
Heuristic Optimization
Lecture 6

Algorithm Engineering Group
Hasso Plattner Institute, University of Potsdam

19 May 2015

Heuristic Optimization

Runtime analysis – RLS on OneMax
10 trials of n ∈ {1, . . . , 200}.

0 50 100 150 200

0

500

1,000

1,500

2,000

n

T

n lnn

(1 + ε)n lnn

(1− ε)(n− 1) lnn

We want to rigorously understand this behavior. 19 May 2015 1 / 25

Heuristic Optimization

Runtime analysis – RLS on OneMax

Let’s suppose: during the execution of RLS the current string x looks like this:

x = 0 1 0 1 1 0 0 1 · · · 1

exactly i one bits

Let’s look into
• pi: probability that RLS makes an improving move from x

• Ti: time until RLS makes an improving move from x

19 May 2015 2 / 25

Heuristic Optimization

Runtime analysis – RLS on OneMax

0
0

0
1

0
2

0
3

0
4

001
5

p0 = 6
6 E(T0) = 6

6

0
0

0
1

001
2

0
3

0
4

1
5

p1 = 5
6 E(T1) = 6

5

001
0

0
1

1
2

0
3

0
4

1
5

p2 = 4
6 E(T2) = 6

4

1
0

0
1

1
2

0
3

001
4

1
5

p3 = 3
6 E(T3) = 6

3

1
0

001
1

1
2

0
3

1
4

1
5

p4 = 2
6 E(T4) = 6

2

1
0

1
1

1
2

001
3

1
4

1
5

p5 = 1
6 E(T5) = 6

1

19 May 2015 3 / 25



Heuristic Optimization

Runtime analysis – RLS on OneMax

Runtime

T is the random variable that counts the number of steps (function evaluations)
taken by RLS until the optimum is generated.

E(T ) = E(T0) + E(T1) + · · ·+ E(T5)

= 1/p0 + 1/p1 + · · ·+ 1/p5

=
5∑
i=0

1

pi
=

5∑
i=0

6

i+ 1
= 6

6∑
i=1

1

i
= 6 · 2.45 = 14.7

19 May 2015 4 / 25

Heuristic Optimization

Runtime analysis – RLS on OneMax

0
0

1
0

2
001

3
0

n
0· · · p0 = n

n E(T0) = n
n

0
001

1
0

2
1

3
0

n
0· · · p1 = n−1

n E(T1) = n
n−1

0
1

1
0

2
1

3
001

n
0· · · p2 = n−2

n E(T2) = n
n−2

...
...

...
...

...
...

...

0
1

1
001

2
1

3
1

n
1· · · pn−1 = 1

n E(Tn−1) = n
1

remaining zero

19 May 2015 5 / 25

Heuristic Optimization

Coupon collector process
Suppose there are n different kinds of coupons. We must collect all n
coupons during a series of trials.

In each trial, exactly one of the n coupons is drawn, each one equally
likely. We must keep drawing in each trial until we have collected each
coupon at least once.

Starting with zero coupons, what is the exact number of trials needed
before we have all n coupons?

Theorem (Coupon collector theorem)

Let T be the number of trials until all n coupons are collected. Then

E(T ) =

n−1∑
i=0

1

pi+1
=

n−1∑
i=0

n

n− i
= n

n−1∑
i=0

1

i

= n ·Hn = n(log n+ Θ(1)) = n log n+O(n)

19 May 2015 6 / 25

Heuristic Optimization

Coupon collector process: concentration bounds
What is the probability that T > n lnn+O(n)?

Theorem (Coupon collector upper bound)

Let T be the number of trials until all n coupons are collected. Then

Pr(T ≥ (1 + ε)n lnn) ≤ n−ε

Proof.
Probability of choosing a specific coupon: 1/n.

Probability of not choosing a specific coupon: 1− 1/n.

