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1 PROBLEM (A)

1.1 GIVEN

Algorithm A running on inputs of size n with random variable T}, describing the run time of
A on those inputs and

E(T,) <5n®. (1.1)

1.2 ASSUMPTION
We want to show that:

P(X=zn’)=0(). (1.2)

1.3 PROOF

Markov’s inequality says, if X is any nonnegative, integrable random variable:

P(X<0)=0=P(X = f(n) < 2. (1.3)

The premise P(T,, < 0) =0 is true for T, since run times can not be negative. Thus, it follows

from 1.3:

P(T,=n®) < £X) (1.4)

n3

We know that E(T,,) <512 A n> 0 and thus:

E(Ty) 2_ 5
<2 - > (1.5)



From 1.3 and 1.5 we get:

P(Tyzn’)< Bl <2 (1.6)
= P(T,zn%) <2, (1.7)
We now use the definition of O(%) to show that P(T,, = n®) is in the class O(%):
f=0(g) ©3c>03ny>0Vn>ng:|f(n)<clgnl. (1.8)
Thus, it follows that:
Ac>03ng>0Vn>ny: P(T,zn’)<c-1 o P(T,2n)=0(). (1.9)
With:
Ac>03ng>0Vn>ng: P(Tyzn) <2 <c- 1, (1.10)
we see thatforc=5Ang=1P(T, =n) = O(%) is fullfilled and our assumption holds. O

2 PROBLEM (B)

2.1 GIVEN

Algorithm A running on inputs of size n with random variable T}, describing the run time of
A on those inputs and

E(T,) <5n°. 2.1)

2.2 TASK

Give an example for T}, such that P(T},, = nd) = G)(%).

2.3 SOLUTION

We define Q with Q = N\{0} to be the set of possible run times. We assume n to be at least 1,
since there has to be an input for the algorithm. We define P and T}, to be in a way, such that:

P(T,=r)=0forr #0Ar #n° (2.2)
P(T,=n*)=1 2.3)
P(T,=0)=1-1. (2.4)

Thus (Q, P) describes a discrete probability space. First, we need to show, that the upper
bound for the expected value 2.1 holds:

E(T) =) r-P(Ty=n=n"-2+0-A-D+ Y 10 2.5)
reR reRAT#IAT#£n3

= E(T,) = n® <5n® (2.6)

= E(T,) <5n°. 2.7)



Now we show that P(T;, = n®) = ©(+). Given our definition, T, = n® is the only possible case
with a value greater or equal to n° and thus:

P(T,zn*)=P(T,=n")=1. (2.8)

The function f(n) = % is obviously in @(%) and thus

P(T,zn) =0). (2.9)

3 PROBLEM (C)

3.1 GIVEN

Algorithm A running on inputs of size n with random variable T}, describing the run time of
A on those inputs and

E(T,) <5n®. (3.1)

Algoritm A’ that executes A until A successfully terminates in #) = 2572 and reruns A if it is
not successful in f. T}, that is the run time of A'.

3.2 ASSUMPTION

We want to show that

P(T}, = n) = 2790, (3.2)

3.3 PROOF

A’ executes A until A returns in at least ty. For the probability that this happens in a single
execution, we can say that:

P(T,>25n%) (3.3)
< P(T, = 25n%) (3.4)
< B0 Markov’s Inequality, as P(T;, <0) = 0,7 > 0 35)
< 255’;12 . Definition of 3.1 (3.6)
=1 (3.7)
We thus know:

P(T, >25n%) < (3.8)

1
5

and



P(T,<25n%)=1-P(T, >25n%) = 2. 3.9)

We can thus express the number of executions of A in A’ with a geometrically distributed
random variable X with p = %. For the number of times k that A’ needs to execute A at least
to have a run time of at least n®, we know that:

k-25n%=nd (3.10)
k=2 3.11)

For the smallest value k = [5t], the run time may be smaller than n3 as the k.th run may
be successful with a total run time smaller than 73 (k is the smallest number of executions
of A that can exceed a run time of n%). Even so, we have a close upper bound to estimate
P(T, = n®):

P(T! = nd (3.12)
<P(X=k-1) Definition of k (3.13)
SP(XZ%—D Asin3.11 (3.14)
n
=1-p) 2571 Werun k — 1 times unsucessfully, and do not care about the rest  (3.15)
n
<1357l Asin3.8 (3.16)

Now we see that:

n_ n
P(T), 2 n®) < 12571 = 271080051 — p-

1 5
Ogg( )n_l0g2(5) _ 2—Q(n) (3.17)

as %n—logz(S):Q(n). O



