Methodology and Templates in AUTOSAR

Regina Hebig

Hasso Plattner Institut

Abstract. AUTOSAR (AUTomotive Open System Architecture) is a
worldwide development partnership of car manufacturers and suppliers.
The goal is to provide an open standardized software architecture for
the development of automotive systems. Besides the architecture, AU-
TOSAR specifies templates, which define the structure of the informa-
tion that needs to be stored and shared during the development of an
AUTOSAR conform system. Finally AUTOSAR provides a methodol-
ogy, which defines the main development activities. This paper offers an
introduction to the templates and the methodology.

1 Introduction

The AUTOSAR standard defines an architecture for the development of auto-
motive control systems [4]. This architecture consists of four layers which are
described in detail in [20]. The four layers are shown in Figure 1. The upper-
most layer contains the software components of the application specific part of
the system, whereas the hardware aspects are located at the bottom layer. Be-
tween these two layers are the runtime environment (RTE) layer and the basic
software layer, which abstract from the hardware and offer basic functionality
to the software.

AUTOSAR
Software

AUTOSAR Runtime Environment (RTE)

Basic Software (BSW)

ECU-Hardware

Fig. 1. The AUTOSAR architecture layers.

The software of the RTE layer as well as the basic software (BSW) on the
basic software layer have to be configured for each electronic control unit (ECU)
on which they are deployed. Thereby not only the characteristics of the chosen
ECU but also the software parts that are deployed on the ECU have to be taken
in to account.

TurnSwitchSensor
AtomicSWC

out

out

WarnLightsSensor
AtomicSWC

FrontLeftActuator

tss
Indicator
Composition
wis

AtomicSWC
signal

left

right

signal

FrontRightActuator
AtomicSWC

Fig. 2. The software components of the warning-light-switch example system.

An example for a system which may be built with AUTOSAR is the warning-
light-switch system, which is used as an example in the System Desk Tutorial [3],
too. The software part of the system consists of the components shown in Figure
2. These components are defined on the uppermost layer of the AUTOSAR
architecture. The hardware of the system is shown in Figure 3. It is a car with
two lights in front, two sensors (indicator switch and warning light switch) as
well as three ECUs, which are connected via a CAN bus. The ECUs, sensors
and the bus are described on the bottom layer of the AUTOSAR architecture.

One goal of AUTOSAR is that software and hardware can be built indepen-
dent of each other as far as possible. However there is a point when software
architecture and hardware structure are developed and this two parts have to
be mapped together.

It is necessary to define which software components will be deployed on which
ECU. For example that the ‘FrontLeftActuator’ component shown in Figure 2
will be mapped to the ‘Front left indicator ECU’ shown in Figure 3.

As the software architecture is not only developed independent of the hard-
ware structure but also independent of the actual implementations, for each
software component an appropriate implementation must be chosen. For ex-
ample both the ‘FrontLeftActuator’ component and the ‘FrontRightActuator’
component can be realized by the same implementation.

In addition the communication between the software components ports must
be mapped to signals and protocol data units (PDU) for the communication via
the bus systems.

How the remote communication is hidden from the software components is
described in [17]. In [15] is described how the basic software of the AUTOSAR
architecture handles the communication of PDUs and signals.

The definition of the mappings among implementations, software compo-
nents, hardware and signals is the precondition for the configuration of the RTE
and the basic software for each ECU.

To support the development of AUTOSAR systems, all these activities have
to be brought into an order. This order in defined by the AUTOSAR methodol-
ogy [6].

Front right
Indicator

- CAN
Front right /
indicator -—11,/—"—"—"—"—"—"—7—--------
ECU
arning
light ~
switch
Central
Front left Body ECU
indicator
ECU
Front left
Indicator /C/‘
AN J | ——

Indicator
switch

Fig. 3. The hardware structure of the warning-light-switch example system.

The single activities need input information and the results have to be doc-
umented. There may be several tools used during the development process, like
for example SystemDesk. To make this possible all information must be available
in a standardized format to be exchangeable. Therefore AUTOSAR provides a
set of templates, which are based on an UML Profile. Each template defines a
structure for the information about a specific aspect of the AUTOSAR systems
description.

