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2 Exercise 2

2.1 Given

∀ x∈ℝ : ex=∑
i=0

∞ x i

i !
=1+x+

x²
2

+
x³
6

+...

2.2 Task a

To show: 

∀ x≥−1,k∈ℕ :(1+ x)k≥1+kx

Base case: k=0

(1+ x)0≥1≥1+0⋅x  

True.

Induction hypothesis: 

(1+ x)k≥1+k⋅x is correct for some natural number k.

Induction-step: 

We now have to prove, that (1+ x)k+1≥1+(k+1)⋅x .

(1+ x)k≥1+k⋅x  (induction hypothesis)

⇒ (1+x )k⋅(1+ x)≥(1+ x)+kx⋅(1+x )

⇒ (1+x )k+1
≥1+x+kx+kx²

Since kx² is greater 0, we can make the right side even smaller by subtracting it.

⇒ (1+x )k+1≥1+kx+x

⇒ (1+x )k+1
≥1+(k+1)x

Hence by mathematical induction the inequality is correct for all natural numbers.

q.e.d.



2.3 Task b

To show: 

∀ x>−1, x≠0 :ln (1+x )<x

Proof:

ln (1+x )<x

⇔ 1+ x<e x

⇔ 1+ x < ∑
i=0

∞ xi

i !
⇔ 1+x < 1+x+∑

i=2

∞ x i

i !

⇔ 0 < ∑
i=2

∞ xi

i !
= ∑

i=1

∞ x2i

(2i)!
+

x2i+1

(2i+1) !

If both summands together are greater zero, the sum also will be greater than zero. 

⇐ 0 <
x2i

(2i)!
+

x2i+1

(2i+1)!
=

x2i
⋅(2i+1)

(2i) !⋅(2i+1)
+

x2i+1

(2i+1)!
=

x2i
⋅(2i+1)

(2i+1)!
+ x2i

⋅
x

(2i+1)!

⇔ 0 <
x2i

⋅(2i+1+x)
(2i+1)!

⇔ 0 < x2i
⋅(2i+1+x )

⇐ 0 < 2i+1+x , x2i>0

⇐ 0 < 1+x , 2i>0

⇔ −1 < x

This is true, since it is given in the task.

Now, that the last statement is true, you can read the proof from bottom up, and you will 

get ln (1+x )<x in the end.

2.4 Task c

To show: 

∀ x>−1, x≠0∀r>0 :(1+x )r<erx

Proof:

(1+ x)r<erx

⇔ 1+ x<e x

⇔ ln (1+x )<x

Already proven in 2.3(task b)

q.e.d.



3 Exercise 3

3.1 Given

The probability that a certain bit flips is P (a certain bit flips)=
1
n

and the number of current

zeros is k. k>0, since all ones would already be the optimum.

3.2 Task a

To show: 

P (create all 1s individually)=Θ(n−k)

Proof: 

P (create all 1s individually)=P(K )

P (K )=P(all zeros flip to ones)⋅ P (all ones stay)

P (K )=P(a certain zero flips to one)k ⋅P (a certain one stays)n−k

P (K )=P(a certain zero flips to one)k ⋅(1−P (a certain one flips to zero))n−k

P (K )=(1
n)

k

⋅(1−
1
n)

n−k

= n−k
⋅(1−

1
n)

n−k

For k>0, what is given, (1−
1
n)

n−k

goes towards e-1 from above. *

⇒(1−
1
n)

n−k

>e−1

Since 0≤1−
1
n
≤1 , and n−k≥1 , ⇒(1−

1
n)

n−k

≤1

⇒∃c1,c2,n0>0∀n>n0: c1≤(1−
1
n)

n−k

≤c2 , (c1=e
−1

∧c2=1)

Knowing, that n-k is always positive, we can multiply it

⇔∃c1,c2,n0>0∀n>n0: n−k⋅c1≤n
−k
⋅(1−

1
n)

n−k

≤n−k
⋅c2

⇔∃c1,c2,n0>0∀n>n0: n−k⋅c1≤P (K )≤n−k
⋅c2

By definition of Θ :

⇔P (K )=Θ(n−k )

q.e.d.



3.3 Task b

To show: 

∃c>0 :∀n: P(k is bigger after the next step)≥c⋅
k
n

Proof: 

P (k is bigger after the next step)=P (B)

P (B)=P (exactly one zero flips to one)+P(exactly two zeros flip to ones)+...

Since there is no negative probability:

⇒P (B)≥P (exactly one zero flips to one)

⇒P (B)≥P (exact the first zero flips to one or the second zero flips to one or ...)

Since all these events are disjoint, the probability of their sum is just the sum of their 

probabilities.

⇒P (B)≥P (exact the first zero flips)+P (exact the second zero flips)+...

All these events have the same probability

⇒P (B)≥k⋅P (exact a certain zero flips)

⇒P (B) ≥ k⋅P(a certain zero flips)⋅P (all other bits stay )

⇒P (B)≥k⋅
1
n
⋅(1−

1
n
)
n−1

(1−
1
n
)
n−1

goes towards e-1 from above *. Therefore: (1−
1
n
)
n−1

>e−1

⇒P (B)≥
k
n
⋅(1−

1
n
)
n−1

>
k
n
⋅e−1

=e−1
⋅
k
n

⇒P (B)≥e−1
⋅
k
n

⇒∃c>0 :∀n : P (B)≥c⋅
k
n

q.e.d.



* Proof that for n>k, k>0 f (n)=(1−
1
n)

n−k

goes towards e-1 from above.

First we want to show, that f (n) goes towards e-1:

lim
n→∞

f (n) = lim
n→∞

(1−
1
n)

n−k

= lim
n→∞

(1−
1
n)

n

(1−
1
n )

k =
e−1

1k
= e−1

To prove, that all values n>k are greater than e-1, it is enough to show, that the function is 

monotonically decreasing. Since f goes towards e-1, they have to be greater than e-1.

f (n) Monotonically decreasing

⇔∀n>k : f (n+1)≤ f (n) , (only for f (n)≥0 )

⇔∀n>k :
f (n+1)

f (n)
≤1

⇔∀n>k :
(1−

1
n+1)

n−k+1

(1−
1
n)

n−k =
( n
n+1)

n−k+1

(n−1
n )

n−k =
( n
n+1)

n−k

(n−1
n )

n−k ⋅( n
n+1) ≤ 1

⇔∀n>k : ( n
n+1)

n−k

⋅( n
n−1)

n−k

⋅
n
n+1

= ( n²
n²−1)

n−k

⋅
n
n+1

≤ 1

⇔∀n>k :
n2n−2k

n2n−2k
−1

⋅
n
n+1

=
n2n−2k+1

n2n−2k+1
+n2n−2k

−n−1
≤ 1

⇔∀n>k : n2n−2k+1
≤ n2n−2k+1

+n2n−2k
−n−1

⇔∀n>k : 0 ≤ n2n−2k
−n−1

⇔∀n>k : n+1 ≤ n2n−2k

⇔∀n>k : 1+
1
n

≤ n2 (n−k )−1

Since 1+
1
n

is always smaller or equal 2:

⇐∀n>k : 2 ≤ n2 (n−k )−1

⇐∀n>k : 2 ≤ n2−1
∧ n2−1

≤ n2(n−k)−1

⇐∀n>k : 2 ≤ n ∧ true , because n>k

This is obviously true for n>1. n can not be <1, since n>k>0. 

Therefore you can read the proof from the bottom up.

q.e.d.


