

Tobias Friedrich, Timo Kötzing, Andrew Sutton Summer Term 2015

Introduction to Probability Theory https://hpi.de/friedrich/teaching/ss15/heuristic-optimization.html

Here we will discuss some basics of probability theory that will enable us analyze some randomized algorithms. We start with some basic definitions. We let \mathbb{N} = $\{0, 1, 2, \ldots\}$ be the set of all natural numbers.

A pair (Ω, P) is called a *discrete probability space* if Ω is a countable set and $P: \Omega \to [0,1]$ is a function such that $\sum_{\omega \in \Omega} P(\omega) = 1$.

We call the elements of Ω elementary events; for each $\omega \in \Omega$ we call $P(\omega)$ the probability of ω . We call subsets of Ω events. For any $A \subseteq \Omega$ we let P(A) = $\sum_{a \in A} P(a)$; thus, we extended P to arbitrary events.

As an example, consider $\Omega = \{1, 2, 3, 4, 5, 6\}$ and, for all $\omega \in \Omega$, $P(\omega) = 1/6$. This models rolling a die, where each outcome (1 through 6) has the same property of appearing. In general, when Ω is finite, we can consider the *uniform distribution* which assigns each elementary event a probability of $1/|\Omega|$.

As another example, consider $\Omega = \mathbb{N}$ and, for all $n \in \mathbb{N}$, $P(n) = 2^{-n-1}$. Note that $\sum_{n \in \mathbb{N}} 2^{-n-1} = 1$ (geometric sum).

For all events $A, B \subseteq \Omega$, we have the following laws for dealing with probabilities.

- (a) If $A \subseteq B$, then $P(A) \leq P(B)$.
- (b) $P(A \cup B) = P(A) + P(B) P(A \cap B).$
- (c) $P(\Omega \setminus A) = 1 P(A)$.
- (d) For all sequences $(A_i)_i$ of events, $P(\bigcup_i A_i) \leq \sum_i P(A_i)$.

A random variable is a mapping $X : \Omega \to \mathbb{R}$. As an example, consider $\Omega =$ $\{1, 2, 3, 4, 5, 6\}^2$ and P as the uniform distribution on Ω , the result of rolling two dice. Let X be a random variable such that, for all $a, b \in \{1, 2, 3, 4, 5, 6\}, X(a, b) = a+b$. In other words, X is the sum of the results of two dice rolls. We can now consider such events as "X = 12" (this is the event consisting of all $\omega \in \Omega$ such that $X(\omega) = 12$). As an exercise, how much is P(X = 12)? What about P(X = 0)? What is P(X > 7)?

For the same (Ω, P) based on rolling two dice, let X and Y be random variables such that, for all $a, b \in \{1, 2, 3, 4, 5, 6\}$, X(a, b) = a and Y(a, b). In other words, X is the result of the first die and Y of the second. We can now consider such events as "X = Y" (this is the event consisting of all $\omega \in \Omega$ such that $X(\omega) = Y(\omega)$). As an exercise, how much is P(X = Y)? What about P(X = Y + 2)? What is P(X > Y)?

We call two random variables X, Y identically distributed if, for all $r \in \mathbb{R}$, P(X =r = P(Y = r). We then write $X \sim Y$. Note that the two random variables X, Y just above are identically distributed, but not identical (if they were identical, we would have P(X = Y) = 1).

We call two random variables X, Y independent if for all sets $A, B \subseteq \mathbb{R}$ we have

$$P(X \in A \text{ and } Y \in B) = P(X \in A) \cdot P(Y \in B).$$

Similarly, we call a sequence of random variables $(X_i)_i$ independent if for all sequences $(A_i)_i$ of subsets of real numbers we have

$$P(\bigwedge_{i} X_i \in A_i) = \prod_{i} P(X_i \in A_i).$$

We call two random variables *independently identically distributed* (*i.i.d.*) if they are identically distributed and independent. We extend this naturally to sequences of random variables.

The *expected value* of a random variable X is

$$E(X) = \sum_{\omega \in \Omega} P(\omega) \cdot X(\omega)$$

We note that

$$E(X) = \sum_{\omega \in \Omega} P(\omega) \cdot X(\omega)$$
$$= \sum_{r \in \mathbb{R}} \sum_{\omega: X(\omega) = r} P(\omega) \cdot r$$
$$= \sum_{r \in \mathbb{R}} r \cdot P(X = r).$$

Whenever X, Y are random variables, we define X + Y to be the random variable such that, for all $\omega \in \Omega$, $(X+Y)(\omega) = X(\omega) + Y(\omega)$. Similarly we can define all kinds of other operations on random variables, for example, for $r \in \mathbb{R}$, rX is the random variable such that $(rX)(\omega) = rX(\omega)$.