The AUTOSAR methodology specifies not only the flow of the activities,
but also the characteristics of the input and output documents. This includes
the identity of the template of which the document is an instance as well as
a declaration which information are already included to the document. So the
methodology defines formal which information are produced and consumed in
the different activities.

The methodology is defined with the help of the Software Process Engineering
meta-model (SPEM) [6]. SPEM supports the illustration of activities and of
the corresponding input and output documents. In addition SPEM allows the
methodology to specify how the single activities can be supported by tools.

Although the methodology defines the major steps which are necessary for
the development of AUTOSAR systems it describes not a complete process. It
does not define how often activities or flows of activities can be repeated. In
addition the methodology defines for the most part no roles or responsibilities
for the activities. However, it can be used as a basis for a development process.

AUTOSAR provides different methodologies for different tasks, but this pa-
per only deals with the most important one. It describes the derivation of a con-
figured executable for each ECU, starting with the description of the software
and hardware. This methodology (in the following called simply methodology)
consists of two parts.

The first part of the methodology starts with the template based descriptions
of hardware, software and constraints over the system. The result is a description

of the whole system. This includes a mapping of software to the ECUs. The
second part of the methodology describes how for a single ECU the basic software
and RTE are configured and an executable is generated.

In Section 2 the templates of AUTOSAR will be introduced. Section 3 illus-
trates the activities of the methodology in detail.

2 AUTOSAR Templates

A template in AUTOSAR, as described in [14], is a collection of attributes, which
are necessary to describe a subject of AUTOSAR. Such subjects are ECUs, soft-
ware components or a whole system. Each template provides a formal definition
of the information structure for its subject.

All templates are specified in UML, based on the AUTOSAR UML Profile,
which is described in [5]. This profile defines a set of stereotypes for the expres-
sion of AUTOSAR concepts like ECU or hardware element. The stereotypes are
structured in packages, according to their usage in the different templates.

If templates are filled with information about a subject instance they are also
called AUTOSAR descriptions.

The next subsection introduces the main templates and the structure among
them. After this the system template is shown in detail.

2.1 The template structure

As said above all templates are based on the AUTOSAR UML profile. The tem-
plate packages in the UML Profile are related with another as shown in Figure
4. A relation between two packages show, that one package reuses concepts that
are defined in the other package.

For example the System of the System Template owns a SoftwareComposi-
tion, which is defined in the Software Component Template. In the following the
different templates are introduced.

The Generic Structure [7] defines some basic properties, which are followed
by every template in AUTOSAR. An example is the fact that every element of
a template has a unique identifier. For example both the concept ‘CAN bus’ as
well as the CAN bus instance shown in Figure 3 have unique identifiers. But
the Generic Structure also defines that every template starts with the element
AUTOSAR.

The ECU Resource Template [12] describes the hardware resources of an ECU
like the Central Body ECU. This includes for example information about the
memory, the processing unit peripherals or sensors. The described information
is relevant for the configuration of the ECU abstraction layer and the micro
controller for the specific ECU.

The Software Component Template [9] is used to describe the software part of
the system. The template includes the general description of component types
with port prototypes and port interfaces. It distinguishes between composite
components, which lead to a hierarchical structure of the software components

All other top-level
packages aggrgate
meta-classes from
.Generic Structure”

GenericStructure

SWComponentTemplat ECUResourceTemplate
™ 7 A
.

SystemTemplate

BswModuleTemplate

Fig. 4. Extract of the package structure of the UML Profile.

and atomic software components. They describe pieces of software, which can
be mapped to ECUs. For example the Indicator software component shown in
Figure 2 is modeled as a composite component.

In AUTOSAR a software component is a ‘formally described piece of soft-
ware existing above the AUTOSAR RTE’ [9]. This means that the Software
Component Template is used to describe entities of the Application Layer of
AUTOSAR and AUTOSAR interfaces on the Basic Software Layer.

The System Template [13] references both the Software Component Template
and the ECU Resource Template. With it this template defines the relationship
between the software view of the system and the physical architecture with the
ECUs. In addition, constraints over this relation can be described with the help
of this template. In the next subsection this template is shown in detail.

A next template is the Basic Software Module Description Template [10]. Tt
concerns the aspects of the basic software. These are all information about basic
software modules and basic software cluster. The package of the BSW module
description template is related with the software component template, because
they both describe implementation aspects and resource consumption.

