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ON VERTICAL VISIBILITY IN ARRANGEMENTS OF SEGMENTS AND
THE QUEUE SIZE IN THE BENTLEY-OTTMANN LINE SWEEPING
ALGORITHM*

JANOS PACHt AND MICHA SHARIR:

Abstract. Let S={e,,- -, e,} be a collection of n (intersecting) line segments in the plane. Suppose
that all segments have their right endpoints lying on the same vertical line, and that one wishes to bound
the number of pairs of nonintersecting vertically visible segments that will intersect when extended to the
right (e;, e; are vertically visible if there exists a vertical line segment connecting a point on ¢; to a point on
e; and not meeting any other segment). It is shown that there are at most O(n log? n) such pairs, and only
O(n log n) in the case of full rays, where the latter bound can be attained in the worst case. These results
are applied to obtain similar upper and lower bounds on the maximum size of the queue in the original
implementation of the Bentley-Ottmann algorithm for reporting all intersections between the segments in
S, i.e., the implementation where future events are not deleted from the queue. It is also shown that, without
the extra conditions on the segments in S and on the pairs of segments to be counted, the number of
nonintersecting vertically visible pairs of segments is O(n*/?>(log n)*?), and can be Q(n*?) in the worst case.
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1. Introduction. Let S={e,, - -, e,} be a collection of n line segments in the
plane. The classical line-sweeping algorithm of Bentley and Ottmann [1] for reporting
all k intersections of the segments in S runs in time O((n+ k) log n), as follows. It
maintains a priority queue Q of future events, ordered by their x coordinates, each
being either an endpoint of some e; or a detected intersection between a pair of
segments in S, which occurs to the right of the (vertical) sweepline L Each intersection
event between a pair ¢;, ¢;€ S is added to Q when e; and ¢; become adjacent along I

(We refer to this situation by calling e; and ¢; a pair of vertically visible segments.
Formally this means that there exists a vertical line I cutting both e; and ¢; so that the
vertical segment connecting these intersections is not crossed by any other segment
of S.)

In the initially proposed implementation of the algorithm, events are added to Q
when the combinatorial pattern of intersections of the segments in S with I changes,
which occurs when I sweeps either through an endpoint of some e; or through an
intersection of a pair e;, e; (in other words, when I sweeps through the currently leftmost
event in Q). In each such case, only a constant number of new vertically visible pairs
occur along I, and for each such pair that actually intersects to the right of I, the
corresponding intersection event is added to Q. Events are removed from Q only when
I sweeps through them; that is, only events at the top of Q are removed.
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This strategy results in an algorithm whose running time is O((n + k) log n), where
k is the total number of intersections between segments in S. The working storage of
the algorithm is dominated by the maximum size of Q, which is certainly bounded by
2n+k. Since k can be anything up to quadratic in n, this naive bound suggests the
possibility that the worst-case working storage size might be as high as Q(n®). This
has become a ‘““folk-belief”” among experts in the field, although no quadratic lower
bound has ever been obtained.

To overcome this difficulty, a simple fix has been subsequently proposed by Brown
[3]. In the modified algorithm, Q contains at all times only endpoints of the segments
in S, plus intersection events that correspond to pairs that are currently adjacent along
1 (as a matter of fact, the fix in [3] is slightly different but achieves the same effect);
this guarantees that the size of Q is always O(n). This is achieved by deleting from
Q every intersection event whose corresponding pair of segments are no longer vertically
visible (i.e., adjacent) along I. Again, at every event swept through by / only a constant
number of events have to be removed from Q, so the running time of the algorithm
remains asymptotically the same. However, the number of update operations on Q is
essentially doubled, and the implementation of Q becomes somewhat more compli-
cated, as we now have to provide a DELETE operation that removes elements from
anywhere in the queue.

In this paper we return to the original version of the Bentley-Ottmann algorithm
(which does not employ the queue-deletion trick) and analyze the maximum possible
size of the queue. We show that, contrary to the currently prevailing presumption, this
size never exceeds O(n log” n). Furthermore, we show that when the algorithm is
applied to a collection of lines, rather than segments, then the maximum queue size
is at most O(n log n), and that this bound can be attained in the worst case. Thus,
even though the size of Q can become slightly superlinear, it always remains near-linear,
thus opening up the possibility of returning to the original version of the algorithm in
practical applications, where the saving in the number of queue updating operations,
as well as the simplicity of the data structure (which no longer requires DELETE
operations to be performed for elements not in the top of the queue) may be significant.