Probability of not choosing a specific coupon for t rounds: (1− 1/n)t

Probability that one of the n coupons is not chosen in t rounds: n · (1− 1/n)t

(union bound)

Let t = cn lnn,

Pr(T ≥ cn lnn) ≤ n(1− 1/n)cn lnn ≤ ne−c lnn = n · n−c = n−c+1

19 May 2015 7 / 25



Heuristic Optimization

Coupon collector process: concentration bounds

Theorem (Coupon collector lower bound) (Doerr, 2011)

Let T be the number of trials until all n coupons are collected. Then

Pr(T < (1− ε)(n− 1) lnn) ≤ e−n
ε

Corollary

Let T be the time for RLS to optimize OneMax. Then,

E(T ) = Θ(n log n)

Pr(T ≥ (1 + ε)n lnn) ≤ n−ε

Pr(T < (1− ε)(n− 1) lnn) ≤ e−n
−ε

19 May 2015 8 / 25

Heuristic Optimization

Runtime analysis – RLS on OneMax

0 50 100 150 200

0

500

1,000

1,500

2,000

n

T

n lnn

(1 + ε)n lnn

(1− ε)(n− 1) lnn

What about (1+1) EA? Can we use Coupon Collector? Why/why not?
19 May 2015 9 / 25

Heuristic Optimization

Fitness levels

Observation: fitness during optimization is always monotone increasing

Idea: partition the search space {0, 1}n into m sets A1, . . . Am such that

1. ∀i 6= j : Ai ∩Aj = ∅
2.
⋃m
i=1Ai = {0, 1}n

3. for all points a ∈ Ai and b ∈ Aj , f(a) < f(b) if i < j

We require Am to contain only optimal search points

Procedure: for each level Ai, bound the probability of leaving a level Ai for a
higher level Aj , j > i.

19 May 2015 10 / 25

Heuristic Optimization

Fitness levels

A1

A2

A3

A4

A5

A6

A7

fi
tn

es
s

Pr((1+1) EA leaves Ai) ≥ si

• p(Ai) be the probability that a random chosen point belongs to Ai
• si be the probability to leave level Ai for level Aj with j > i

E(T ) ≤
m−1∑
i=1

p(Ai) ·
(

1

si
+ · · ·+ 1

sm−1

)
≤
(

1

s1
+ · · ·+ 1

sm−1

)
=

m−1∑
i=1

1

si

Law of total probability:

E(X) =
∑
F Pr(F )E(X|F )

Figure adapted from D. Sudholt, Tutorial 2011
19 May 2015 11 / 25



Heuristic Optimization

Runtime analysis – (1+1) EA on OneMax

Theorem

The expected runtime of the (1+1) EA on OneMax is O(n log n).

Proof

We partition {0, 1}n into disjoint sets A0, A1, . . . , An where x is in Ai if and only
if it has i zeros (n− i ones).

To escape Ai, it suffices to flip a single zero and leave all other bits unchanged.

Thus, si ≥ i
n

(
1− 1

n

)n−1 ≥ i
en , and 1

si
≤ en

i .

We conclude

E(T ) ≤
m−1∑
i=1

1

si
≤

n∑
i=1

en

i
= en ·Hn = O(n log n).

19 May 2015 12 / 25

Heuristic Optimization

Runtime analysis – (1+1) EA on OneMax

This gives only an upper bound. Maybe the (1+1) EA can be much quicker. For
example it could be O(n) or even something like O(n log log n).

19 May 2015 13 / 25

Heuristic Optimization

Runtime analysis – (1+1) EA on OneMax

Theorem (Droste, Jansen, Wegener 2002)

The expected runtime of the (1+1) EA on OneMax is Ω(n log n).

Lemma

The probability that the (1+1) EA needs at least (n− 1) lnn steps is at least a
constant c.

19 May 2015 14 / 25

Heuristic Optimization

Runtime analysis – (1+1) EA on OneMax
Proof of Lemma.
The initial solution has at most n/2 one bits with probability at least 1/2.
There is a constant probability that in (n− 1) lnn steps one of the remaining zero
bits does not flip:

• Probability a particular bit doesn’t flip in t steps: (1− 1/n)t

• Probability it flips at least once in t steps: 1− (1− 1/n)t

• Probability n/2 bits flip at least once in t steps: (1− (1− 1/n)t)n/2

• Probability at least one of the n/2 bits does not flip in t steps:
1− [1− (1− 1/n)t]n/2.

