 + 𝜀 <
(
𝑑2 − 𝑑

)
𝑛 + 2𝑑𝑚

(𝑑2 − 5𝑑 + 4)𝑛 + 2𝑑𝑚

<

(
𝑑2 − 𝑑

)
𝑛

(𝑑2 − 5𝑑)𝑛

=
𝑑 − 1
𝑑 − 5 .

Then,

𝑑 − 5 + 𝑑𝜀 − 5𝜀 < 𝑑 − 1,

so

𝑑𝜀 < 5𝜀 + 4

and thus

𝑑 <
5
𝜀
+ 4.

Hence, by Theorem 5.6, we �nd a minimum-cost fair clustering in time in
O

(
𝑛𝑓 (5𝜀−1+4)

)
for some computable function 𝑓 independent from 𝑛.

In all cases, we �nd a fair clustering with a cost of at most 1 + 𝜀 times the
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minimum Correlation Clustering cost and take at most time in O
(
𝑛𝑓 (4𝜀−1+5

)
,

so our procedure is a PTAS. �
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8 Conclusions & Outlook

In this thesis, we found that Fair Correlation Clustering on trees and thereby
forests is NP-hard. It remains NP-hard for trees of constant degree or constant
diameter, and, for certain color distributions, it is also NP-hard on paths.
On the other hand, when parameterized by the minimum size 𝑑 of any fair

cluster as implied by the color ratio, we give an algorithm that places Fair
Correlation Clustering on forests in XP, i.e., has a polynomial running time
in the input size if 𝑑 is constant. Further, we provide an XP-algorithm for Fair
Correlation Clustering parameterized by the number of clusters if the color
ratio is 1 : 𝑐 for some 𝑐 ∈ ℕ>0. Hence, if 𝑑 is very large, i.e., 𝑑 ∈ 𝛩 (𝑛), there is
only a constant number of clusters and this algorithm has a polynomial running
time in the graph size.

For our main algorithms and hardness results, we proved that they essentially
still hold when the fairness constraint is relaxed, so the hardness is not due to
the strict fairness de�nition.
Lastly, we showed that the cost of any fair clustering on forests does not

di�er too much from an optimal fair clustering, and thereby yields a good
approximation. As this approximation improves as the minimum size 𝑑 of any
fair cluster increases, this gives a PTAS when combined with our XP-algorithm.

Our hardness results even for certain types of trees and forests justify the use
of approximation algorithms for Fair Correlation Clustering, even when
solving very restricted instances. Ultimately, we hope that the insights gained
from these proofs as well as our proposed algorithms prove helpful to the future
development of approximation, parameterized, and randomized algorithms to
solve Fair Correlation Clustering on more general graphs.

As a �rst step to further generalize our results, with Lemma 3.4, we generalize
our key insight, that there is a minimum-cost fair clustering with clusters of
bounded size from forests to bipartite graphs. We wonder whether this proves
helpful in developing algorithms for bipartite graphs with other color ratios than
1 : 1 as our tree dynamic program approach is not easily transferable to bipartite
graphs.
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Parameterized algorithms are another approach to solving more general in-
stances. While our dynamic programs can be regarded as parameterized by the
color ratio, other parameters might yield interesting results. There are FPT-
algorithms for Cluster Editing parameterized by the solution cost [BB13].
Possibly, future research might provide similar results for Fair Correlation
Clustering, allowing to e�ciently solve instances that are quite close to a
perfect clustering. Further, we thought about parameterizing by treewidth and
giving a treewidth dynamic program with a similar strategy to our tree dynamic
programs. However, it is questionable whether such an approach would work,
as it might be di�cult or impossible to bound the cluster size. Such a solution
would also be surprising since, to the best of our knowledge, so far even for nor-
mal, unfair Correlation Clustering3 and for the related Max Dense Graph
Partition [DBM12] no treewidth approaches have been proposed.
Besides, this thesis opens various other questions to be answered. While

we give two XP-algorithms for Fair Correlation Clustering on forests, we
are wondering whether Fair Correlation Clustering for these parameters
can also be placed in FPT, i.e., whether there are algorithms with running time
𝑓 (𝑝) · 𝑛O(1) for some function 𝑓 independent from 𝑛, where 𝑝 is either the
minimum size of any fair cluster or the number of clusters.

On a side note, it is interesting how Fair Correlation Clustering behaves
on paths. While we obtained NP-hardness for a particular color distribution from
the related Paint Shop Problem For Words (PPW), the question of whether
Fair Correlation Clustering on paths with for example two colors in a ratio
of 1 : 𝑐 is e�ciently solvable or not is, to the best of our knowledge, still open.
However, we suppose that this question is rather answered in the study of PPW
or the related Necklace Splitting than by research on Fair Correlation
Clustering. This would close one of the two remaining open cells in our result
tables. If Fair Correlation Clustering with a color ratio of 1 : 𝑐 can indeed
be e�ciently solved on paths, it would be interesting to see whether it becomes
hard for maximum degree 3 or 4. The other open cell from our tables concerns
general graphs with a color ratio of 1 : 2. As the 1 : 1 case is already NP-hard,
the same holds most likely for 1 : 2. We do not give a hardness proof as it would

3 No algorithm for complete Correlation Clustering has been proposed. Xin [Xin11] gives a
treewidth algorithm for incomplete Correlation Clustering for the treewidth of the graph
of all positively and negatively labeled edges.
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probably look very similar to the one provided by Ahmadi et al. [Ahm+20a] for
the 1 : 1 case and not give any additional insight.
Further, some algorithms and hardness results remain to be transferred to

the relaxed fairness setting. Regarding hardness, this concerns trees of degree 5
(Theorem 4.3) and general graphs (Theorems 4.5 and 4.6). Regarding algorithms,
we show how the case of two colors in a ratio of 1 : 1 is transferred to 𝛼-relaxed
Fair Correlation Clustering on forests. More generally, for 𝑘 colors in a
ratio of 𝑐1 : 𝑐2 : . . . : 𝑐𝑘 , we are optimistic that the maximum size of each cluster
in a minimum-cost fair clustering on forests is bounded by a function in 𝛼 and
𝑑 =

∑𝑘
𝑖=1 𝑐𝑖 . This would yield a dynamic program just like we have shown

for the 1 : 1 case. Analogously, the algorithmic results are to be generalized
from 𝛼-relaxed Fair Correlation Clustering to Relaxed Fair Correlation
Clustering. Also, our results on trees of diameters 2 and 3 (Theorem 5.2) are
likely to still hold in the relaxed fairness setting. As the clusters are not of �xed
size, however, such a proof seems not to be trivial.
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