We obtain these bounds by reducing our problem to another related one, which
appears to be of independent interest, following an idea of Schorn [9]. Specifically,
consider any fixed position of the sweepline I What events are in the queue when [
reaches that position? Each such event must correspond to a pair of segments that are
vertically visible somewhere to the left of [ and intersect to the right of L Let us clip
all segments at /, and retain only their portions to the left of I, and also discard any
segment that does not reach . Then the above observation implies that the current size
of Q is bounded from above by the number of vertically visible pairs of clipped
segments of S that do not intersect one another (to the left of I, that is), but whose
extensions to the right do intersect. We denote this quantity for a given collection S
by w(S). Note that in this definition all segments in S are supposed to have their right
endpoints on the same vertical line (the sweepline). It is easily seen that this re-
formulation of the problem involves no loss of information, in the sense that any lower
bound M on u(S) for some ““vertically clipped” collection S, can be transformed into
an instance of an execution of the Bentley-Ottmann algorithm in which the size of Q
becomes greater than or equal to M.

We also consider a weaker variant of the problem (which has nothing to do with
the Bentley-Ottmann algorithm), in which we are given an arbitrary collection of n
segments and wish to estimate the number of pairs of nonintersecting vertically visible
segments, dropping the condition that these pairs intersect when extended to the right
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(and that the segments all have to end on the same vertical line). We show that the
number of these pairs in this general case is O(n**(log n)*?), and can be Q(n*?) in
the worst case. (Thus the innocent-looking extra conditions that are assumed in the
Bentley-Ottmann case appear to be crucial for the resulting low storage bound.) This
latter result is based on a random sampling technique, and its proof somewhat resembles
the analysis given in [4].

The paper is organized as follows. Section 2 analyzes the case of lines, or, more
generally, of a collection of segments all having the same x-projections (we refer to
such configurations as hammocks). Section 3 analyzes the general case that arises in
the Bentley-Ottmann algorithm when applied to any collection of segments, and § 4
studies the weaker variant of vertical visibility as mentioned above. Section 5 concludes
with a discussion of our results and some open problems.

2. The case of a hammock. Let S={e,, - -, e,} be a collection of n segments all
having the same x projection [£ n]. Thus their left endpoints all lie on the vertical
line L: x = & and their right endpoints lie on the line R: x = 7. Suppose the segments
are sorted in increasing vertical order of their left endpoints.

(Before continuing, we note that in this case we can drop the requirement that
the pairs that we wish to count intersect when extended to the right. This is because
any such pair will intersect when extended either to the right or to the left (assuming
no pairs of parallel segments). Thus, since the case of a hammock is symmetric with
respect to the left and right directions, we can assume, without loss of generality, that
at least half of the pairs we count do intersect when extended to the right.)

Define an nxn 0-1 matrix M by putting M;=1 if e, e; are a pair of non-
intersecting vertically visible segments with e; lying below ¢;, and M;; =0 otherwise
(in particular, M is an upper triangular matrix).

LEMMA 1. M does not contain a submatrix of the form

* 1 1
1 % 1

(where % denotes any value). In other words, there do not exist two rows a < b and three
columns x <y < z such that

May = Maz = be = sz = 1'

Proof. Suppose to the contrary that M does contain such a submatrix. With a
slight abuse of notation, let a, b, x, y, z also denote the corresponding segments in S.
Thus (a, y), (a, z), (b, x), (b, z) are all pairs of nonintersecting vertically visible seg-
ments, with a lying below y and z, and with b lying below x and z. Furthermore,
denote by a;, b, x;, y., z;, the y coordinates of the left endpoints of these segments,
and let ag, bgr, xXg, Yr, zr denote the y coordinates of their right endpoints. Then by
definition we must have a; <b; <x, <y, <z;. We next claim that a and x cannot
intersect. Indeed, if they did intersect, then we would have xz < ar <zp (because a
lies completely below z). Thus z would have to lie completely above x, which lies
completely above b, so that b would not be able to see z at all, a contradiction which
establishes the claim. A completely symmetric argument implies that b and y do not
intersect.

