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Heuristic Optimization

Runtime analysis – RLS on OneMax
10 trials of n ∈ {1, . . . , 200}.
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Runtime analysis – RLS on OneMax

Let’s suppose: during the execution of RLS the current string x looks like this:

x = 0 1 0 1 1 0 0 1 · · · 1

exactly i one bits

Let’s look into
• pi: probability that RLS makes an improving move from x

• Ti: time until RLS makes an improving move from x
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Runtime analysis – RLS on OneMax
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Runtime analysis – RLS on OneMax

Runtime

T is the random variable that counts the number of steps (function evaluations)
taken by RLS until the optimum is generated.

E(T ) = E(T0) + E(T1) + · · ·+ E(T5)

= 1/p0 + 1/p1 + · · ·+ 1/p5

=
5∑
i=0

1

pi
=

5∑
i=0

6

i+ 1
= 6

6∑
i=1

1

i
= 6 · 2.45 = 14.7
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Runtime analysis – RLS on OneMax
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Coupon collector process
Suppose there are n different kinds of coupons. We must collect all n
coupons during a series of trials.

In each trial, exactly one of the n coupons is drawn, each one equally
likely. We must keep drawing in each trial until we have collected each
coupon at least once.

Starting with zero coupons, what is the exact number of trials needed
before we have all n coupons?

Theorem (Coupon collector theorem)

Let T be the number of trials until all n coupons are collected. Then

E(T ) =

n−1∑
i=0

1

pi+1
=

n−1∑
i=0

n

n− i
= n

n−1∑
i=0

1

i

= n ·Hn = n(log n+ Θ(1)) = n log n+O(n)
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Coupon collector process: concentration bounds
What is the probability that T > n lnn+O(n)?

Theorem (Coupon collector upper bound)

Let T be the number of trials until all n coupons are collected. Then

Pr(T ≥ (1 + ε)n lnn) ≤ n−ε

Proof.
Probability of choosing a specific coupon: 1/n.

Probability of not choosing a specific coupon: 1− 1/n.

Probability of not choosing a specific coupon for t rounds: (1− 1/n)t

Probability that one of the n coupons is not chosen in t rounds: n · (1− 1/n)t

(union bound)

Let t = cn lnn,

Pr(T ≥ cn lnn) ≤ n(1− 1/n)cn lnn ≤ ne−c lnn = n · n−c = n−c+1
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Coupon collector process: concentration bounds

Theorem (Coupon collector lower bound) (Doerr, 2011)

Let T be the number of trials until all n coupons are collected. Then

Pr(T < (1− ε)(n− 1) lnn) ≤ e−n
ε

Corollary

Let T be the time for RLS to optimize OneMax. Then,

E(T ) = Θ(n log n)

Pr(T ≥ (1 + ε)n lnn) ≤ n−ε

Pr(T < (1− ε)(n− 1) lnn) ≤ e−n
−ε
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Runtime analysis – RLS on OneMax
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What about (1+1) EA? Can we use Coupon Collector? Why/why not?
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Fitness levels

Observation: fitness during optimization is always monotone increasing

Idea: partition the search space {0, 1}n into m sets A1, . . . Am such that

1. ∀i 6= j : Ai ∩Aj = ∅
2.
⋃m
i=1Ai = {0, 1}n

3. for all points a ∈ Ai and b ∈ Aj , f(a) < f(b) if i < j

We require Am to contain only optimal search points

Procedure: for each level Ai, bound the probability of leaving a level Ai for a
higher level Aj , j > i.
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Fitness levels

A1
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fi
tn
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s

Pr((1+1) EA leaves Ai) ≥ si

• p(Ai) be the probability that a random chosen point belongs to Ai
• si be the probability to leave level Ai for level Aj with j > i

E(T ) ≤
m−1∑
i=1

p(Ai) ·
(

1

si
+ · · ·+ 1

sm−1

)
≤
(

1

s1
+ · · ·+ 1

sm−1

)
=

m−1∑
i=1

1

si

Law of total probability:

E(X) =
∑
F Pr(F )E(X|F )

Figure adapted from D. Sudholt, Tutorial 2011
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Runtime analysis – (1+1) EA on OneMax

Theorem

The expected runtime of the (1+1) EA on OneMax is O(n log n).

Proof

We partition {0, 1}n into disjoint sets A0, A1, . . . , An where x is in Ai if and only
if it has i zeros (n− i ones).

To escape Ai, it suffices to flip a single zero and leave all other bits unchanged.

Thus, si ≥ i
n

(
1− 1

n

)n−1 ≥ i
en , and 1

si
≤ en

i .

We conclude

E(T ) ≤
m−1∑
i=1

1

si
≤

n∑
i=1

en

i
= en ·Hn = O(n log n).
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Runtime analysis – (1+1) EA on OneMax

This gives only an upper bound. Maybe the (1+1) EA can be much quicker. For
example it could be O(n) or even something like O(n log log n).
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Runtime analysis – (1+1) EA on OneMax

Theorem (Droste, Jansen, Wegener 2002)

The expected runtime of the (1+1) EA on OneMax is Ω(n log n).

Lemma

The probability that the (1+1) EA needs at least (n− 1) lnn steps is at least a
constant c.
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Runtime analysis – (1+1) EA on OneMax
Proof of Lemma.
The initial solution has at most n/2 one bits with probability at least 1/2.
There is a constant probability that in (n− 1) lnn steps one of the remaining zero
bits does not flip:

• Probability a particular bit doesn’t flip in t steps: (1− 1/n)t

• Probability it flips at least once in t steps: 1− (1− 1/n)t

• Probability n/2 bits flip at least once in t steps: (1− (1− 1/n)t)n/2

• Probability at least one of the n/2 bits does not flip in t steps:
1− [1− (1− 1/n)t]n/2.

