Heuristic Optimization

Lecture 8

Algorithm Engineering Group
Hasso Plattner Institute, University of Potsdam

9 June 2015

Hasso
Plattner
Institut

IT Systems €ngineering | Universitit Potsdam

Heuristic Optimization

The SATISFIABILITY problem

Quest throughout history to establish an effective process (e.g., a mechanical
process) for human reasoning.

4th century BC 1600s 1800s 1910s 1930s
JR] = = "= >
<, & 2 %
<. Q 0, 4, %
s %, % % %%, < % % s,
ey % % % % % 8% Y
e % % N\ (SN) R O
O N S o () 5 %, % %
% % %% 7% *27, T6re, %
RN % o)"‘e‘) A
%, % %, S % 0, S, ‘g 0 %0 S
) S 2, % o 2 % %S
5 g Q. % (Y . 9, <. o
5, o3 > (94 e
% < o OIS %
z 2 0, S <
0, % D 6 2
% >) %
94 Ox * (('O
<3 %, 25
®(‘

9 June 2015

1/22

Heuristic Optimization

The SATISFIABILITY problem

1 :

—

In the 20th century, the advent of computers
inspired mathematicians to

e try to understand what people do when they
create proofs

¢ reduce logical reasoning to some canonical
form that can be implemented by an
algorithm

UNIVAC (waw. computerhistory.org)

Given a statement S in some well-defined logical syntax
e is there an algorithm to prove S is true (or false)?

¢ what is the complexity of such an algorithm?

DEC VT100 (commons.wikimedia.org)

Heuristic Optimization

9 June 2015 2/22

SATISFIABILITY: A formal definition

A propositional logic formula is built from
e variables that can take on one of two values (true/false) z,y, z, . ..
e operators {A,V, -}
- conjunction (logical AND), e.g., x Ay
- disjunction (logical OR), e.g., z Vy
- negation (logical NOT), e.g., -z

e parentheses that can group expressions, e.g., () A (—z V y)

A formula F' is said to be satisfiable if it can be made true by assigning
appropriate logical values (true or false) to its variables.

Problem: given a formula, F', decide whether F' is satisfiable.

Many applications: theoretical computer science, complexity theory,
algorithmics, cryptography and artificial intelligence.

9 June 2015

3/22

Heuristic Optimization n

SATISFIABILITY: Basics

A well-formed Boolean expression can be described by the grammar:
(expr) = (variable)
| (expr) A {(expr)
| {expr) V {expr)
| ((expr))
| —(expr)

The of a Boolean variable v is a binding to a value in {0, 1}.

If all variables in an expression are bound, the evaluation can be done recursively:

E F EANF EVF (E) -E
0 0 0 0 0o 1
0 1 0 1 0 1
1 0 0 1 1 0
1 1 1 1 1 0

Heuristic Optimization “

9 June 2015 4 /22

Definitions

The assignment of n Boolean variables can be represented as z € {0,1}".

Let I’ be a formula on n variables. We write F[x] € {0,1} as the evaluation of F’
under the assignment z € {0,1}".

Given a Boolean expression I’ on n Boolean variables, we say an assignment
x € {0,1}" Fif Flz] = 1.

Example

F= (_\1'1 \Y (ﬂg) VAl A TAN ("(ﬂg V _h’bl)
x=1(0,0,0), Flz] = 1
z=(1,0,1),Flz]= 0

9 June 2015 5 /22

Heuristic Optimization m

Definitions

Two Boolean formulas E and F on n Boolean variables are said to be
if Vo € {0,1}", Flz] = E[z]. In this case we write F = F

A a variable v or its negation —wv. A
(xl\/ﬂxg\/ﬂxg\/-~\/mi)

a disjunction of literals, e.g.,

A formula F'is said to be in
a conjunction of clauses.

(CNF) when F'is written as

For every well-formed formula F', there is a formula E such that (1) E is in CNF,
and (2) F = E.

CNF form is much easier to work with!

Heuristic Optimization ﬂ

9 June 2015 6 /22

Is SATISFIABILITY easy or hard?

Let .% be the set of all admissibl

Horn formulas

ulas. We consider some subsets of .%:

F, formulas satisfi
Fo

when all variables are set true (false).

ulas F' = E, where E is in CNF and each clause contains at most one
positive (resp., negative) literal.