Some templates which are not shown in Figure 4 are the ECU Configuration
Template Structure and the ECU Configuration Parameter Definition, which
are defined in [11]. Both templates are used during the configuration of single
ECUs and describe configurations, which concern basic software modules. The
ECU Configuration Template Structure is exceeded by the ECU Configuration
Parameter Definition. The later one includes information about restrictions of
parameters and the location of their storage.

2.2 The System Template

For the better understanding of the template concept, the System Template
serves as an example.

The aim of the System Template [8] is to show the relation between the
software architecture, implementations and the hardware structure of the whole
System. It includes the overall software architecture, a system topology for the
hardware as well as several mappings and constraints. Figure 5 shows the meta
model structure of the system template.

«atp_l_ype»ComponentType

Composition::CompositionType

+softwareComposition %
«isOfType»

*

Identifiable

«atpPrototype» Identifiable ‘
SystemMapping

SoftwareComposition

1 +mapping 1

o -

«atpStructureElement» ARElement
System

+softwareComposition

+fibexElement

PackageableElement
FibexCore::FibexElement

Fig. 5. The UML meta model structure of the system template.

As the meta model structure implies, the system template includes a single
software composition a system mapping and references to FibexElements. Under
the topic ‘topology’ Fibex will be introduced. First the software composition is
introduced and afterward the hardware aspect, which is covert by the Fibex
references. At last the system mapping is examined.

Software Composition The software composition describes the outermost
software component of the described system. This is a composite component
without ports. It includes the hierarchical structured software system with its

composite components, connectors and atomic components. In the example soft-
ware structure (Figure 2) this outermost software component is not shown.

The description of components includes the ComponentType, PortProto-
types, PortInterfaces, DataElementPrototypes and the InternalBehavior, which
is described by Runnables and port prototypes, which invoke operations. All this
aspects are defined in the Software Component Template.

For example the FrontLeftActuator in Figure 2 is modeled as an atomic
component with a PortPrototype, denoted with ‘signal’.

Topology The referenced Fibex elements describe hardware aspects. Fibex
(Field Bus Exchange Format) is an XML format for the exchange of data be-
tween tools for bus communication. It supports most of the common buses like
LIN, CAN or FlexRay. Fibex allows a user to define a software architecture, a
system topology to cover the hardware description and the description of com-
munication aspects. In AUTOSAR only a subset of Fibex is used. This subset
contains the topology and communication aspect descriptions.

Fibex elements like CommuniationCluster and Eculnstances describe the
hardware topology. Other Fibex elements like ISignal or Frame are used to de-
scribe the communication aspects.

There is a difference between the description elements in the topology and
the real hardware elements that are described with the help of the ECU Resource
Template. An ECUInstance will be mapped to an instance of the ECU Resource
Template. In the example shown in Figure 3 such ECUInstances are the Central
Body ECU or the Front Left Indicator ECU, which are shown in Figure 3. An
Eculnstance owns a CommunicationController. Such an element describes the
communication with a CommunicationPheripheral, for example the indicator
switch.

A further element of Eculnstance is the CommunicationConnector, which
describes a bus interface and specifies a sending and receiving behavior. It will
be mapped to a ECU Communication Port. This CommunicationConnector ref-
erences a physical channel, which is owned by a CommunicationCluster (e.g. the
CAN bus).

The CommunicationCluster describes a part of the topology, as it owns one
or more physical channels, which connect communicating ECUs. However, an
ECU can be connected to more than one CommunicationCluster.

Another piece of information that is hold in the System template is the
communication matrix. It stores the information, which signals, frames or PDUs
are sent and received on which channel at the single ECUs.

Mapping The third part of the system is the SystemMapping. It holds a set of
mappings like the EcuResourceMapping, the mapping of software components
to an ECU (SwCompToEcuMapping), the mapping of a software component to
an implementation (SwCompTolmplementationMapping) or the DataMapping.

