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Here we will discuss some basics of probability theory that will enable us analyze
some randomized algorithms. We start with some basic definitions. We let N =
{0, 1, 2, . . .} be the set of all natural numbers.

A pair (Ω, P ) is called a discrete probability space if Ω is a countable set and
P : Ω→ [0, 1] is a function such that

∑
ω∈Ω P (ω) = 1.

We call the elements of Ω elementary events ; for each ω ∈ Ω we call P (ω) the
probability of ω. We call subsets of Ω events. For any A ⊆ Ω we let P (A) =∑

a∈A P (a); thus, we extended P to arbitrary events.
As an example, consider Ω = {1, 2, 3, 4, 5, 6} and, for all ω ∈ Ω, P (ω) = 1/6.

This models rolling a die, where each outcome (1 through 6) has the same property
of appearing. In general, when Ω is finite, we can consider the uniform distribution
which assigns each elementary event a probability of 1/|Ω|.

As another example, consider Ω = N and, for all n ∈ N, P (n) = 2−n−1. Note that∑
n∈N 2−n−1 = 1 (geometric sum).
For all events A,B ⊆ Ω, we have the following laws for dealing with probabilities.

(a) If A ⊆ B, then P (A) ≤ P (B).

(b) P (A ∪B) = P (A) + P (B)− P (A ∩B).

(c) P (Ω \ A) = 1− P (A).

(d) For all sequences (Ai)i of events, P (
⋃

i Ai) ≤
∑

i P (Ai).

A random variable is a mapping X : Ω → R. As an example, consider Ω =
{1, 2, 3, 4, 5, 6}2 and P as the uniform distribution on Ω, the result of rolling two dice.
Let X be a random variable such that, for all a, b ∈ {1, 2, 3, 4, 5, 6}, X(a, b) = a+b. In
other words, X is the sum of the results of two dice rolls. We can now consider such
events as “X = 12” (this is the event consisting of all ω ∈ Ω such that X(ω) = 12). As
an exercise, how much is P (X = 12)? What about P (X = 0)? What is P (X ≥ 7)?

For the same (Ω, P ) based on rolling two dice, let X and Y be random variables
such that, for all a, b ∈ {1, 2, 3, 4, 5, 6}, X(a, b) = a and Y (a, b). In other words, X is
the result of the first die and Y of the second. We can now consider such events as
“X = Y ” (this is the event consisting of all ω ∈ Ω such that X(ω) = Y (ω)). As an
exercise, how much is P (X = Y )? What about P (X = Y + 2)? What is P (X ≥ Y )?

We call two random variables X, Y identically distributed if, for all r ∈ R, P (X =
r) = P (Y = r). We then write X ∼ Y . Note that the two random variables X, Y just

1

https://hpi.de/friedrich/teaching/ss15/heuristic-optimization.html


Heuristic Optimization Tobias Friedrich, Timo Kötzing, Andrew Sutton

above are identically distributed, but not identical (if they were identical, we would
have P (X = Y ) = 1).

We call two random variables X, Y independent if for all sets A,B ⊆ R we have

P (X ∈ A and Y ∈ B) = P (X ∈ A) · P (Y ∈ B).

Similarly, we call a sequence of random variables (Xi)i independent if for all sequences
(Ai)i of subsets of real numbers we have

P (
∧
i

Xi ∈ Ai) =
∏
i

P (Xi ∈ Ai).

We call two random variables independently identically distributed (i.i.d.) if they are
identically distributed and independent. We extend this naturally to sequences of
random variables.

The expected value of a random variable X is

E(X) =
∑
ω∈Ω

P (ω) ·X(ω).

We note that

E(X) =
∑
ω∈Ω

P (ω) ·X(ω)

=
∑
r∈R

∑
ω:X(ω)=r

P (ω) · r

=
∑
r∈R

r · P (X = r).

Whenever X, Y are random variables, we define X +Y to be the random variable
such that, for all ω ∈ Ω, (X+Y )(ω) = X(ω)+Y (ω). Similarly we can define all kinds
of other operations on random variables, for example, for r ∈ R, rX is the random
variable such that (rX)(ω) = rX(ω).

We have the following rules for working with random variables X, Y and r ∈ R.