Thus the upper envelope ,, of a and b must lie completely below the lower
envelope ¢, ,. of x, y, and z, and any vertical visibility between q, b and x, y, z must
occur between a pair of co-vertical points lying on these two respective envelopes.
Consequently, each of these segments must appear along its corresponding envelope,



Downloaded 10/09/18 to 141.89.221.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

VERTICAL VISIBILITY IN ARRANGEMENTS OF SEGMENTS 463

and the vertical order of their left endpoints imply that ¢, is attained from left to
right first by b and then by q, and ¢, , . is attained first by x, then by y, and then by
z. Let 1,, I, I, I,, I, denote the x-intervals where these segments appear along the
corresponding envelope. Since b is assumed to see vertically both x and z, we must
have I, N I, # &, I, N I, # &, which implies that I, < I, which in turn contradicts the
assumption that a sees y vertically, thus completing the proof of the lemma. O

It has recently been shown by Fiiredi [7] and independently by Bienstock and
Gyori [2] that 0-1 matrices that do not contain this pattern as a submatrix have at
most O(n log n) 1’s. Applying this result, we obtain Theorem 2.

THEOREM 2. The maximum number of pairs of nonintersecting vertically visible
segments in any collection S of n segments with the same x-projection is @(n log n).

Proof. The upper bound follows immediately from the combinatorial bounds just
cited [2], [7]. For the lower bound we use the following recursive construction. We
construct collections {S,},=; so that S, has 2" segments (all having [0, 1] as their
x-projection), with K, = r- 2"~! pairs of nonintersecting vertically visible segments. S,
is just a pair of nonintersecting, nearly parallel segments (with the same x-projection
[0,1]), so K,;=1, as required. Suppose S, has already been constructed. To obtain
S,,1 we construct two copies of S,. One of them, S}, is exactly S,. The second copy
S? is obtained by first rigidly translating S, slightly upwards, and then by “shearing”
it further upwards by leaving the left endpoints undisturbed and by moving each right
endpoint upwards by the same very large distance c. ¢ is chosen sufficiently large so
that all intersections between segments of S} and segments of S? occur to the left of
the leftmost intersection of any pair of segments in S,. We take S, to be S!U S2. See
Fig. 1 for an illustration.

Sz

S

\

Fi1G. 1. Constructing S, , from S,.

It is easily checked that for any x € [0, 1] and any pair of segments e;, e} in S},
if at x the segment e] lies above e} (respectively, lies below e}, intersects e]) then the
same is true for the corresponding pair 7, e; in S;. It follows that the number of pairs
of nonintersecting vertically visible segments in S,., is at least 2K, +2', because each
el € S} and the corresponding segment e € S? form a pair of nonintersecting vertically
visible segments in S,.,. Thus

K, Z2K, 4272 (r+1) - 2,

as asserted. O



Downloaded 10/09/18 to 141.89.221.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

464 J. PACH AND M. SHARIR

Remarks. (1) In particular, Theorem 2 implies that the queue size in the original
implementation of the Bentley-Ottmann algorithm, when applied to any collection of
n lines, or of n segments with the same x-projection, never exceeds O(n log n).

(2) Moreover, the lower bound construction and the observation made at the
beginning of this section yield an instance of the execution of the original Bentley-
Ottmann algorithm on a collection of n lines at which the queue size is ®@(n log n).

3. The general case arising in the Bentley-Ottmann algorithm. To handle the
general situation that can arise during execution of the Bentley-Ottmann algorithm
on an arbitrary collection of segments, we begin by considering the following special
case. Suppose S and T are two collections of n segments each, such that all segments
in S have a common x-projection [ ], while each segment in T has an x-projection
of the form [{, 1], for some &<{<m. We refer to segments in S as “long,” and to
segments in T as ‘“short.” We wish to estimate the number »(S, T) of pairs of
nonintersecting vertically visible segments (e, e') with e€ S, e’ € T, with the additional
requirement that e and e’ would intersect when extended to the right.

LemMA 3. In the above terminology, we have v(S, T)=0(n log n).

Proof. The lower bound follows immediately from Theorem 2. For the upper
bound, define an nxn 0-1 matrix M as follows. Sort the segments in S in increasing
vertical order of their left endpoints; let the resulting sequence be s,, - - -, s,. Sort the
segments in T in increasing vertical order of the intersections of the lines containing
them with the line x = £ and let the resulting sequence be ¢, - - -, f,. We now put, as
before, M;; =1 if t, and s; are a pair of nonintersecting vertically visible segments,
whose extensions intersect to the right of x =7, and f; lies below s; (a symmetric
analysis will handle pairs for which ¢ lies above s;). As before, we have the following
claim.

