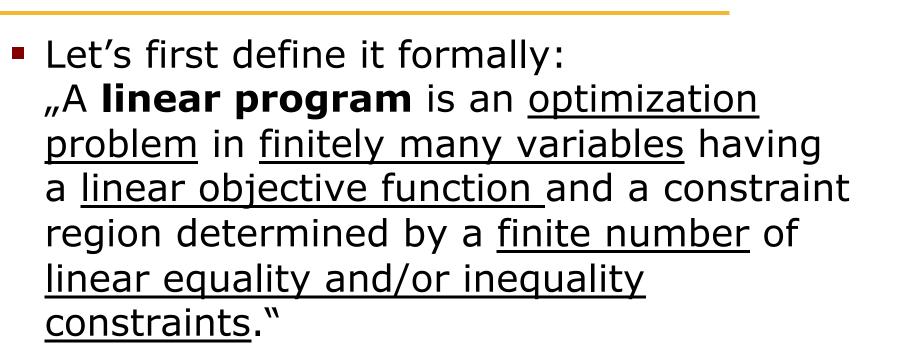


Heuristic Optimization Today: Linear Programming

Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam



HP

Hasso

HPI

Hasso

A linear function of the variables x_1, x_2, \ldots, x_n is any function f of the form

$$f(x) = c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

for fixed $c_i \in \mathbb{R}$ $i = 1, \ldots, n$.

A linear equality constraint is any equation of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n=\alpha,$$

where $\alpha, a_1, a_2, \ldots, a_n \in \mathbb{R}$.

A linear inequality constraint is any inequality of the form

$$a_1x_1+a_2x_2+\cdots+a_nx_n\leq\alpha,$$

or

$$a_1x_1+a_2x_2+\cdots+a_nx_n\geq\alpha,$$

where $\alpha, a_1, a_2, \ldots, a_n \in \mathbb{R}$.

Tobias Friedrich

The standard compact representation is

minimize $c_1x_1 + c_2x_2 + \cdots + c_nx_n$

subject to $a_{i1}x_i + a_{i2}x_2 + \cdots + a_{in}x_n \leq \alpha_i$ $i = 1, \ldots, s$

 $b_{i1}x_i + b_{i2}x_2 + \cdots + b_{in}x_n = \beta_i \qquad i = 1, \ldots, r.$

HPI

Hasso

The standard matrix representation is

minimize $c^T x$ subject to $Ax \le a$ and Bx = b HPI

Hasso

$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}, a = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_s \end{bmatrix}, b = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_r \end{bmatrix}.$$
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots \\ a_{s1} & \dots & a_{sn} \end{bmatrix}, B = \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots \\ b_{r1} & \dots & b_{rn} \end{bmatrix}$$

Tobias Friedrich

- Assume you are a politician, who wants to get 50% of the votes
 - in metropolitan region #1 with 100k inhabitants
 - in suburban region #2 with 200k inhabitants
 - in rural region #3 with 50k inhabitants
- You want to buy advertisements; each commercial block costs 1000€

The commercial blocks have the following effect:

	Metropolitan region #1	Suburban region #2	Rural region #3
Build more streets	-2	5	3
Disempower secret service	8	2	-5
More agriculture subvention	0	0	10
Increase petrol taxes	10	0	-2

Some sample spending:

Total Spending	33.000€		
Build more streets	20.000€		
Disempower secret service	0€		
More agriculture subvention	4.000€		
Increase petrol taxes	9.000€		

Effect of our sample spending:

	Build more streets	Disempow er secret service	More agriculture subvention	Increase petrol taxes	Resultiu ng Votes
Metropolitan region #1	20*(-2)	+0*8	+4*0	+9*10	=50.000
Suburban region #2	20*5	+0*2	+4*0	+9*0	=100.000
Rural region #3	20*3	+0*(-5)	+4*10	+9*(-2)	=82.000

Is there a cheaper way to win the election?

