

Heuristic Optimization

Some Laws

Heuristic Optimization For all events $A, B \subseteq \Omega$: 1. Recall: $P(A) = \sum_{a \in A} P(a)$. 2. If $A \subseteq B$, then $P(A) \leq P(B)$. 3. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. 4. $P(\Omega \setminus A) = 1 - P(A)$. 5. For all sequences $(A_i)_i$ of events, $P(\bigcup_i A_i) \leq \sum_i P(A_i)$. The last item is called the union bound. 21 April 2015 2 / 6

Basic Definitions

- $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- (Ω, P) : discrete probability space;
 - Ω is a countable set;
 - $P: \Omega \to [0,1]$ a function such that $\sum_{\omega \in \Omega} P(\omega) = 1$.
- $\omega \in \Omega$: elementary events.
- For $\omega \in \Omega$: $P(\omega)$ is the probability of ω .
- $A \subseteq \Omega$: event.
- For $A \subseteq \Omega$: $P(A) = \sum_{a \in A} P(a)$.

Example (rolling a die; generalizes to uniform distribution):

- $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- For all $\omega \in \Omega$, $P(\omega) = 1/6$.

Another example (flipping a coin until we see tails):

- $\Omega = \mathbb{N}.$
- For all $n \in \mathbb{N}$, $P(n) = 2^{-n-1}$.

Note that $\sum_{n \in \mathbb{N}} 2^{-n-1} = 1$ (geometric sum).

21 April 2015 1 / 6

нр
Random Variables
• Mapping $X: \Omega \to \mathbb{R}$: random variable.
Example (rolling two dice):
• $\Omega = \{1, 2, 3, 4, 5, 6\}^2$, P uniform.
• For $a, b \in \{1, 2, 3, 4, 5, 6\}$, $X(a, b) = a + b$.
• " $X=12$ " and similar things are now events (= $\{\omega\in\Omega\mid X(\omega)=12\}$).
Exercise: What are the following probabilities?
$P(X = 12)$ $P(X = 11)$ $P(X = 0)$ $P(X \ge 7)$
Another example (rolling two dice):
• Same (Ω, P) .
• For all $a, b \in \{1, 2, 3, 4, 5, 6\}$, $X(a, b) = a$ and $Y(a, b)$.
• " $X = Y$ " and similar things are now events (= { $\omega \in \Omega \mid X(\omega) = Y(\omega)$ }).
Exercise: What are the following probabilities?
$P(X = 3)$ $P(X = Y)$ $P(X = Y + 2)$ $P(X \ge Y)$

Properties of Random Variables

- X, Y identically distributed $(X \sim Y)$: for all $r \in \mathbb{R}$, P(X = r) = P(Y = r).
- X, Y identical (X = Y): implies P(X = Y) = 1.
- X, Y independent: for all sets $A, B \subseteq \mathbb{R}$ we have

 $P(X \in A \text{ and } Y \in B) = P(X \in A) \cdot P(Y \in B).$

• $(X_i)_i$ independent: for all sequences $(A_i)_i$ of subsets of real numbers

$$P(\bigwedge_{i} X_{i} \in A_{i}) = \prod_{i} P(X_{i} \in A_{i}).$$

- X, Y i.i.d.: identically distributed and independent.
- Extends to sequences of random variables.
- When X, Y are r.v., X + Y is r.v.: for $\omega \in \Omega$, $(X + Y)(\omega) = X(\omega) + Y(\omega)$.
- When X is r.v. and $r \in \mathbb{R}$, rX is r.v.: $(rX)(\omega) = rX(\omega)$.

21 April 2015 4 / 6

Expected Value

- Expected value of X: $E(X) = \sum_{\omega \in \Omega} P(\omega) \cdot X(\omega)$.
- Variance: $Var(X) = E((X E(X))^2)$

$$E(X) = \sum_{\omega \in \Omega} P(\omega) \cdot X(\omega)$$

$$= \sum_{r \in \mathbb{R}} \sum_{\omega: X(\omega)=r} P(\omega) \cdot r$$

$$= \sum_{r \in \mathbb{R}} r \cdot \sum_{\omega: X(\omega)=r} P(\omega)$$

$$= \sum_{r \in \mathbb{R}} r \cdot P(X = r).$$

Exercise (linearity of E): 1. E(X + Y) = E(X) + E(Y); 2. E(rX) = rE(X).

Further Optimization Some Theorems $\frac{Products of independent random variables}{E(XY) = E(X)E(Y)}$ Let X, Y be independent random variables. We have E(XY) = E(X)E(Y). Let X be a random variable with P(X < 0) = 0. For all a > 0 we have $P(X \ge a) \le \frac{E(X)}{a}$. Number of the equation of the

21 April 2015 5 / 6