Listing 1.1. Example SystemDesk XML plot of a SwCompToEcuMapping.
< — — —
UUID="dc6b203d-£f3b8-48al-blbb-ebe611639946">

< - > </ — >
< - >
< — >
< - — DEST="SOFTWARE -COMPOSITION">
/ / /
</ - >
< — — —
DEST="COMPONENT -PROTOTYPE ">
/ / /
</ — — —REF>
</ - >
</ >
<ECU— - DEST="ECU-INSTANCE">
/ / /
</ — —REF>
</ —TD—ECU— >

In addition the SystemMapping can contain MappingConstraints, which re-
strict the possible mappings of software components to the ECUs. This is useful,
as the System Template is used at several stages in the development process. If
the mappings are not yet defined, it is nevertheless possible to make statements
about mapping aspects.

Listing 1.2. Example XML plot of a SwCompTolmplementationMapping.

<

> </ >
< - — DEST="SWC-IMPLEMENTATION">
/ /
</ >
< - >
< - >
< - - DEST="SOFTWARE -COMPOSITION">
/ / /
</ - —REF>
<
DEST="COMPONENT -PROTOTYPE ">
/ / /
</ — — —REF>
</ — >
</ - >
</ — >

How the atomic software components are distributed across the different
ECUs is specified in the Software component to ECU Mapping (SwCompToE-
cuMapping). It maps the ComponentPrototypes to the ECUs. E.g. the FrontLef-

tActuator component in Figure 2 is mapped to a specific ECU as shown in Listing
1.1.

The DataMapping describes primarily how the operations and data elements,
which are used in the ports of the software components, are represented as
signals.

The ECUResourceMapping maps the topology to the ECUResourceDescrip-
tions. This mapping was already described under the topic topology.

The SwCompTolmplementationMapping describes which implementation in-
stantiates which ComponentPrototype. The example in Listing 1.2 shows the
mapping of the implementation for the TurnSwitchSensor component.

The mappings can be restricted through MappingConstraints. The constraints
can describe which components cannot be mapped to the same ECU or must be
mapped to the same ECU. It is also possible to restrict which software compo-
nent can be mapped to which ECU. An example for this is the constraint that
the FrontLeft Actuator has to be deployed at the FrontLeftIndicatorECU shown
in Figure 3.

Figure 6 shows the UML meta model of the component separation and com-
ponent clustering. A ComponentSeparation defines two components that must
not be deployed at the same ECU, while a ComponentClustering defines a set
of components that must be deployed on the same ECU.

SystemTemplate::SystemMapping

+mappingConstrain$ *

MappingConstraint
<<abstract>>

S

ComponentSeparation ComponentClustering

* I

<<instanceRef>> <<instanceRef>>

+separatedComponent 2

1.* : +clusteredComponent

<<atpPrototype>> Identifiable
Composition::ComponentPrototype

Fig. 6. UML meta model of the ComponentSeparation and ComponentCluster-
ing mapping constraints.

3 Methodology

The templates define a formal description of the structure of information. There-
fore they are used to describe the work products and inputs of the activities of
the methodology.

System Configure
Configuration ~ System

Input :System Extract ECU-

System Specific
Configuration |nformation
Description "
:System ECU Extract of Coggguure
System
Configuration G :
:System enerate
4 !ECU . Executable ECU
Configuration Executable

Description

Fig. 7. The four main steps of the methodology.

As already mentioned in the introduction the methodology describes a set
of activities for the development of AUTOSAR systems. Actually there is more
than one ‘methodology’ in AUTOSAR. However, the most common methodology
is the one, which leads, starting with software and hardware description, to the
generation of executables for each ECU. The Sections 3.1 and 3.2 introduce the
four main steps in detail.

Before the introduction of these steps, the whole extent of what is named
methodology in AUTOSAR is shown. The diversity actually starts inside the
‘common methodology’. There are several alternatives concerning the configu-
ration of the ECUs or the generation of code.

In addition there is a methodology, with the aim to include measurement
and calibration functionality into the system. In [18] calibration is described as
the adjustment of controller software functionality according to the individual
vehicle. The data that are adjusted during calibration have to be changeable
until late phases of the development. AUTOSAR supports the description of the
data characteristics that are affected by the calibration.

The activities that are necessary to develop an application software compo-
nent and to integrate it to a system are described in the methodology for the
implementation of components. The goal of this is the ability to develop the core
functionality of software components independent of the rest of the system.

Finally there is a methodology for the specification of new AUTOSAR tem-
plates.

