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1 PROBLEM (A)

1.1 GIVEN

Algorithm A running on inputs of size n with random variable Tn describing the run time of
A on those inputs and

E(Tn) ≤ 5n2. (1.1)

1.2 ASSUMPTION

We want to show that:

P (X ≥ n3) =O( 1
n ). (1.2)

1.3 PROOF

Markov’s inequality says, if X is any nonnegative, integrable random variable:

P (X < 0) = 0 ⇒ P (X ≥ f (n)) ≤ E(X )
f (n) . (1.3)

The premise P (Tn < 0) = 0 is true for Tn since run times can not be negative. Thus, it follows
from 1.3:

P (Tn ≥ n3) ≤ E(X )
n3 . (1.4)

We know that E(Tn) ≤ 5n2 ∧n > 0 and thus:

E(Tn )
n3 ≤ 5n2

n3 = 5
n . (1.5)
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From 1.3 and 1.5 we get:

P (Tn ≥ n3) ≤ E(Tn )
n3 ≤ 5

n (1.6)

⇒ P (Tn ≥ n3) ≤ 5
n . (1.7)

We now use the definition of O( 1
n ) to show that P (Tn ≥ n3) is in the class O( 1

n ):

f =O(g ) ⇔∃c > 0∃n0 > 0∀n > n0 : | f (n)| ≤ c|g (n)|. (1.8)

Thus, it follows that:

∃c > 0∃n0 > 0∀n > n0 : P (Tn ≥ n3) ≤ c · 1
n ⇔ P (Tn ≥ n3) =O( 1

n ). (1.9)

With:

∃c > 0∃n0 > 0∀n > n0 : P (Tn ≥ n3) ≤ 5
n ≤ c · 1

n , (1.10)

we see that for c = 5∧n0 = 1 P (Tn ≥ n3) =O( 1
n ) is fullfilled and our assumption holds.

2 PROBLEM (B)

2.1 GIVEN

Algorithm A running on inputs of size n with random variable Tn describing the run time of
A on those inputs and

E(Tn) ≤ 5n2. (2.1)

2.2 TASK

Give an example for Tn such that P (Tn ≥ n3) =Θ( 1
n ).

2.3 SOLUTION

We define Ω with Ω=N\{0} to be the set of possible run times. We assume n to be at least 1,
since there has to be an input for the algorithm. We define P and Tn to be in a way, such that:

P (Tn = r ) = 0 for r 6= 0∧ r 6= n3 (2.2)

P (Tn = n3) = 1
n (2.3)

P (Tn = 0) = 1− 1
n . (2.4)

Thus (Ω,P ) describes a discrete probability space. First, we need to show, that the upper
bound for the expected value 2.1 holds:

E(Tn) = ∑
r∈R

r ·P (Tn = r ) = n3 · 1
n +0 · (1− 1

n )+ ∑
r∈R∧r 6=1∧r 6=n3

r ·0 (2.5)

⇒ E(Tn) = n2 ≤ 5n2 (2.6)

⇒ E(Tn) ≤ 5n2. (2.7)
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Now we show that P (Tn ≥ n3) =Θ( 1
n ). Given our definition, Tn = n3 is the only possible case

with a value greater or equal to n3 and thus:

P (Tn ≥ n3) = P (Tn = n3) = 1
n . (2.8)

The function f (n) = 1
n is obviously inΘ( 1

n ) and thus

P (Tn ≥ n3) =Θ( 1
n ). (2.9)

3 PROBLEM (C)

3.1 GIVEN

Algorithm A running on inputs of size n with random variable Tn describing the run time of
A on those inputs and

E(Tn) ≤ 5n2. (3.1)

Algoritm A′ that executes A until A successfully terminates in t0 = 25n2 and reruns A if it is
not successful in t0. T ′

n that is the run time of A′.

3.2 ASSUMPTION

We want to show that

P (T ′
n ≥ n3) = 2−Ω(n). (3.2)

3.3 PROOF

A′ executes A until A returns in at least t0. For the probability that this happens in a single
execution, we can say that:

P (Tn > 25n2) (3.3)

≤ P (Tn ≥ 25n2) (3.4)

≤ E(T ′
n )

25n2 Markov’s Inequality, as P (Tn < 0) = 0,n > 0 (3.5)

≤ 5n2

25n2 Definition of 3.1 (3.6)

= 1
5 . (3.7)

We thus know:

P (Tn > 25n2) ≤ 1
5 . (3.8)

and
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P (Tn ≤ 25n2) = 1−P (Tn > 25n2) ≥ 4
5 . (3.9)

We can thus express the number of executions of A in A′ with a geometrically distributed
random variable X with p ≥ 4

5 . For the number of times k that A′ needs to execute A at least
to have a run time of at least n3, we know that:

k ·25n2 ≥ n3 (3.10)

k ≥ n
25 . (3.11)

For the smallest value k = d n
25e, the run time may be smaller than n3 as the k.th run may

be successful with a total run time smaller than n3 (k is the smallest number of executions
of A that can exceed a run time of n3). Even so, we have a close upper bound to estimate
P (T ′

n ≥ n3):

P (T ′
n ≥ n3) (3.12)

≤ P (X ≥ k −1) Definition of k (3.13)

≤ P (X ≥ n
25 −1) As in 3.11 (3.14)

= (1−p)
n
25−1 We run k −1 times unsucessfully, and do not care about the rest (3.15)

≤ 1
5

n
25−1

. As in 3.8 (3.16)

Now we see that:

P (T ′
n ≥ n3) ≤ 1

5

n
25−1 = 2−l og2(5)( n

25−1) = 2− l og2(5)
25 n−log2(5) = 2−Ω(n) (3.17)

as log2(5)
25 n − log2(5) =Ω(n).
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