CLAIM. M does not contain a submatrix of the form

* 1 1
1 % 1

Indeed, suppose to the contrary, that there exist segments a,be T and x, y,z€ S
such that (a, y), (a, z), (b, x), (b, z) are all pairs of nonintersecting vertically visible
segments whose extensions intersect to the right of x = 7, such that a lies below y and
z, and such that b lies below x and z. Moreover, let ag, bg, Xr, Vg, zr denote the y
coordinates of the right endpoints of these segments, let x;, y;, z; denote the y
coordinates of the left endpoints of these segments, and let a;, b, denote the y
coordinates of the intersections of the lines containing a and b with x = & Then in the
assumed configuration we have x; <y, <z, and a;<b,. Moreover since b and x
intersect when extended to the right and b lies below x, we must also have b, <x;.
Let a*, b* denote the extensions of a and b to the left until the line x = ¢ (i.e., the
intersections of the lines containing a, b with the strip ¢ =x = 7). By assumption, a*
lies completely below y and z, and b* lies completely below x and z (see Fig. 2).

As before, we claim that a* does not intersect x, for that would make x lie
completely below z, hiding it from b*; similarly b* does not intersect y. Thus any
vertical visibility between a, b and x, y, z must be attained between their respective
upper envelope ¢,, and lower envelope ¢,,.. Now ¢,,. behaves as before—it is
attained by x, y, and z in this order from left to right along three respective intervals
I, 1, I,. On the other hand, #,, can now be attained by a, then b, and then a again
(see Fig. 2), along three intervals I,,, I, I, (where I,; can be empty). But since b can
see both x and z vertically, we must have I, < I, so again it is impossible for a to see
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FiG. 2

y, a contradiction which completes the proof of the claim, and thus, by [7], also
completes the proof of the lemma. O

THEOREM 4. Let S be any collection of n line segments all having their right endpoints
on the same vertical line. Then the number of pairs of nonintersecting vertically visible
segments in S whose rightward extensions do intersect is O(n log” n).

Proof. Let u(S) denote the number of pairs of segments in S as in the theorem
statement, and let u, denote the maximum number of such pairs for any collection S
of n segments with these properties. Assume without loss of generality that the left
endpoints of the segments in S have distinct x coordinates, and let x,, denote their
median value. Let S; be the subset of roughly n/2 segments whose left endpoints lie
to the left of x,,, and let S, be the complementary subset. Then we clearly have

w(S)=u(8)+u(S)+v(S;,S,),
where v(S;, S,) is the number of pairs (e,, e,) with e;€ S,, and e,€ S, having the
desired properties. By Lemma 3, this latter quantity is O(n log n), which leads to the
recurrence

Mon ézﬂn/2+ O(n log n),
which solves to u, = O(n log® n). 0
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COROLLARY 5. The maximum queue size in the original implementation of the
Bentley-Ottmann algorithm, applied to any collection of n line segments, is O(n log* n).
Remark. We do not know whether this bound is tight in the worst case.

4. A more general case. Although it may not be apparent from the proof of Lemma
3, it has made crucial use of the condition that the desired pairs of segments intersect
when extended to the right. If we drop this condition, the number of nonintersecting
vertically visible pairs can increase significantly (although still not as high as quadratic),
as will be shown below.

We begin with a lower bound construction. Take an arrangement of n lines which
has n faces whose total complexity is @(n*?). Such arrangements are constructed, e.g.,
in [6]. The main idea in the construction is to construct a vnx+/n lattice and to
consider its n vertices. It is shown in [6] that one can draw n/2 lines, having rational
slopes p/q where both p and q are small (relatively prime) integers, so that these lines
have a total of ®@(n*?) incidences with the lattice points. Next we modify this construc-
tion by replacing each line by a pair of parallel lines shifted by the same, arbitrarily
small, distance . If we use the same ¢ for all n/2 lines, we obtain an arrangement of
n lines, and each lattice point z becomes the “‘center’” of a small face, whose number
of bounding edges is twice the number of incidences of z with the original lines. Hence
the resulting arrangement has the desired property.

