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Optimization

X

R

f : X → R

Goal:

Find z ∈ X such that f(z) ≤ f(x) for all x ∈ X (minimization)

Find z ∈ X such that f(z) ≥ f(x) for all x ∈ X (maximization)
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Optimization examples

Linear programming

X is the set of all vectors x ∈ Rn with Ax ≤ b and x ≥ 0,

f(x) = c>x.

Goal: find x ∈ X such that f(x) is minimal

Example: Schedule production levels of a product to minimize total cost
subject to resource constraints.

Simplex algorithm

Interior point methods
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Optimization examples

Convex optimization

X is the set of all vectors x ∈ Rn with some constraints,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all 0 ≤ t ≤ 1.

Goal: find x ∈ X such that f(x) is minimal

x y

Example: Find the receiver location among a set of interfering
transmitters that maximizes signal to noise ratio.

Subgradient method

Cutting plane method
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Optimization examples

Find the shortest route between two cities

X is the set of feasible paths

f measures the length of a path

Goal: find x ∈ X such that f(x) is minimal

Example: Navigation software.

Dijkstra’s algorithm

Bellman-Ford
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The black-box scenario

Suppose we know nothing (or almost nothing) about the function

f(x) measures some complex (e.g., industrial) process

f(x) value depends on the result of an expensive simulation

process of assigning f -values to X is noisy/unpredictable

x

f(x)

in

out

How should we approach these problems?
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Heuristic Optimization

Approaches

Take a best guess at a good solution and “live with it”

Try each possible solution and keep the best

Start with a good guess and then try to improve it iteratively

Heuristic Optimization

Can be inspired by human problem solving

Common sense, rules of thumb, experience

Can be inspired by natural processes

Evolution, annealing, swarming behavior

Typically rely on a source of randomness to make decisions

General purpose, robust methods

Easy to implement

Can be challenging to analyze and prove rigorous results
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Some success stories

NASA

communication antennas on ST-5 mission (evolutionary algorithm)

deployed on spacecraft in 2006

REFERENCE: Jason D. Lohn, Gregory S. Hornby and Derek S. Linden,

“Human-competitive evolved antennas”, Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, volume 22, issue 3, pages 235–247 (2008).
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Some success stories

Boeing

777 GE engine: turbine geometry evolved with a genetic algorithm

REFERENCE: Charles W. Petit, “Touched by nature: putting evolution to work on the

assembly line.” US News & World Report, volume 125, issue 4, pages 43–45 (1998).
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Some success stories

Oral B

cross-action toothbrush design optimized by Creativity Machine
(evolutionary algorithm)

REFERENCE: Robert Plotnick, “The Genie in the Machine: How

Computer-Automated Inventing Is Revolutionizing Law and Business”, Stanford Law

Books, (2009)
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Some success stories

Nutech Solutions

improved car frame for GM (genetic algorithms, neural networks,
simulated annealing, swarm intelligence)

BMW

optimized acoustic and safety parameters in car bodies (simulated
annealing, genetic and evolutionary algorithms)

REFERENCE: Fabian Duddeck, ”Multidisciplinary Optimization of Car Bodies”,

Structural and Multidisciplinary Optimization, volume 35, pages 375–389 (2008).
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Some success stories

Hitachi

improved nose cone for N700 bullet train (genetic algorithm)

REFERENCE: Takenori Wajima, Masakazu Matsumoto and Shinichi Sekino, “Latest

System Technologies for Railway Electric Cars”, Hitachi Review volume 54, issue 4,

pages 161–168 (2005).
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Some success stories

Merck Pharmaceutical Company

discovered first clinically-approved antiviral drug for HIV (Isentress)
using AutoDock software (uses a genetic algorithm)

REFERENCE:

http://autodock.scripps.edu/news/autodocks-role-in-developing-the-

first-clinically-approved-hiv-integrase-inhibitor

Heuristic Optimization 12 / 19

Heuristics

Assumptions

1 Solutions encoded as length-n bitstrings (elements of {0, 1}n),

2 want to maximize some f : {0, 1}n → R.

Random Search

Choose x uniformly at random from {0, 1}n;
while stopping criterion not met do

Choose y uniformly at random from {0, 1}n;
if f(y) ≥ f(x) then x← y;

end
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Heuristics

Random(ized) Local Search (RLS)

Choose x uniformly at random from {0, 1}n;
while stopping criterion not met do

y ← x;
Choose i uniformly at random from {1, . . . , n};
yi ← (1− yi);
if f(y) ≥ f(x) then x← y;

end
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Local Optima

How to deal with local optima?

Restart the process when it becomes trapped (ILS)

Accept disimproving moves (MA, SA)

Take larger steps (EA, GA)
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http://autodock.scripps.edu/news/


Simple Randomized Search Heuristics

Metropolis Algorithm

Choose x uniformly at random from {0, 1}n;
while stopping criterion not met do

y ← x;
Choose i uniformly at random from {1, . . . , n};
yi ← (1− yi);
if f(y) ≥ f(x) then x← y;

else x← y with probability e(f(x)−f(y))/T ;

end

Method developed for generating sample states of a thermodynamic
system (1953)

T is fixed over the iterations
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Simple Randomized Search Heuristics

Simulated Annealing

Choose x uniformly at random from {0, 1}n;
while stopping criterion not met do

y ← x, t← 0;
Choose i uniformly at random from {1, . . . , n};
yi ← (1− yi);
if f(y) ≥ f(x) then x← y;

else x← y with probability e(f(x)−f(y))/Tt ;
t← t+ 1;

end

Heating and controlled cooling of a material to increase crystal size
and reduce their defects.

High temperature ⇒ many random state changes

Low temperature⇒ system prefers “low energy” states (high fitness)

Idea is to carefully settle the system down over time to its lowest
energy state (highest fitness) by cooling
Tt is dependent on t, typically decreasing.
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Evolutionary Algorithms

initialize population P (1)

select parents from P (t)

apply recombination
operators to parents
to create offspring

apply mutation op-
erators to offspring

evaluate each individual

select individuals to form
population P (t + 1) terminate?

t← 1

yes

no

t← t+ 1

variation

selection
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Evolutionary Algorithms

Allow larger jumps

Long (destructive) jumps should be rare

(1+1) EA

Choose x uniformly at random from {0, 1}n;
while stopping criterion not met do

y ← x;
foreach i ∈ {1, . . . , n} do

With probability 1/n, yi ← (1− yi);
end
if f(y) ≥ f(x) then x← y;

end
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