Set t = (n− 1) lnn. Then

1− [1− (1− 1/n)t]n/2 = 1− [1− (1− 1/n)(n−1) lnn]n/2

≥ 1− [1− (1/e)lnn]n/2

= 1− [1− 1/n]n/2

= 1− [1− 1/n]n·1/2 ≥ (1− (2e))−1/2 = c.

19 May 2015 15 / 25



Heuristic Optimization

Runtime analysis – (1+1) EA on OneMax

Theorem (Droste, Jansen, Wegener 2002)

The expected runtime of the (1+1) EA on OneMax is Ω(n log n).

Proof

Expected runtime:

E(T ) =
∞∑
t=1

tPr(T = t) ≥ (n− 1) lnn · Pr(T ≥ (n− 1) lnn)

≥ (n− 1) lnn · c = Ω(n log n).

by previous lemma

Upper bound given by fitness levels is tight.

19 May 2015 16 / 25

Heuristic Optimization

Fitness levels

There are several more advanced results that use the fitness levels
technique:

Expected runtime of the (1+λ) EA on LeadingOnes is O(λn+ n2) (Jansen et
al., 2005)

Expected runtime of the (µ+1) EA on LeadingOnes is O(µn log n+ n2) (Witt,
2006)

Fitness levels for proving lower bounds (Sudholt, 2010).

Non-elitist populations (Lehre, 2011).

19 May 2015 17 / 25

Heuristic Optimization

Drift Analysis

Consider a process moving towards/away from a goal (possibly stochastically).

Model this as a sequence of numbers X0, X1, . . . where

Xt := distance from the goal at time t.

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

(10, 9, 8, 9, 8, 7, 6, 5, 4, 5, . . . , 0)

Definition
The drift of a process at time t is the expected decrease in distance from a goal:

E(Xt −Xt+1)

Drift analysis allows us to relate the drift to the time to reach the goal.

E(Xt −Xt+1) =

{
0 if Xt = 0

1 otherwise

???

19 May 2015 18 / 25

Heuristic Optimization

Drift Analysis – Deterministic Process

Consider a process that moves as follows. In each step,

• With probability 1, move one step toward the goal.

Starting at distance n, how many steps until the goal is reached? n

Drift is E(Xt −Xt+1) = 1 as long as Xt > 0.

Expected time to reach the goal:

E(T ) =
maximum distance

drift
=
n

1
= n.

19 May 2015 19 / 25



Heuristic Optimization

Drift Analysis – Stochastic Process
Consider a process that moves as follows:

• with probability 3/5, move one step toward the goal,

• with probability 2/5, move one step away from the goal.

Starting at distance n, how many steps until the goal is reached? 5n

Xt −Xt+1 =


0 if Xt = 0,

1 if Xt 6= 0, with probability 3/5,

−1 if Xt 6= 0, with probability 2/5,

Drift is

E(Xt −Xt+1) =
3

5
· 1 +

2

5
· (−1) =

3− 2

5
=

1

5
.

Expected time to reach the goal:

E(T ) =
maximum distance

drift
=

n

1/5
= 5n.

19 May 2015 20 / 25

Heuristic Optimization

Drift Analysis

Theorem (He and Yao, 2001)

Let {Xt : t ≥ 0} be a Markov process over R+
0 . Let T := min{t ≥ 0 : Xt = 0}. If

there exists δ > 0 such that at any time step t ≥ 0 and at any state Xt > 0, the
following condition holds:

E(Xt −Xt+1 | Xt > 0) ≥ δ,

then

E(T | X0 > 0) ≤ X0

δ
and E(T ) ≤ E(X0)

δ

Example: (1+1) EA on OneMax:

E(Xt −Xt+1 | Xt > 0) ≥ 1 · i
n

(
1− 1

n

)n−1
≥ i

en
≥ 1

en
= δ

E(T | X0 > 0) ≤ E(X0)

δ
≤ n/2

1/(en)
= O(n2).

Obviously not tight!
19 May 2015 21 / 25

Heuristic Optimization

Drift Analysis

Observation: we don’t have to use the distance directly!