For each of the n special faces f, let A(f), p(f) denote, respectively, the left and
right portions of its boundary, delimited by the topmost and the bottommost vertices
of f (see Fig. 3).

FiG. 3

Without loss of generality we can assume that the total number of edges bounding
all the left portions A(f) of these faces is ®(n*?). Moreover, the construction in [6]
also allows us to assume that the n faces in question are very small in size, so that
they have pairwise disjoint y-projections. Next, for each of these faces f draw a
horizontal ray r, extending to the right from (a point slightly to the right of) the leftmost
vertex of f. Let S denote the resulting collection of 2n lines and rays, appropriately
clipped at some vertical line sufficiently distant to the right. It is clear that for each of
the special faces f and for each line [ appearing along A(f), r, and I are nonintersecting
and vertically visible in S (the former property following from the fact that no segment
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r; penetrates into another special face f’), which shows that the number of such pairs
can be Q(n*?). (Note by the way that none of these pairs intersect when extended to
the right.)

We next prove a closely matching upper bound, using a random sampling technique
akin to that in [4]. To start the analysis we need the following variant of Lemma 3.

LemMMA 6. Let S be a collection of n line segments, all having x-projections contained
in some interval [ £, ], and let m = n be the number of *‘short’ segments whose x-projection
is not the entire [ & m]. Then the number of pairs of nonintersecting vertically visible
segments in S is O(mn'>+ n log n+m**(log m)"/?).

Proof. Let S, be the subset of the m short segments and S, the complementary
subset of “long” segments. The number of desired pairs within S, is O(n log n) by
Lemma 1. The number of such pairs (e, e,), with e, € S;, e, € S,, is analyzed as follows.
Define a directed bipartite graph G between the sets S;, S,, which contains an edge
(e,, e,) for every pair of nonintersecting vertically visible segments e, € S5,, e,€ S,,
such that e, lies below e,. We claim that G does not contain a copy of the complete
(directed) bipartite graph K, as a subgraph. Indeed, if this were the case, there would
exist two short segments a, b, and four long segments e, - - -, e, such that all pairs
(a,e), (b, e),i=1,---,4, have the desired properties and such that both a and b lie
below all four segments e;. Let ¢ denote the lower envelope of the four e;’s and let ¢
denote the upper envelope of a and b. ¢ has four intervals on the x axis so that over
each of them it is attained by a fixed e;, and ¢ also has at most four such intervals so
that it is attained over each of them by one of the segments a, b (see, e.g., Fig. 4).

€3

FiG. 4



Downloaded 10/09/18 to 141.89.221.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

468 J. PACH AND M. SHARIR

By overlapping the intervals of ¢ with those of  and by considering all possible
forms of ¢, it is easily checked that it is impossible to obtain all eight pairs of vertical
visibility between a, b, and the e;’s. We can thus apply the extremal graph-theoretic
lemma of Kovari, Sés, and Turdn [8], which shows that a bipartite graph, whose edges
connect between a set of m vertices and another set of n vertices, which does not
contain K, , as a subgraph, can have at most O(mn'/?+n) edges. Hence the number
of desired pairs (e,, e,), with e,€ S,, e,€ S,, is O(mn'*+n).

Finally we estimate the number of desired pairs within S;. Assume without loss
of generality that all the endpoints of the segments in S, lying strictly between x = ¢
and x = n have distinct x coordinates. Partition the plane into k = (m/log m)"/? vertical
slabs oy, -+, 0 so that each of them contains at most 2(m log m)"? endpoints.
Consider a fixed slab o;, and let p;=2(m log m)"? denote the number of segments
having an endpoint in o; and let q; = m denote the number of segments that cross o;
all the way from left to right. The number of nonintersecting vertically visible pairs
among the p; short segments in o; is at most O(p;) = O(m log m). The number of such
pairs (e, e'), with e being short and e’ being long in o, is, by the preceding arguments,
O(p:q!>+ q;) = O(m(log m)"/?), and the number of such pairs among the g; long
segments is, by Lemma 1, O(g; log ¢;) = O(m log m). Summing these bounds over all
k slabs, we obtain that the total number of desired pairs within S, is O(m**(log m)"/?).
This completes the proof of the lemma. 0

THEOREM 7. The maximum number of pairs of nonintersecting vertically visible
segments in any collection of n segments in the plane is O(n**(log n)*?).