- Let's formulate this mathematically:
 - x₁ = #commercial blocks for building more streets
 - x₂ = #commercial blocks for disempower secret service
 - x₃ = #commercial blocks for more agriculture subvention
 - x₄ = #commercial blocks for increasing petrol taxes

Mathematically speaking, our target is:

Minimize $x_1 + x_2 + x_3 + x_4$ such that • $-2 x_1 + 8 x_2 + 0 x_3 + 10 x_4 \ge 50$ • $5 x_1 + 2 x_2 + 0 x_3 + 0 x_4 \ge 100$ • $3 x_1 - 5 x_2 + 10 x_3 - 2 x_4 \ge 25$ • $x_1, x_2, x_3, x_4 \ge 0$

Introductory Example #2: Optimization in Economics

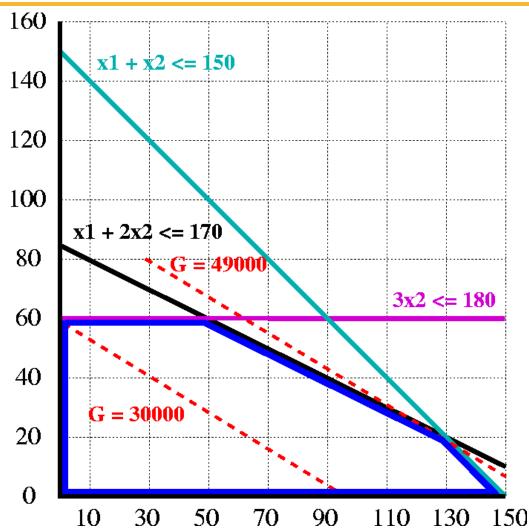
Let's look at another problem:

Maximize profit $G(x_1,x_2) = 300 x_1 + 500 x_2$ such that

(1)
$$x_1 + 2 x_2 \le 170$$

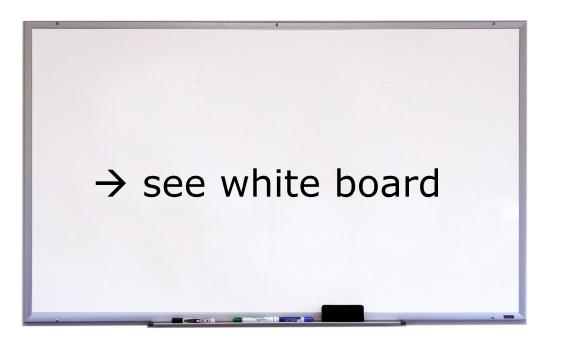
(2) $x_1 + x_2 \le 150$
(3) $3 x_2 \le 180$
(4) $x_1, x_2 \ge 0$

Introductory Example #2: Optimization in Economics



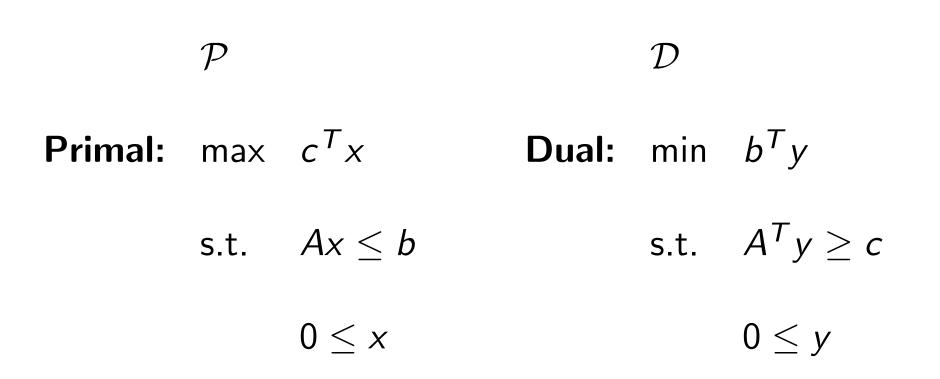
Tobias Friedrich

Introductory Example #2: Optimization in Economics



• Conclusion: Look for $y \ge 0$, such that $y^T A$ is an upper bound for $y^T A \ge c^T$

Primal vs. Dual



Weak Duality Theorem

• Weak Duality Theorem: If $x \in \mathbb{R}^n$ is feasible for \mathcal{P} and $y \in \mathbb{R}^m$ is feasible for \mathcal{D} , then $c^T x < y^T A x < b^T y$.