3 formulas F = E, where F is in CNF and each clause contains < 2 literals.

gQWS F=FEwW i njunction of exclusive-or clauses.
2-CNF formulas

Affine formulas

Schaefer’s Dichotomy Theorem (1978)

1. Every formula F' € (%1 U % U %3 U .%,) can be decided in time polynomial
in the length of F.

2. The class .7 \ (%1 U %2 U F3U Zy) is NP-complete.?

?Technical note: Schaefer's approach is constrained to classes that can be
recognized in log space.

9 June 2015 7 /22

Heuristic Optimization

Resolution for first-order logics

1958 Martin Davis & Hilary Putnam developed a resolution procedure for
first-order logic (quantifiers allowed)

Herbrand’s theorem: if a first-order formula is unsatisfiable then it has some
ground formula in propositional logic (quantifier-free) that is unsatsifiable.

Davis-Putnam procedure

1. Generate all propositional ground instances
2. Check if each instance F' is satisfiable

The main innovation is in (2), where we must solve SATISFIABILITY

Given a propositional logic formula F' in CNF, assign variables using three
reduction rules.

9 June 2015 8 /22

Heuristic Optimization

Davis-Putnam procedure

Rule 1: unit rule

(z x3) A (22 V —x3) /\M/\ (=X Vs Vas) A (—xe)
\ \

BV -~as) A (zavas) A D
\ \/

Reduced formula: (—x3) A (x4 V 13)

setx1 =1 setxy =0

For each unit clause (¢)
esetftol, "/ to0
e remove clauses containing ¢, delete occurrences of —/

e repeat until no unit clauses exist

9 June 2015 9 /22

Heuristic Optimization

Davis-Putnam procedure

Rule 2: pure literal rule

%re literal
(1 T4) A % (z) AN (=X
pure literal —/

Reduced formula: (z3V —1y4)

ﬁl’4) N (CL’gVﬁCL’4)

setxy =1 setaxy =0

For each pure literal ¢
esetftol, "¢to0
e remove clauses containing /¢

e repeat until no pure literals exist

Heuristic Optimization

9 June 2015 10 /22

Davis-Putnam procedure

Rule 3: rule for eliminating atomic formulas (ground resolution)

(.%'\/61,1\/-"\/61,;61) VAN (ﬂ?\/fz,ﬂ/“'\/fz,kz) AN C

\ /

(61)1 \/-“\/61)]cl VA€271 \/"'\/£27k2) A C

When z = 0, (61’1 V.-V gl,kl) When (.’E =1, £2,1 V-V 527]62)

must be true must be true
Replace (z V A) A (—z vV B) A C with (AV B) A C as long as there are no
l1; € A, Uy ; € B that are complementary

9 June 2015 11 /22

Heuristic Optimization

Using memory wisely

In 1962, Loveland and Logemann tried to
implement DP procedure on an IBM 704,

but found that it used too much RAM.

L&L insight: keep a stack for
formulas in external storage (tape
drive) so the formulas in RAM
don’t get too large.

Rule 3a: splitting rule

IBM 704 at NASA in 1957 (commons . wikimedia.org)

From (z V A) A (mz vV B) A C, create a pair of separate formulas?

(AAC), (BAC).

Recursively check (A A C) and (B A C) for satisfiability.

2where A, B and C don't contain any occurrences of the variable x

4

9 June 2015 12 /22

Heuristic Optimization m

A closer look at the splitting rule:

split

(VA A(—zVB)ANC = (ANC), (BAC)
AN split F/ F

A formula containing at
' <——— least one occurrence of a
set x < 1

variable x
set x <~ 0
remove clauses containing -
remove occurrences of literal ~x remove occurrences of literal x

remove clauses contalnlng x

E:l m:O

Observation:
o If F’ or F contain an empty clause: then unsatisfied

o If F” or F" contain no clauses: then satisfied

9 June 2015 13 /22

Heuristic Optimization

Davis-Putnam-Logemann-Loveland (DPLL)

Davis-Putnam procedure with Logemann-Loveland enhancement (splitting rule)

DPLL(F)

Input: A set of clauses F'
Output: A truth value

if F' is a consistent set of literals then return true;
if F' contains an empty clause then return false ;

for each unit clause (¢) in F do
| F < unit-propagate((, F);
end
for each pure literal £ in F' do
| F < pure-literal-assign((, F);
end
¢ < choose-literal(F);

return DPLL(F A £) V DPLL(F A —¢);

9 June 2015

14 /22

Heuristic Optimization E

DPLL search space

P
F/ F//
VRN VRN

/ \ / \ / \ / \

Z 2@ 2n+1

How can we reduce the total number of nodes expanded?