The methodology to retrieve the executables for each ECU consists of four
main steps as shown in Figure 7. The first step Configure System concerns the
whole system. The second step Extract ECU-Specific Information prepares the

results of the first step for the next steps, which concern only single ECUs and
no longer the whole system.

The last two steps deal with the configuration of the ECU specific parts of
the system (Configure ECU) and the generation of the executable (Generate
Ezecutable), as described in [11]. The next subsection shows the first and second
step in detail. Section 3.2 explains the configuration of the ECU and Section 3.3
the generation of the executables.

As already mentioned the methodology also defines tools for the support of
the activities. In Section 3.4 the different conceptual tools that are defined in the
methodology are mapped to real tools like SystemDesk. Role responsibilities are
only partially considered in the methodology. In Section 3.5 the possible roles
are described.

3.1 Configuring the system

The configuration of the system has the goal to unify the description of the
software components and the description of the hardware resources. The input
of this activity is an instance of the System Template, which is named System
Configuration Input. This instance references the topology of the system and
with it the description of each ECU in form of an instance of the ECU Resource
Description Template.

System Extract ECU- ECU Extract of
Configuration Specific System
Description Information Configuration
:System H :System

AUTOSAR ECU
Configuration
Extractor

Fig. 8. Configuration of the System and extraction of the ECU specific parts.

Like the topology the top level software composition of the system is delivered
with the System Configuration Input as instance of the Software Component
Template.

In addition to the hardware and software aspect the System Configuration
Input holds constraints, which concern the communication matrix and the map-
ping of hardware and software. Such a constraint is e.g. the constraint, that
the ‘TurnSwitchSensor’ software component shown in Figure 2 has not to be
deployed on the ‘Front left indicator ECU’ shown in Figure 3.

The second input for the activity Configure System is a collection of all avail-
able software component implementations. This is necessary, as the implementa-
tions are mapped to the software components in this activity. The methodology
specifies requirements for a tool which supports this activity. The name of this
conceptual tool is AUTOSAR System Configuration Generator.

As output a communication matrix and a new instance of the System Tem-
plate (System Configuration Description) is created. The System Configuration
Description references the communication matrix, the topology and the top level
composition. Topology as well as top level software composition are not touched
and changed during the Configure System activity.

The System Configuration Description includes as the most important result
of this step, the new System Mapping. It brings the software architecture, the
hardware descriptions and implementations together. The input and the output
of this activity are instances of the System Template. While the input contains
only mapping constraints, the System Configuration Description holds the actual
mappings.

The Figure 8 shows the step, which follows the activity Configure System:
Extract ECU-Specific Information. Also for this activity the methodology defines
demands on supporting tool under the conceptual tool name AUTOSAR ECU
Configuration Eztractor. The result of the extraction is again an instance of the
System Template. It is quite similar to the System Configuration Description,
but it holds only the information that is relevant for a single ECU. For example
there are no information about the communication between the ‘TurnSwitchSen-
sor’ and the ‘Indicator’ software components in the ECU Extract of the ‘Front
right indicator ECU’ shown in Figure 3.

3.2 Configuring the ECU

After the extraction of the ECU specific parts, the basic software modules have
to be configured for the ECU. The configuration information for the whole ECU
is described in the ECU Configuration Description. As shown in Figure 9 the
activity Generate Base ECU Configuration Description instantiates the ECU
Configuration Description based on the ECU extract of the System Configura-
tion.

The ECU Configuration Description is in contrast to the ECU Eztract of
System Configuration not an instance of the System Template but of the ECU
Configuration Template, which is described in [11]. During the Generate Base
ECU Configuration Description activity the ECU Configuration Description is
linked to the Basic Software Module Description of every Basic Software module
that will run of the ECU and the RTE.

The RTE is handled the same way as every Basic Software module within
the ECU Configuration. Therefore the RTE is also referenced, when the text is
about Basic Software Modules. The Basic Software Module Description holds
the information about the used implementation for a basic software module.

BSW-Module Description :
BSWModuleDescription

Generate Base ECU

ECU E_xtract_ion of System Configuration ECU Configuration
Configuration : System Description Description
AUTOSAR ECU Edit ECU
Configuration Configuration
Editors

Fig. 9. Two initial steps of the ECU configuration.