Set t = (n− 1) lnn. Then

1− [1− (1− 1/n)t]n/2 = 1− [1− (1− 1/n)(n−1) lnn]n/2

≥ 1− [1− (1/e)lnn]n/2

= 1− [1− 1/n]n/2

= 1− [1− 1/n]n·1/2 ≥ (1− (2e))−1/2 = c.
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Runtime analysis – (1+1) EA on OneMax

Theorem (Droste, Jansen, Wegener 2002)

The expected runtime of the (1+1) EA on OneMax is Ω(n log n).

Proof

Expected runtime:

E(T ) =
∞∑
t=1

tPr(T = t) ≥ (n− 1) lnn · Pr(T ≥ (n− 1) lnn)

≥ (n− 1) lnn · c = Ω(n log n).

by previous lemma

Upper bound given by fitness levels is tight.
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Fitness levels

There are several more advanced results that use the fitness levels
technique:

Expected runtime of the (1+λ) EA on LeadingOnes is O(λn+ n2) (Jansen et
al., 2005)

Expected runtime of the (µ+1) EA on LeadingOnes is O(µn log n+ n2) (Witt,
2006)

Fitness levels for proving lower bounds (Sudholt, 2010).

Non-elitist populations (Lehre, 2011).
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Drift Analysis

Consider a process moving towards/away from a goal (possibly stochastically).

Model this as a sequence of numbers X0, X1, . . . where

Xt := distance from the goal at time t.

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

(10, 9, 8, 9, 8, 7, 6, 5, 4, 5, . . . , 0)

Definition
The drift of a process at time t is the expected decrease in distance from a goal:

E(Xt −Xt+1)

Drift analysis allows us to relate the drift to the time to reach the goal.

E(Xt −Xt+1) =

{
0 if Xt = 0

1 otherwise

???
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Drift Analysis – Deterministic Process

Consider a process that moves as follows. In each step,

• With probability 1, move one step toward the goal.

Starting at distance n, how many steps until the goal is reached? n

Drift is E(Xt −Xt+1) = 1 as long as Xt > 0.

Expected time to reach the goal:

E(T ) =
maximum distance

drift
=
n

1
= n.
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Drift Analysis – Stochastic Process
Consider a process that moves as follows:

• with probability 3/5, move one step toward the goal,

• with probability 2/5, move one step away from the goal.

Starting at distance n, how many steps until the goal is reached? 5n

Xt −Xt+1 =


0 if Xt = 0,

1 if Xt 6= 0, with probability 3/5,

−1 if Xt 6= 0, with probability 2/5,

Drift is

E(Xt −Xt+1) =
3

5
· 1 +

2

5
· (−1) =

3− 2

5
=

1

5
.

Expected time to reach the goal:

E(T ) =
maximum distance

drift
=

n

1/5
= 5n.

19 May 2015 20 / 25

Heuristic Optimization

Drift Analysis

Theorem (He and Yao, 2001)

Let {Xt : t ≥ 0} be a Markov process over R+
0 . Let T := min{t ≥ 0 : Xt = 0}. If

there exists δ > 0 such that at any time step t ≥ 0 and at any state Xt > 0, the
following condition holds:

E(Xt −Xt+1 | Xt > 0) ≥ δ,

then

E(T | X0 > 0) ≤ X0

δ
and E(T ) ≤ E(X0)

δ

Example: (1+1) EA on OneMax:

E(Xt −Xt+1 | Xt > 0) ≥ 1 · i
n

(
1− 1

n

)n−1
≥ i

en
≥ 1

en
= δ

E(T | X0 > 0) ≤ E(X0)

δ
≤ n/2

1/(en)
= O(n2).

Obviously not tight!
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Drift Analysis

Observation: we don’t have to use the distance directly!

Idea: progress toward goal depends on distance from goal. We can use a
potential function.

Let Xt = ln(i+ 1) where i is the number of zeros in the bitstring.

E(Xt −Xt+1 | Xt > 0) ≥ ln(i+ 1) · i
n

(
1− 1

n

)n−1
≥ ln(i+ 1)

en
≥ ln(2)

en
= δ

E(T | X0 > 0) ≤ X0

δ
≤ ln(n+ 1)

ln(2)/en
= O(n log n).
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Drift Analysis

Drift analysis has many powerful variants:

• Multiplicative Drift (Doerr et al., 2010)

• Negative Drift (Oliveto and Witt, 2011)

• Drift Analysis for Stochastic Populations (Lehre, 2010)

• Variable Drift (Johannsen 2010)

Refinements allow for

• Upper and lower bounds on expectation

• Tail inequalities
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Further reading

Pietro Oliveto and Xin Yao. A Gentle Introduction to the Time Complexity
Analysis of Evolutionary Algorithms:2

http://www.cs.bham.ac.uk/~olivetps/images/Oliveto2012Tutorial.pdf

Frank Neumann and Carsten Witt, Bioinspired Computation in Combinatorial
Optimization – Algorithms and Their Computational Complexity. Natural
Computing Series, Springer, 2010.
http://www.bioinspiredcomputation.com/

Anne Auger and Benjamin Doerr (editors). Theory of Randomized Search
Heuristics: Foundations and Recent Developments. World Scientific, 2011.

Thomas Jansen, Analyzing Evolutionary Algorithms. The Computer Science
Perspective. Springer, 2013.

2Lectures 5&6 are based in part on these slides (with permission).
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