HP

Hasso

Thus, if *P* is unbounded, then *D* is necessarily infeasible, and if *D* is unbounded, then *P* is necessarily infeasible.

Weak Duality Theorem

Proof of Weak Duality Theorem:

$$c^{T}x = \sum_{j=1}^{n} c_{j}x_{j}$$

$$\leq \sum_{j=1}^{n} (\sum_{i=1}^{m} a_{ij}y_{i})x_{j} \quad [0 \leq x_{j}, c_{j} \leq \sum_{i=1}^{m} a_{ij}y_{i} \Rightarrow c_{j}x_{j} \leq (\sum_{i=1}^{m} a_{ij}y_{i})x_{j}]$$

$$= y^{T}Ax$$

$$= \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij}x_{j})y_{i}$$

$$\leq \sum_{i=1}^{m} b_{i}y_{i} \qquad [0 \leq y_{i}, \sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \Rightarrow (\sum_{j=1}^{n} a_{ij}x_{j})y_{i} \leq b_{i}y_{i}]$$

$$= b^{T}y$$

Strong Duality Theorem

Theorem:

If either \mathcal{P} or \mathcal{D} has a finite optimal value, then so does the other, the optimal values coincide, and optimal solutions to both \mathcal{P} and \mathcal{D} exist.

Fundamental Theorem

Theorem:

Every LP has the following three properties:

- (i) If it has no optimal solution, then it is either infeasible or unbounded.
- (ii) If it has a feasible solution, then it has a basic feasible solution.

(iii) If it is bounded, then it has an optimal basic feasible solution.

Reduction to Standard Form

Any linear program can be brought into standard form:

elimination of free (unbounded) variables x_j:

replace x_j with $x_j^+, x_j^- \ge 0$: $x_j = x_j^+ - x_j^-$

elimination of non-positive variables x_j:

replace $x_j \leq 0$ with $(-x_j) \geq 0$.

• elimination of inequality constraint $a_i^T \cdot x \leq b_i$:

introduce slack variable $s \ge 0$ and rewrite: $a_i^T \cdot x + s = b_i$

• elimination of inequality constraint $a_i^T \cdot x \ge b_i$:

introduce slack variable $s \ge 0$ and rewrite: $a_i^T \cdot x - s = b_i$

Simplex Algorithm

Feasible region (Ax≤b, x≥0) is a (possibly unbounded) convex polytope

HP

Hass

- Maximum value on the feasible region occurs on one of the extreme points
- Number of extreme points is finite, but exponentially large
- It is enough to check corners of the polytope

Simplex Algorithm

- Walks along edges of the polytope to extreme points with greater and greater objective values
- Continues until the maximum value is reached or an unbounded edge is visited (i.e. problem has no solution)
- Runtime
 - Finite as the number of vertices in the polytope is finite
 - For every deterministic Pivot rule there is a worstcase which need <u>exponential</u> time
 - Still very <u>efficient in practice</u>
 - There are other algos for LPs with poly. time

Integer Linear Program

 Adding integrality constraints make things MUCH harder; example Weighted Vertex Cover Problem:

Given: undirected graph G = (V, E), weight function $w : V \to \mathbb{R}_{\geq 0}$.

Task: find $U \subseteq V$ of minimum total weight such that every edge $e \in E$ has at least one endpoint in U.

Formulation as an integer linear program (IP):

Variables: $x_v \in \{0,1\}$ for $v \in V$ with $x_v = 1$ if and only if $v \in U$.

$$\begin{array}{ll} \text{minimize} & \sum_{v \in V} w(v) \cdot x_v \\ \text{subject to} & x_v + x_{v'} \geq 1 \\ & x_v \in \{0,1\} \end{array} \quad \quad \begin{array}{ll} \text{for all } e = \{v, v'\} \in E, \\ \text{for all } v \in V. \end{array}$$

Tobias Friedrich