Heuristic Optimization - Homework 1

Maximilian Brehm & Clemens Frahnow

May 21, 2015

1 PROBLEM (A)

1.1 GIVEN

Algorithm A running on inputs of size n with random variable T_n describing the run time of A on those inputs and

 $E(T_n) \le 5n^2. \tag{1.1}$

1.2 Assumption

We want to show that:

$$P(X \ge n^3) = O(\frac{1}{n}).$$
 (1.2)

1.3 Proof

Markov's inequality says, if *X* is any nonnegative, integrable random variable:

$$P(X < 0) = 0 \Rightarrow P(X \ge f(n)) \le \frac{E(X)}{f(n)}.$$
(1.3)

The premise $P(T_n < 0) = 0$ is true for T_n since run times can not be negative. Thus, it follows from 1.3:

$$P(T_n \ge n^3) \le \frac{E(X)}{n^3}.$$
(1.4)

We know that $E(T_n) \le 5n^2 \land n > 0$ and thus:

$$\frac{E(T_n)}{n^3} \le \frac{5n^2}{n^3} = \frac{5}{n}.$$
(1.5)

1

From 1.3 and 1.5 we get:

$$P(T_n \ge n^3) \le \frac{E(T_n)}{n^3} \le \frac{5}{n}$$
 (1.6)

$$\Rightarrow P(T_n \ge n^3) \le \frac{5}{n}.$$
(1.7)

We now use the definition of $O(\frac{1}{n})$ to show that $P(T_n \ge n^3)$ is in the class $O(\frac{1}{n})$:

$$f = O(g) \Leftrightarrow \exists c > 0 \exists n_0 > 0 \forall n > n_0 : |f(n)| \le c|g(n)|.$$

$$(1.8)$$

Thus, it follows that:

$$\exists c > 0 \exists n_0 > 0 \forall n > n_0 : P(T_n \ge n^3) \le c \cdot \frac{1}{n} \Leftrightarrow P(T_n \ge n^3) = O(\frac{1}{n}).$$
(1.9)

With:

$$\exists c > 0 \exists n_0 > 0 \forall n > n_0 : P(T_n \ge n^3) \le \frac{5}{n} \le c \cdot \frac{1}{n},$$
(1.10)

we see that for $c = 5 \land n_0 = 1$ $P(T_n \ge n^3) = O(\frac{1}{n})$ is fullfilled and our assumption holds. \Box

2 PROBLEM (B)

2.1 GIVEN

Algorithm *A* running on inputs of size n with random variable T_n describing the run time of *A* on those inputs and

$$E(T_n) \le 5n^2. \tag{2.1}$$

2.2 TASK

Give an example for T_n such that $P(T_n \ge n^3) = \Theta(\frac{1}{n})$.

2.3 SOLUTION

We define Ω with $\Omega = \mathbb{N} \setminus \{0\}$ to be the set of possible run times. We assume n to be at least 1, since there has to be an input for the algorithm. We define *P* and *T_n* to be in a way, such that:

$$P(T_n = r) = 0 \text{ for } r \neq 0 \land r \neq n^3$$
(2.2)

$$P(T_n = n^3) = \frac{1}{n}$$
(2.3)

$$P(T_n = 0) = 1 - \frac{1}{n}.$$
(2.4)

Thus (Ω, P) describes a discrete probability space. First, we need to show, that the upper bound for the expected value 2.1 holds:

$$E(T_n) = \sum_{r \in \mathbb{R}} r \cdot P(T_n = r) = n^3 \cdot \frac{1}{n} + 0 \cdot (1 - \frac{1}{n}) + \sum_{r \in \mathbb{R} \land r \neq 1 \land r \neq n^3} r \cdot 0$$
(2.5)

$$\Rightarrow E(T_n) = n^2 \le 5n^2 \tag{2.6}$$

$$\Rightarrow E(T_n) \le 5n^2. \tag{2.7}$$

Now we show that $P(T_n \ge n^3) = \Theta(\frac{1}{n})$. Given our definition, $T_n = n^3$ is the only possible case with a value greater or equal to n^3 and thus:

$$P(T_n \ge n^3) = P(T_n = n^3) = \frac{1}{n}.$$
(2.8)

The function $f(n) = \frac{1}{n}$ is obviously in $\Theta(\frac{1}{n})$ and thus

$$P(T_n \ge n^3) = \Theta(\frac{1}{n}). \tag{2.9}$$

3 PROBLEM (C)

3.1 GIVEN

Algorithm *A* running on inputs of size n with random variable T_n describing the run time of *A* on those inputs and

$$E(T_n) \le 5n^2. \tag{3.1}$$

Algoritm A' that executes A until A successfully terminates in $t_0 = 25n^2$ and reruns A if it is not successful in t_0 . T'_n that is the run time of A'.

3.2 Assumption

We want to show that

 $\leq P(T_n \geq 25n^2)$

 $\leq \frac{E(T'_n)}{25n^2}$ $\leq \frac{5n^2}{25n^2}$ $= \frac{1}{5}.$

$$P(T'_n \ge n^3) = 2^{-\Omega(n)}.$$
 (3.2)
3.3 PROOF

A' executes A until A returns in at least t_0 . For the probability that this happens in a single execution, we can say that:

$$P(T_n > 25n^2)$$
 (3.3)

Markov's Inequality, as
$$P(T_n < 0) = 0, n > 0$$
 (3.5)

Definition of 3.1 (3.6)

(3.7)

We thus know:

$$P(T_n > 25n^2) \le \frac{1}{5}.$$
(3.8)

and

$$P(T_n \le 25n^2) = 1 - P(T_n > 25n^2) \ge \frac{4}{5}.$$
(3.9)

We can thus express the number of executions of *A* in *A'* with a geometrically distributed random variable X with $p \ge \frac{4}{5}$. For the number of times *k* that *A'* needs to execute *A* at least to have a run time of at least n^3 , we know that:

$$k \cdot 25n^2 \ge n^3 \tag{3.10}$$

$$k \ge \frac{n}{25}.\tag{3.11}$$

For the smallest value $k = \lceil \frac{n}{25} \rceil$, the run time may be smaller than n^3 as the *k*.th run may be successful with a total run time smaller than n^3 (*k* is the smallest number of executions of *A* that can exceed a run time of n^3). Even so, we have a close upper bound to estimate $P(T'_n \ge n^3)$:

$$P(T'_n \ge n^3)$$

$$\le P(X \ge k - 1)$$
Definition of k (3.13)

$$\leq P(X \geq \frac{n}{25} - 1)$$

$$= (1 - p)^{\frac{n}{25} - 1}$$
We run $k - 1$ times unsucessfully, and do not care about the rest (3.15)

$$\leq \frac{1}{5}^{\frac{n}{25} - 1}.$$
As in 3.8 (3.16)

Now we see that:

$$P(T'_n \ge n^3) \le \frac{1}{5} \frac{n^{-1}}{25} = 2^{-\log_2(5)(\frac{n}{25}-1)} = 2^{-\frac{\log_2(5)}{25}n - \log_2(5)} = 2^{-\Omega(n)}$$
(3.17)

as
$$\frac{\log_2(5)}{25}n - \log_2(5) = \Omega(n).$$