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Here we will discuss some basics of probability theory that will enable us analyze
some randomized algorithms. We start with some basic definitions. We let N =
{0,1,2,...} be the set of all natural numbers.

A pair (Q, P) is called a discrete probability space if ) is a countable set and
P :Q —[0,1] is a function such that ) ., P(w) = 1.

We call the elements of 2 elementary events; for each w € 2 we call P(w) the
probability of w. We call subsets of Q events. For any A C Q we let P(A) =
Y wea P(a); thus, we extended P to arbitrary events.

As an example, consider 2 = {1,2,3,4,5,6} and, for all w € Q, P(w) = 1/6.
This models rolling a die, where each outcome (1 through 6) has the same property
of appearing. In general, when (2 is finite, we can consider the uniform distribution
which assigns each elementary event a probability of 1/|€2].

As another example, consider 2 = N and, for all n € N, P(n) = 27""1. Note that
> onen 27"t =1 (geometric sum).

For all events A, B C €, we have the following laws for dealing with probabilities.

(a) If A C B, then P(A) < P(B).

(b)

(c)

(d) For all sequences (A;); of events, P(lJ, 4;) <>, P(4;).

P(AUB) = P(A) + P(B) — P(AN B).
P(Q\ A)=1— P(A).

A random wvariable is a mapping X : 0 — R. As an example, consider ) =
{1,2,3,4,5,6}? and P as the uniform distribution on €2, the result of rolling two dice.
Let X be a random variable such that, for all a,b € {1,2,3,4,5,6}, X(a,b) = a+b. In
other words, X is the sum of the results of two dice rolls. We can now consider such
events as “X = 127 (this is the event consisting of all w € € such that X (w) = 12). As
an exercise, how much is P(X = 12)7 What about P(X = 0)? What is P(X > 7)?

For the same (€2, P) based on rolling two dice, let X and Y be random variables
such that, for all a,b € {1,2,3,4,5,6}, X(a,b) = a and Y (a,b). In other words, X is
the result of the first die and Y of the second. We can now consider such events as
“X =Y (this is the event consisting of all w € Q such that X(w) = Y(w)). As an
exercise, how much is P(X =Y)? What about P(X =Y +2)? What is P(X > Y)?

We call two random variables X, Y identically distributed if, for all r € R, P(X =
r) = P(Y =r). We then write X ~ Y. Note that the two random variables X, Y just
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above are identically distributed, but not identical (if they were identical, we would
have P(X =Y) =1).
We call two random variables X, Y independent if for all sets A, B C R we have

P(Xe€AandY e B)=P(X € A)-P(Y € B).

Similarly, we call a sequence of random variables (X;); independent if for all sequences
(A;); of subsets of real numbers we have

P(\Xi€ A) =[] P(Xi € 4.

We call two random variables independently identically distributed (i.i.d.) if they are
identically distributed and independent. We extend this naturally to sequences of
random variables.

The expected value of a random variable X is

E(X)=) Pw) X(w).

weN

We note that

E(X) = ) Pw) X(w)

weN

= Z Z P(w) - r

r€R w: X (w)=r

= > r-P(X=r).

reR

Whenever X, Y are random variables, we define X +Y to be the random variable
such that, for allw € Q, (X +Y)(w) = X(w)+Y (w). Similarly we can define all kinds
of other operations on random variables, for example, for r € R, rX is the random
variable such that (rX)(w) = rX(w).

We have the following rules for working with random variables X,Y and r € R.

(a) B(X +Y)=E(X)+E(Y);
(b) B(rX) = rB(X).

In other words, E is linear.
For any random variable X we let Var(X) = F((X — E(X))?) be the variance of
the random variable X.
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Some Theorems about Random Variables

Theorem 1 Let X,Y be independent random variables. We have E(XY) = E(X)E(Y).

Proof. We have the following chain of equalities.

E(XY) = ) Pw)(XY)w)

This concludes the proof. O

Theorem 2 Let X be a random variable. We have Var(X) = F(X?) — E(X)?.

Proof. We have the following chain of equalities.

Var(X) = E((X - E(X))?)
= E(X2 —2XE(X)+ E(X)?
= E(X?*) -2B(X)BE(X)+ E(X)?
= B(X*) - E(X)"
This concludes the proof. O

Theorem 3 Let X,Y be independent random wvariables. We have Var(X +Y) =
Var(X) + Var(Y).
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Proof. We have the following chain of equalities.

Var(X +Y) = E(X+Y)’) - E(X+Y)?
= E(X?4+2XY +Y? - E(X)? -2E(X)E(Y) — E(Y)?)
= E(X®)+2BX)E(Y)+EY?) — E(X)?=2E(X)E(Y) — E(Y)?
= BE(X?)-EX)*+E(Y? - E(Y)?
Var(X) + Var(Y).

This concludes the proof. O

Theorem 4 (Markov’s Inequality) Let X be a random variable with P(X < 0) =

0. For all a > 0 we have
E(X)

a

P(X >a) <
Proof. We have

E(X) = ) bP(X =)

b>0

= Y bP(X =b)+ Y bP(X =b)

0<b<a b>a

> Y 0P(X=b)+) aP(X =b)

0<b<a b>a

= a) P(X =1

b>a

= aP(X >a).

Dividing both sides by a concludes the proof. [

Theorem 5 Let X be a random variable which only takes values in the natural num-
bers. Then

BE(X) = ip(x > q).
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Proof. We have

Y P(X>a) = Y > PX=b)

This concludes the proof. O
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Some Example Probability Distributions

We will need some typical probability distributions. The simplest distribution is the
Bernoulli distribution. We say that a random variable X has Bernoulli distribution
with parameter p € [0,1] if P(X =1) =p and P(X =0) = 1 —p. Thus, the random
variables takes on (at most) two values.

If we have n i.i.d. Bernoulli-distributed random variables (X;);<, with parameter
p, then " | X; is a Binomial distribution with parameters n and p. We write a
Binomial distribution with parameters n and p as B(n,p). We have E(B(n,p)) = np.

We say that a random variable X has geometric distribution with parameter p €
(0, 1] if, for all natural numbers k,

P(X = k)= (1-p)'p.

We can imagine X as the number of times we need to be unsuccessful before being
successful, if we are successful each time with probability p. We have

d(l-pfp=p> (1-pk* :p% =1
= k=0

k=0

This uses the formula for geometric series. Note that, for all k, P(X > k) = (1 —p)*.
Thus, we can easily compute E(X) = 1/p, using Theorem [5| (and the formula for
geometric series).