(a) E(X + Y ) = E(X) + E(Y );

(b) E(rX) = rE(X).

In other words, E is linear.
For any random variable X we let Var(X) = E((X −E(X))2) be the variance of

the random variable X.

2



Heuristic Optimization Tobias Friedrich, Timo Kötzing, Andrew Sutton

Some Theorems about Random Variables

Theorem 1 Let X, Y be independent random variables. We have E(XY ) = E(X)E(Y ).

Proof. We have the following chain of equalities.

E(XY ) =
∑
ω∈Ω

P (ω)(XY )(ω)

=
∑
ω∈Ω

P (ω)X(ω)Y (ω)

=
∑

(a,b)∈R

P (X = a, Y = b)ab

=
∑

(a,b)∈R

P (X = a)P (Y = b)ab

=
∑
a∈R

∑
b∈R

(P (X = a)a)(P (Y = b)b)

=
∑
a∈R

(
(P (X = a)a)

∑
b∈R

P (Y = b)b

)

=

(∑
a∈R

(P (X = a)a)

)(∑
b∈R

P (Y = b)b

)
= E(X)E(Y ).

This concludes the proof.

Theorem 2 Let X be a random variable. We have Var(X) = E(X2)− E(X)2.

Proof. We have the following chain of equalities.

Var(X) = E((X − E(X))2)

= E(X2 − 2XE(X) + E(X)2)

= E(X2)− 2E(X)E(X) + E(X)2

= E(X2)− E(X)2.

This concludes the proof.

Theorem 3 Let X, Y be independent random variables. We have Var(X + Y ) =
Var(X) + Var(Y ).
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Proof. We have the following chain of equalities.

Var(X + Y ) = E((X + Y )2)− E(X + Y )2

= E(X2 + 2XY + Y 2 − E(X)2 − 2E(X)E(Y )− E(Y )2)

= E(X2) + 2E(X)E(Y ) + E(Y 2)− E(X)2 − 2E(X)E(Y )− E(Y )2

= E(X2)− E(X)2 + E(Y 2)− E(Y )2

= Var(X) + Var(Y ).

This concludes the proof.

Theorem 4 (Markov’s Inequality) Let X be a random variable with P (X < 0) =
0. For all a > 0 we have

P (X ≥ a) ≤ E(X)

a
.

Proof. We have

E(X) =
∑
b≥0

bP (X = b)

=
∑

0≤b<a

bP (X = b) +
∑
b≥a

bP (X = b)

≥
∑

0≤b<a

0P (X = b) +
∑
b≥a

aP (X = b)

= a
∑
b≥a

P (X = b)

= aP (X ≥ a).

Dividing both sides by a concludes the proof.

Theorem 5 Let X be a random variable which only takes values in the natural num-
bers. Then

E(X) =
∞∑
a=1

P (X ≥ a).
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Proof. We have

∞∑
a=1

P (X ≥ a) =
∞∑
a=1

∞∑
b=a

P (X = b)

=
∞∑
b=1

b∑
a=1

P (X = b)

=
∞∑
b=1

bP (X = b)

= E(X).

This concludes the proof.
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Some Example Probability Distributions

We will need some typical probability distributions. The simplest distribution is the
Bernoulli distribution. We say that a random variable X has Bernoulli distribution
with parameter p ∈ [0, 1] if P (X = 1) = p and P (X = 0) = 1− p. Thus, the random
variables takes on (at most) two values.

If we have n i.i.d. Bernoulli-distributed random variables (Xi)i≤n with parameter
p, then

∑n
i=1 Xi is a Binomial distribution with parameters n and p. We write a

Binomial distribution with parameters n and p as B(n, p). We have E(B(n, p)) = np.
We say that a random variable X has geometric distribution with parameter p ∈

(0, 1] if, for all natural numbers k,

P (X = k) = (1− p)kp.

We can imagine X as the number of times we need to be unsuccessful before being
successful, if we are successful each time with probability p. We have

∞∑
k=0

(1− p)kp = p
∞∑
k=0

(1− p)k = p
1

p
= 1.

This uses the formula for geometric series. Note that, for all k, P (X ≥ k) = (1− p)k.
Thus, we can easily compute E(X) = 1/p, using Theorem 5 (and the formula for
geometric series).
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