In addition the ECU Configuration Description has a reference to the ECU
Extract of System Configuration, as it holds the information about the software
components and communication aspects.

As implied by the Figure 9 the configuration of the ECU is not terminated
after the instantiation of the ECU Configuration Description. The configuration
of the different Basic Software modules is done iterative in many steps. Such
an activity is called Edit ECU Configuration. E.g. the mapping of a software
component runnable ‘WarnLightSensor-WlsRunnable’ to the OS task ‘Task_WIs’
can be defined in such an Edit ECU Configuration step.

After the configuration of the ECU is fixed the activity Generate Configured
Module Code follows. It brings the configuration information in a form, in which
it can be used for the generation of the ECU executable.

3.3 Generation of the executable

Before the activity Generate Configured Module Code can be described, the term
Configuration Class has to be introduced.

Each Basic Software module can be configured through several parameters.
The configuration class of a parameter depends of the point in the development
process of the Basic Software module, where it has to be fixed.

The deployment process of a Basic Software module contains the compilation
and the linking of the code. Therefore the three configuration classes are pre-

Module Configuration

BSW-Module Description : Code

BSWModuleDescription
A

Generate Module
Configuration

Module Configuration
Header

Generate Module Module Configuration

ECU Confi ti
onfiguratio Configuration Object Code

Description

Generate Module Module Configuration
Configuration Loadable to ECU Memory

Fig. 10. Generation of the module configuration.

compile time, link time and post-build time. Parameters of the type pre-compile
time can not be changed after the compilation, whereas parameters of the type
link time are fixed after the linking. Parameters of the last class post-build time
can be chosen during the boot.

For the last configuration class two alternatives exist. In the first alternative
the configuration of a parameter is stored in a non executable binary file that
can be downloaded to an ECU. This parameter is of the type loadable. The other
alternative of post-build time parameters are the selectable parameter sets. There
are multiple alternative configurations for a set of parameters that are linked into
the executable.

Since the configuration classes are introduced now, the next activity of the
methodology can be shown. As said above the next step after the Fdit ECU
Configuration activity is the activity Generate Configured Module Code, which
is shown in Figure 10.

The activity is done for each Basic Software module and configuration class.
There are three alternative outputs of this activity. In the first alternative the
configured parameters are generated into ¢ code and header files. As this output
is not yet compiled it has to be compiled with the code of the basic software
module. This variant is used for pre-compile time parameters.

The second alternative produces an object code file. As the object code is
already compiled, this file is included to the Basic Software module during link

time. The last alternative output of the Generate Module Configuration activity
is a binary file, which can not be executed by its own. This file can be downloaded
to an ECU during the boot.

ECU Configuration Generate Mod BSW1 Generated Compile BSW1 gg\yq opject Link ECU Code ECU
Description Configuration Configured Code : Code H Executable
i Y H
& BSW1 Configuration & I&I
BSW1 Header C Compiler Linker

Configuration
Generator

Fig. 11. Possible flow of activities for the configuration of pre-compile time pa-
rameters.

In the overview of the methodology in Figure 7 can be seen that the last
step after the configuration of the ECU is the generation of the executable. The
activity Generate Module Configuration produces different outputs, dependent
on the configuration classes. That’s why the Generate Executable activity has to
deal with the different configuration classes, too.

There are different alternative approaches for the generation, for each con-
figuration class. In the following one approach for each configuration class is
introduces.

Figure 11 shows the activities for a Basic Software module (named BSW1)
with pre-compile time parameters. In this variant the Generate Module Configu-
ration activity generates not only the source code for the configured parameters,
but generates the whole Basic Software module source code with the configured
parameters inside.

After this step the code is compiled and linked to the executable. An example
use case for parameters that are fixed after the compilation is the enabling of a
macro for error tracing during the development.

Figure 12 shows the generation steps for post-build time selectable param-
eters. Source code for the different configuration sets is generated. The source
code of the alternative configuration sets is then compiled into one object code
file. Meanwhile the Basic Software module is compiled without configuration.
With the linking the two object codes came together within the executable.