We have the following rules for working with random variables X, Y and $r \in \mathbb{R}$.

- (a) E(X+Y) = E(X) + E(Y);
- (b) E(rX) = rE(X).

In other words, E is *linear*.

For any random variable X we let $Var(X) = E((X - E(X))^2)$ be the variance of the random variable X.

Some Theorems about Random Variables

Theorem 1 Let X, Y be independent random variables. We have E(XY) = E(X)E(Y). *Proof.* We have the following chain of equalities.

$$\begin{split} E(XY) &= \sum_{\omega \in \Omega} P(\omega)(XY)(\omega) \\ &= \sum_{\omega \in \Omega} P(\omega)X(\omega)Y(\omega) \\ &= \sum_{(a,b) \in \mathbb{R}} P(X = a, Y = b)ab \\ &= \sum_{(a,b) \in \mathbb{R}} P(X = a)P(Y = b)ab \\ &= \sum_{a \in \mathbb{R}} \sum_{b \in \mathbb{R}} (P(X = a)a)(P(Y = b)b) \\ &= \sum_{a \in \mathbb{R}} \left((P(X = a)a) \sum_{b \in \mathbb{R}} P(Y = b)b \right) \\ &= \left(\sum_{a \in \mathbb{R}} (P(X = a)a) \right) \left(\sum_{b \in \mathbb{R}} P(Y = b)b \right) \\ &= E(X)E(Y). \end{split}$$

This concludes the proof.

Theorem 2 Let X be a random variable. We have $Var(X) = E(X^2) - E(X)^2$. *Proof.* We have the following chain of equalities.

$$Var(X) = E((X - E(X))^2)$$

= $E(X^2 - 2XE(X) + E(X)^2)$
= $E(X^2) - 2E(X)E(X) + E(X)^2$
= $E(X^2) - E(X)^2$.

This concludes the proof.

Theorem 3 Let X, Y be independent random variables. We have Var(X + Y) = Var(X) + Var(Y).

Proof. We have the following chain of equalities.

$$Var(X + Y) = E((X + Y)^2) - E(X + Y)^2$$

= $E(X^2 + 2XY + Y^2 - E(X)^2 - 2E(X)E(Y) - E(Y)^2)$
= $E(X^2) + 2E(X)E(Y) + E(Y^2) - E(X)^2 - 2E(X)E(Y) - E(Y)^2$
= $E(X^2) - E(X)^2 + E(Y^2) - E(Y)^2$
= $Var(X) + Var(Y).$

This concludes the proof.

Theorem 4 (Markov's Inequality) Let X be a random variable with P(X < 0) = 0. For all a > 0 we have

$$P(X \ge a) \le \frac{E(X)}{a}.$$

Proof. We have

$$\begin{split} E(X) &= \sum_{b\geq 0} bP(X=b) \\ &= \sum_{0\leq b$$

Dividing both sides by a concludes the proof.

Theorem 5 Let X be a random variable which only takes values in the natural numbers. Then \sim

$$E(X) = \sum_{a=1}^{\infty} P(X \ge a).$$

Proof. We have

$$\sum_{a=1}^{\infty} P(X \ge a) = \sum_{a=1}^{\infty} \sum_{b=a}^{\infty} P(X = b)$$
$$= \sum_{b=1}^{\infty} \sum_{a=1}^{b} P(X = b)$$
$$= \sum_{b=1}^{\infty} b P(X = b)$$
$$= E(X).$$

This concludes the proof.

Г		
l		

Some Example Probability Distributions

We will need some typical probability distributions. The simplest distribution is the *Bernoulli distribution*. We say that a random variable X has Bernoulli distribution with parameter $p \in [0, 1]$ if P(X = 1) = p and P(X = 0) = 1 - p. Thus, the random variables takes on (at most) two values.

If we have n i.i.d. Bernoulli-distributed random variables $(X_i)_{i \leq n}$ with parameter p, then $\sum_{i=1}^{n} X_i$ is a *Binomial distribution* with parameters n and p. We write a Binomial distribution with parameters n and p as B(n, p). We have E(B(n, p)) = np.

We say that a random variable X has geometric distribution with parameter $p \in (0, 1]$ if, for all natural numbers k,

$$P(X=k) = (1-p)^k p.$$

We can imagine X as the number of times we need to be unsuccessful before being successful, if we are successful each time with probability p. We have

$$\sum_{k=0}^{\infty} (1-p)^k p = p \sum_{k=0}^{\infty} (1-p)^k = p \frac{1}{p} = 1.$$

This uses the formula for geometric series. Note that, for all k, $P(X \ge k) = (1-p)^k$. Thus, we can easily compute E(X) = 1/p, using Theorem 5 (and the formula for geometric series).