Idea: progress toward goal depends on distance from goal. We can use a
potential function.

Let Xt = ln(i+ 1) where i is the number of zeros in the bitstring.

E(Xt −Xt+1 | Xt > 0) ≥ ln(i+ 1) · i
n

(
1− 1

n

)n−1
≥ ln(i+ 1)

en
≥ ln(2)

en
= δ

E(T | X0 > 0) ≤ X0

δ
≤ ln(n+ 1)

ln(2)/en
= O(n log n).

19 May 2015 22 / 25

Heuristic Optimization

Drift Analysis

Drift analysis has many powerful variants:

• Multiplicative Drift (Doerr et al., 2010)

• Negative Drift (Oliveto and Witt, 2011)

• Drift Analysis for Stochastic Populations (Lehre, 2010)

• Variable Drift (Johannsen 2010)

Refinements allow for

• Upper and lower bounds on expectation

• Tail inequalities

19 May 2015 23 / 25



Heuristic Optimization

Further reading

Pietro Oliveto and Xin Yao. A Gentle Introduction to the Time Complexity
Analysis of Evolutionary Algorithms:2

http://www.cs.bham.ac.uk/~olivetps/images/Oliveto2012Tutorial.pdf

Frank Neumann and Carsten Witt, Bioinspired Computation in Combinatorial
Optimization – Algorithms and Their Computational Complexity. Natural
Computing Series, Springer, 2010.
http://www.bioinspiredcomputation.com/

Anne Auger and Benjamin Doerr (editors). Theory of Randomized Search
Heuristics: Foundations and Recent Developments. World Scientific, 2011.

Thomas Jansen, Analyzing Evolutionary Algorithms. The Computer Science
Perspective. Springer, 2013.

2Lectures 5&6 are based in part on these slides (with permission).
19 May 2015 24 / 25

Heuristic Optimization

References
Benjamin Doerr, “Analyzing Randomized Search Heuristics: Tools from Probability Theory.” Chapter 1 of
Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific, 2011.

Benjamin Doerr, Daniel Johannsen and Carola Winzen (2010). “Multiplicative drift analysis.” In Proceedings
of the Twelfth Annual Conference on Genetic and Evolutionary Computation, pages 1449–1456. ACM.

Stefan Droste, Thomas Jansen and Ingo Wegener (2002). “On the analysis of the (1+1) evolutionary
algorithm.” Theoretical Computer Science, 276(1-2):51–81.

Thomas Jansen, Ken A. De Jong and Ingo Wegener (2005). “On the choice of the offspring population size in
evolutionary algorithms.” Evolutionary Computation, 13(4):413–440.

Daniel Johannsen (2010). “Random Combinatorial Structures and Randomized Search Heuristics.” PhD
thesis, Universität des Saarlandes.

Per Kristian Lehre (2010). “Negative drift in populations.” In Proceedings of the Eleventh International
Conference on Parallel Problem Solving from Nature, pages 244–253.

Per Kristian Lehre (2011). “Fitness-levels for non-elitist populations.” In Proceedings of the Thirteenth
Annual Conference on Genetic and Evolutionary Computation, pages 20752082. ACM.

Pietro S. Oliveto and Carsten Witt (2011). “Simplified drift analysis for proving lower bounds inevolutionary
computation.” Algorithmica, 59(3):369–386. Erratum: http://arxiv.org/abs/1211.7184
Dirk Sudholt (2010). “General lower bounds for the running time of evolutionary algorithms.” In Proceedings
of the Eleventh International Conference on Parallel Problem Solving from Nature, pages 124133. Springer.

Witt, C. (2006). “Runtime analysis of the (µ+1) ea on simple pseudo-boolean functions evolutionary
computation.” In Proceedings of the Eigth Annual Conference on Genetic and Evolutionary Computation,
pages 651658. ACM

19 May 2015 25 / 25

http://www.cs.bham.ac.uk/~olivetps/images/Oliveto2012Tutorial.pdf
http://www.bioinspiredcomputation.com/
http://arxiv.org/abs/1211.7184