Proof. We follow the basic approach of [4], but include here, for the sake of
completeness, some details of the arguments given there. Choose a random subset R
of size r = (n/log n)"? of the given segments. Extend each of these segments to a full
line, form the arrangement A(R) of these lines, and partition its faces into O(r?)
vertical trapezoidal cells, by drawing vertical segments through each intersection point
until they meet another line, as in [4]. Suppose the interior of the ith cell ¢; is cut by
n; original segments and contains m; endpoints. If we clip these segments to within
¢;, and apply Lemma 6, we deduce that the number of nonintersecting vertically visible
pairs among these n; clipped segments is

O(m;n}?+ n; log n;+ m¥*(log m;)"?).

(Note that here we may have overestimated the global count, because we may have
counted pairs of nonintersecting clipped segments, for which the full segments actually
intersect.) The only pairs of nonintersecting vertically visible segments that we may
have missed are those with at least one of the segments in the pair belonging to R.
The contribution of each cell ¢; to this extra count is easily seen to be at most 2n;+1,
so that, summing over all cells, the number of these additional pairs is at most
O, ni+1).
Hence the total number of desired pairs is
o(r?)
O(m;nl?+ n; log n;+ m¥*(log m;)"?) + O(r?).

i=1
Arguing as in [4], it is easy to show that )., n;= O(nr). Indeed, Y, n; =Z;'=1 l;, where
I; is the number of cells crossed by the jth segment e, The horizon theorem for
arrangements of lines (see, e.g., [5]) states that the overall complexity of all faces of
A(R) crossed by a line is O(r). Since the number of trapezoids within a face of A(R)
is proportional to the complexity of the face, it easily follows that the number of
trapezoids crossed by a line (or a segment) is O(r); thus each [; = O(r). This establishes
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the claim, which implies that

Y. n; log n; = O(nrlog n).

The probabilistic arguments in [4] imply that there exist subsets R for which
¥ mni?=0(m(n/r)"?),

1

where m=Y, m;=2n, and
5 m?10g m)"*=( mal’) - (log )= O(m(n/r)"*(10g m) .

Thus the total count is
O(m(n/r)"*(log n)"*+ nrlog n+r*) = O(n*>(log n)*?)
by our choice of r. 0

5. Conclusions. In this paper we have analyzed the maximum possible size of the
queue in the original version of the Bentley-Ottmann line sweeping algorithm, showing
that this size never exceeds O(nlog’ n) for arbitrary segments and can be at most
O(n log n) in the case of lines; moreover, this latter bound can be attained in the worst
case. Our solution was based on reducing the problem to a static problem analyzing
the maximum number of nonintersecting vertically visible pairs of segments that do
intersect when extended to the right. We have also considered a variant of this latter
problem in which the “extended intersection” condition is dropped, and have shown
that in this case the number of nonintersecting vertically visible pairs never exceeds
O(n**(log n)*?) and can become Q(n*?) in the worst case.

The results obtained in this paper raise several open problems. One problem is
whether the bound O(n log” n) in Theorem 4 and Corollary 5 is actually tight in the
worst case, or is just an artifact of our divide-and-conquer analysis. Another problem
is whether the upper bound obtained in Theorem 7 can be improved to O(n*?), which
would then be worst-case optimal. Yet another issue is to extend our results to
arrangements of more general curves. This is a natural problem since the Bentley-
Ottmann algorithm also applies to such curves, and it would be nice to know that the
queue size cannot become too large in these more general cases as well. Concerning
this problem, we note that our results (Theorems 2 and 4) apply to collections of
pseudclines or pseudosegments (namely, when the given curves are all x-monotone,
and any pair of them intersects at most once).

Finally, what are the consequences of our results to pragmatic applications of the
Bentley-Ottmann algorithm? Specifically, our results suggest a trade-off between the
number of queue updating operations and the maximum size of the queue, and show
that it is possible to save roughly half the number of updates at the cost of potentially
increasing the storage for the queue by at most an O(log” n) factor (moreover, the
implementation of the queue will be simpler, since only INSERT and DELETE-MIN
operations are now required). Do these advantages justify the potentially larger storage
requirements in practical executions of the algorithm?
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us and for offering the basic idea of reducing the queue analysis problem to a static
one involving vertical visibility (though not quite the reduction that we have used).
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