Total size of search tree?

9 June 2015 15 /22

Heuristic Optimization “

DPLL heuristics: Branching policies
Pick a good variable on which to branch

Come up with a score(¢) that gives a value for picking a variable
that makes ¢ true.

Some scoring functions:

max(¢) | # occurrences of £in F.

Idea: Picking ¢ to maximize max(¢) satisfies as many clauses as possible.

moms(£) | # occurrences of £ in F appearing in clauses of minimum size.

Idea: reducing minimum clauses can lead to a unit-propagation sooner or reveal a
contradiction faster

mams(¢) | := max(¢) + moms(—¥).

Idea: satisfy as many clauses as possible, create as many minimum-size clauses as
possible

Heuristic Optimization “

9 June 2015 16 /22

Heuristic Optimization ﬂ

DPLL heuristics: Clause learning
When unit propagation results in a conflict (produces an empty clause),
e analyze the unit propagation process that resulted in the conflict
e add a new clause to the formula that explains and prevents repeating the
same conflict later in the search

(branches taken so far:] set £1 =0 set x5 =0 set x3 =0

(MV"[IM\/"ZE@) A (—\1‘5\/1‘6) A (—\ZL‘5\/$§\/JI4) N (%V$5) \
\ \{ \ \

(~zaV—zg) A (V) A (<X V) A><

\ \ \ >

(CxVowe) A (w) A __Sem

c
.2
J=i
©
")
@
o
o
I
[
5=
c
=)

Contradiction!

9 June 2015 18 /22

DPLL heuristics: Branching policies

Jeroslow-Wang: | jw(¢) :== >, 271°.

Idea: exponential weighting: smaller clauses have more weight than larger ones.

up(f) | # of unit propagations triggered by setting ¢ = true.

{adaptive Iearning:] adapt branching rule during execution

9 June 2015 17 /22

Heuristic Optimization H

DPLL heuristics: Clause learning

(branches taken so far:] set £1 =0 set 3 =0 set x3 =0

We can conclude the branch 1 = 0,22 = 0, z3 = 0 leads to an unsatisfied formula
In other words,

($1=0)/\($2=0)/\($3:0) = (FZO)
=F=1) = —((&1=0)A(z2=0) A (z3=0)) (contrapositive)
=F=1) = (z1=1)V(z2=1)V(zz=1)

[So in order for F' to be satisfied, (21 V z2 V x3) must be true.}

[Learned clause: F' := F A (21 V 23 V :ce,)]

Note: many very sophisticated procedures for analyzing the structures of
contradictions exist.

9 June 2015 19 /22

Heuristic Optimization n

A local search algorithm
DPLL: construct an assignment from scratch

Another approach: start from a complete assignment. While not satisfied, make
some small change. Repeat.

Random local search algorithm for SATISFIABILITY

Choose x € {0,1}™ uniformly at random;
while F' is not satisfied do
TR
Choose C' € F not satisfied by z;
Choose a literal ¢ € C' uniformly at random;
Let ¢ be the index such that {x;, —z;} 3 ¢;
yli] 1 —yld;
end

9 June 2015 20 /22

Heuristic Optimization “

How efficient is the random local search algorithm?
Theorem. (Papadimitriou, 1991)

Let F € Z3 (formulas that have at most two literals per clause). If F is
satisfiable, then the local search algorithm finds the satisfying assignment in
O(n?) time in expectation.

Proof sketch.

_1€ 1/2
Gambler's ruin NE = ‘r__‘—-). >0 €
1/2 +1€

[Expected flips until win/loss: O(Nz)}

e Let z* := satisfying assignment, = := be the current assignment.

e For any clause C' € F not satisfied by z, at least one of the values z[i]
doesn’t match the value in z*[i].

Probability to pick that variable > 1/2.

* Move closer to z* with probability > 1/2 (further away w/ prob. < 1/2). [

9 June 2015 21 /22

Heuristic Optimization m

k-CNF formulas
What about k-CNF formulas for k > 27

Run local search algorithm, starting from a new random solution every O(n) steps.

Theorem. (Schoning, 1991)

Let F' be a k-CNF formula. If F is satisfiable, then the (restarting) local search
algorithm finds the satisfying assignment in T" steps where 7' is within a
polynomial factor of (2(1 —1/k))".

For 3-CNF formulas: (1.333)™

[Current best-known bound! for 3-SAT: 0(1.308”)]

Timon Hertli, FOCS 2011

9 June 2015 22 /22