As there are now alternative sets of configuration data within the executable,
the choice which set is used can be made after the link time. For link time
parameters a very similar procedure can be chosen. Therefore the number of
alternative configuration sets has to be one. An example use case for a link time
parameter is the setting of a unique channel identifier.

The Figure 13 shows the procedure for loadable post-build time parameters.
As visible at the bottom of the picture, the code of the Basic Software module

Compile BSW2

BSW2 Code Unconfigured Code BSW2 Object

Code

b L kD@

B'SW2 . Link ECU Code ECU
Configuration
Executable

C Compiler Linker
Generator H

BSW2 Configuration
Data [Set 1]

Compile BSW2 BSW2
Configuration Configuration
Object Code

ECU Configuration Generate BSW2
Description Configuration

BSW2 Configuration
Data [Set 2]

Fig. 12. Possible flow of activities for the configuration of selectable post-build
time parameters.

is compiled and linked without configuration. Meanwhile the binary file is gen-
erated direct out of the ECU Configuration Description. This direct generation
requires a tool that is capable to generate the binary file directly. There are
alternative approaches, which split this activity into several steps.

In the result the executable refers to the loadable binary file. As the binary
file can be downloaded at boot time, the choice of the configuration is located
after link time.

3.4 Tools in the methodology

As mentioned above, the methodology defines requirements on tools that sup-
port of the different activities. In [19] the tool SystemDesk is introduced as an
AUTOSAR supporting tool. The aspect of simulation of software components
and their interactions within SystemDesk and TargetLink is captured in [16].

Did the two tools capture the role of some of the tools, which are defined
in the methodology? TargetLink seems to do not. It enables the generation of
code out of MATLAB, Simulink and Stateflow [2] and supports AUTOSAR with
the TargetLink AUTOSAR Block Library. Therefore it can be used to model the
behavior of the Runnables, based on the other tools and enables the generation
of ¢ code. However, it seems not to support one of the methodology activities
directly.

In contrast SystemDesk seems to satisfy the requirements of several of the
‘AUTOSAR tools’. SystemDesk, as it is defined for the AUTOSAR System Con-
figuration Generator, supports the creation of the system mappings and the com-
munication matrix. SystemDesk supports only a restricted set of ECUs. However,
for this set the complete automatic extraction of the ECU specific part out of
the System Configuration is possible. This is the task of the AUTOSAR ECU
Configuration Extractor.

Finally the AUTOSAR ECU Configuration Editor, which is defined to sup-
port the ECU specific configuration, seems to be only partially supported. Sys-

E » B

ECU Configuration Generate BSW3 BSW3
Description Configuration Configuration
H Loadable to
H ECU Memory
[N N :
]]]

Cc Corppiler BSW3 Linker
H Configuration
Generator

BSW3 Code %OmP":_ BSV‘? BSW3 Object Link ECU Code ECU
nc%r:xliiure Code Executable

Fig. 13. Possible flow of activities for the configuration of loadable post-build
time parameters.

temDesk can generate an instance of the ECU Parameter Configuration Tem-
plate. However, many requirements for this tool are not satisfied. An example is
that SystemDesk seems not to enable simple merges between ECU Configuration
Descriptions.

An example for a tool with explicit support for the ECU configuration and
the generation of code is the EB tresos Studio [1]. It has the explicit goal to
support the configuration workflow of the AUTOSAR methodology.

3.5 Roles in the methodology

As already mention the methodology defines no roles for the most activities.
Nevertheless in [11] the methodology specifies, which roles are responsible for
the configuration of the basic software for the ECUs.

There are three roles that a participant in the development process of a car
can play. The first role is the OEM, who is the car manufacturer. The other two
roles are Tier-1 supplier and Tier-2 supplier. A Tier-1 supplier builds subsystems
of the car, while a Tier-2 supplier delivers only parts of the subsystems. Actually
there are also the Tool-vendors. However, they are not concerned by the activities
of the methodology.

The methodology defines role responsibilities for two activities. These ac-
tivities are Edit ECU Configuration and Generate Module Configuration. The
configuration classes, which we introduced in Section 3.3, are crucial for these
role responsibilities. Pre-compile time parameters have to be configured by the
Tier-2 supplier, while link time parameters have to be configured either by the

Tier-2 or the Tier-1 supplier. Finally the post-build time parameters are config-
ured by the OEM.

