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Search heuristics are popular on a variety of problems. In this project we will look
at some toy problems and test the run time of some simple search heuristics on these
problems. We will look at optimization problems which are defined on bit strings
(chains of 1s and 0s). One parameter is n, the length of the bit strings, which does
not change during the optimization process. We write the search space (bit strings of
length n) as {0,1}". For any x € {0,1}" we write the number of 1s in x as |x|. Here
are four functions, which assign a value to any bit string.

ONEMAX : {0,1}" = R,z +— |z|;
LEADINGONES : {0,1}" — R,z +— number of 1s before the first 0 in x;
|z], if |z] <n—k;
Vk <n:Jump,:{0,1}" >Rz — Sn—k, ifn—k<|z|<n;
n, if || = n;

BINVAL: {0,1}" - R,z +— x interpreted as binary number.

These problems are frequently considered on which one can test search heuristics. We
add a fifth function, for £ < n, ROYALROADS;, which is defined on all n divisible by &.
We divide the bit positions in n/k subsequences of length k. ROYALROADS(z) is the
number of subsequences of x, in which all £ bits are set to 1 (so ROYALROADS ()
is a number between 0 and n/k). For each of the functions, the goal is to find a bit
string with maximal value.

We look at two different search heuristics. All three algorithms have in common
that they start with a random solution (a bit string in which each bit is randomly 1
or 0); in each iteration they create a new solution which replaces the old solution if
and only if the new solution is better.

The first search heuristic is called RLS (Random Local Search), a simple algorithm
to improving a solution: in each iteration we generate a new solution by flipping
exactly one bit in the old solution. The following gives pseudo-code for RLS.

Algorithm 1: RLS

1 Choose x uniformly at random from {0, 1}";

2 while stopping criterion not met do

y

Choose i uniformly at random from {1,...,n};
yi < (1 —ui);

if f(y) > f(x) then = < y;
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For now, we will stop when the optimum is found (for all functions given above
we know the value of the optimum beforehand).

Now we get to an evolutionary algorithm (EA), the so-called (1+1)-EA (it main-
tains one solution and compares it with one new solution, thus 1+1). It works almost
like RLS, but instead of flipping exactly one bit, it flips each bit with probability 1/n.
Thus, in expectation, it flips exactly one bit, but it might be more (or less). This
operation we call mutation. The pseudo-code is as follows.

Algorithm 2: (1+1)-EA
1 Choose x uniformly at random from {0, 1}";
2 while stopping criterion not met do

3 Y x;

4 foreach i € {1,...,n} do

5 L With probability 1/n, y; < (1 — v;);
6 if f(y) > f(x) then = < y;

Assignment. Implement both algorithms, and for each algorithm a variant where
> is replaced by > (a small but significant change). Also implement all five test
functions. Evaluate all four algorithms on all five test functions as follows. We use
k = 3 for Jumpand k = 5 for ROYALROADS. For any given n you let the algorithm
run 10 ten times and determine the number of iterations until reaching the optimum.
From these 10 runs you compute the average. This you do for n = 25 and then in
steps of size 25 up until your computer does not want to go any further.
Each team submits a zip-File with the following content.

(a) Your code;

(b) A pdf in which you show a graph for each of your four algorithms you plot
the run time on all the five test functions in dependence on n (experimentally
determined as detailed above). For each plot you write what the asymptotic
run time seems to be (using O-notation in dependence on n). Write a text of
about half a page in which you discuss your findings.