A role that is responsible for the configuration of one parameter type is
also responsible for the corresponding activity Generate Module Configuration.
The Tier-2 supplier, which configures the pre-compile time parameters, is also
responsible for the generation of the configuration code. The object code for
the configuration of link time parameters is generated by the responsible Tier-1
or Tier-2 supplier. The OEM is responsible for the generation of the loadable
binary files.

The tendency is that the producer of a system part is also responsible for
the configuration of this part. What is not yet defined in the methodology is
the responsibility for other activities like Generate Base ECU Configuration
Description, Extract ECU-Specific Information or the activity Configure System.
All three activities concern system parts that are not in the single responsibility
of one supplier.

It would be reasonable that the OEM is responsible for the activity Configure
System. Generally there is always one role, which holds the responsibility for a
system part. For example an ECU may be in the responsibility of a Tier-1
supplier or alternatively in the responsibility of the OEM. It would be logical
that this responsible participant is also responsible for associated activities.

4 Conclusion

The templates in AUTOSAR standardize the information structure and thus en-
able the information exchange between different tools. The methodology defines
the activities of the development process and with it the point in the devel-
opment process, where a work product has to be available is defined. Thereby
the cooperation among the different manufacturers and suppliers becomes more
standardized.

There is still standardization work to do concerning the methodology and
templates. For example AUTOSAR just started to consider roles like OEM or
supplier within the methodology, as explained in Section 3.5. However, with the
templates and the methodology AUTOSAR offers a basis for a standardized
cooperation between the different participants of the development process of an
automotive system.

References

[1] EB tresos: The Product Family for the Development of ECU Software. Web
site. Found on http://www.elektrobit.com/what_we_deliver/automotive_
software/products/eb_tresos_—_ecu_software_development/eb_tresos_
studio.

[2] TargetLink. Web site. Found on http://www.dspace.de/ww/de/gmb/home/
products/sw/pcgs/targetli.cfm?nv=n2.

[3] dSPACE. System Desk Tutorial, 2008.

http://www.elektrobit.com/what_we_deliver/automotive_software/products/eb_tresos_-_ecu_software_development/eb_tresos_studio
http://www.elektrobit.com/what_we_deliver/automotive_software/products/eb_tresos_-_ecu_software_development/eb_tresos_studio
http://www.elektrobit.com/what_we_deliver/automotive_software/products/eb_tresos_-_ecu_software_development/eb_tresos_studio
http://www.dspace.de/ww/de/gmb/home/products/sw/pcgs/targetli.cfm?nv=n2
http://www.dspace.de/ww/de/gmb/home/products/sw/pcgs/targetli.cfm?nv=n2

Simon Frst. Autosar - an open standardized software architecture for the auto-
motive industry. 1st AUTOSAR Open Conference, 2008.

AUTOSAR GbR. UML Profile for AUTOSAR V1.0.1, 2006.

AUTOSAR GbR. AUTOSAR Methodology V1.2.2; 2008.

AUTOSAR GbR. Generic Structure Template V2.1.2, 2008.

AUTOSAR GbR. Requirements on System Template V2.1.2, 2008.

AUTOSAR GbR. Software Component Template V3.1.0, 2008.

AUTOSAR GbR. Specification of BSW Module Description Template V1.1.0,
2008.

AUTOSAR GbR. Specification of ECU Configuration V2.0.2, 2008.

AUTOSAR GbR. Specification of the ECU Resource Template V1.0.5, 2008.
AUTOSAR GbR. Specification of the System Template V3.0.4, 2008.
AUTOSAR GbR. Template UML Profile and Modeling Guide V2.2.2, 2008.
Johannes Gosda. AUTOSAR Communication Stack, 2009.

Alexander Krasnogolowy. Simulation of Automotive Systems in the Context of
AUTOSAR, 2009.

Nico Naumann. Runtime Environment & Virtual Function Bus, 2009.

Jrg Schuffele and Zurawka Thomas. Automotive Software Engineering.
ATZ/MTZ-Fachbuch, 2006.

Sebastian Waetzoldt. Modeling ans Development of AUTOSAR using Sys-
temDesk, 2009.

Robert Warschofsky. AUTOSAR Software Architecture and Application Layer,
2009.

