AUTOSAR Seminar WS2008/2009 -
Assignment: Simulation of Automotive Systems
in the Context of AUTOSAR

Krasnogolowy, Alexander
March 31, 2009

Hasso-Plattner-Institut for IT-Systems Engineering
University of Potsdam
Prof.-Dr.-Helmert-Strafle 2-3
14482 Potsdam
Department ”Systems Analysis and Modeling”
Prof. Dr. Holger Giese

Abstract. In the automobile industry, the usage of embedded systems
becomes more and more important. Today, many innovations are realized
by software solutions[15]. The increasing complexity on the one hand and
the high performance requirements on the other hand, leads to a new
challenge in assuring the quality of this systems.

This paper takes this problem into account and shows how the quality
objectives of automotive systems can be assured with the help of simula-
tion techniques in every development stage. For this purpose, the devel-
opment stages are introduced and it is shown which kind of simulation
can be used in which stage.

Furthermore, the usage of AUTOSAR leads to new possibilities in simu-
lating automotive systems. Through the hardware independent software
architecture, applications can be already simulated in an early develop-
ment stage. Tools supporting such a simulation are presented and dis-
cussed.

2 Introduction

1 Introduction

Simulation is the transformation of a system to a model and conducting exper-
iments with that model [1] to analyze the dynamic behavior [2]. The model of
the system can be a model of an an existing system (descriptive model) or a
system, which is has to be build (prescriptive model). If the system is simple, it
can be transformed for example to a mathematical model and the given problem
can be solved analytically [1].

However, real world system are usually very complex and analytical analyses
are difficult, because the software consists of many lines of code and is inter-
acting with other components[3]. Embedded system are also influenced by the
scheduler of the underlying operating system and also interrupts, which can oc-
cur randomly. Moreover, an application has many different execution paths and
states, which have to be investigated. So, because of the high complexity and the
different combinations in the control flow of the embedded system a simulation is
executed. In a simulation only the most interesting cases are considered and for
every simulation step one possible execution path is gone to observe the behav-
ior of the system [6]. It is possible to analyze the timing behavior, the memory
usage and to check the logical behavior of the software. To see if the behavior
of the system is correct, it can be tested on the real embedded system with its
real environment, but this is very expensive and assumes the availability of the
real system. However, in an early stage of the development, the real system is
usually not available. Therefore the simulation is done at a high level for example
on a workstation, which emulates the developed software and the environment,
which makes a simulation and also changes of the embedded system very easy
and cheap [5] because no special hardware is needed.

Moreover, if the simulation is done in an early stage, less redesign must be
done in late development stages, which increases the design productivity[4].

This assignment is structured as follows. In the first part, a short intro-
duction into the development process of automotive software systems (and em-
bedded systems in general) is given which is generally based on the V-model.
These foundations are used afterwards to show in which stages simulation is in-
volved and which kinds of simulation exist. For this purpose, Model-in-the-Loop,
Software-in-the-Loop and Hardware-in-the-Loop Simulationes are introduced.

After the theoretical part of this assignment, the next part describes how a
simulation with the help of tools can be done in practice, if the existing soft-
ware architecture is based on the AUTOSAR Standard. A tool and an extension
of MATLAB/Simulink developed by dSPACE [7] is introduced, the differences
are explained and the relationship between them is discussed. Afterwards, also
a short overview about a tool from the bachelorproject 2007/2008 about the
performance evaluation of AUTOSAR architectures is given and compared with
the solutions of dASPACE. Finally, the differences between the simulation of AU-
TOSAR based system compared to the traditional systems is summarized.

Simulation in the Development Process 3

2 Simulation in the Development Process

2.1 Development Process of Embedded Software Systems

To structure the process of developing software systems, many different process
models are available. These are for example the waterfall model, the Rational
Unified Process or the Extreme Programming. Another one is the V-model [9]
which is very suitable for the development of embedded systems, because it
focuses on quality assurance aspects which is given by the formal procedure, the
creation of intermediate results and test activities on the different development
stages[10].

The V-model consists of a number of phases. On the left hand you have the
requirements analysis, system design, architecture and module design and at last
the implementation. For every step, a test activity on the right hand is specified.
These are unit testing, integration testing, system testing and user acceptance
testing[9].

In addition to this, a system is usually developed in a sequence of interme-
diate product-appearances. The first appearance is the model, which is iterative
developed. This means that first, low level requirements are established, detailed
model design decisions are made and after that validated through model check-
ing, state transition and model integration tests and of course a simulation of
the model (see section 2.1.1). The resulting model should reflect an abstract
view of the system, which emulates the required system behavior[8]. The pro-
cess of developing an AUTOSAR based system is described in the AUTOSAR
Methodology. It is not a complete process description but defines dependencies
of activities on work-products[22]. For example it illustrates design steps from
the system configuration until the generation of an ECU executable. This in-
cludes among other things that software components and the hardware have to
be modeled, implemented, selected and mapped to ECU[22]. A detailed overview
about this methodology can be read in assignment[19]. Tools supporting the de-
velopment with AUTOSAR are introduced in section 3.

The next step in the development process is the automatically generation
of code from this model. The code is embedded in an experimental hardware
- the prototype. In the same manner as the model, the prototype is developed
in its own V-development cycle. This means that on the right hand side we
have activities like unit test, software integration and acceptance test, a system
integration test and a simulation, too. The automatically code generation with
different tools is also shown in section 3.

The last step is the replacement of the experimental hardware with the real
one - the final product. For the final product, production requirements and
detailed design decisions are made whereas on the right side of the V-model
the system is tested, certificated and release criteria are checked. These three
product-appearances (model, prototype and final product) leads to the so-called
multiple V-model (see figure 1). The advantage of this separation is that it is
cheaper and quicker to change a prototype or a model than to change the final
product [8]. Moreover, if the model is validated to be correct, you just need to

4 Simulation in the Development Process

Model — Prototype(s)}—— Final Product

Simulation stage

Prototyping stage

Pre-production stage

Fig. 1: Multiple V-model

test the prototype against the model and do not need to start the development
from the beginning.

However, the multiple V-model does not consider the fact that a complex
system is not developed as one piece but split into smaller components which
are developed separately. This development principle is one of the main aspects in
AUTOSAR where a system is developed in seperate Software Components. This
decomposition is usually done on the left side of the V-model in the design phase
where it is determined which components should perform which task. Later, in
the system integration stage the components are recomposed to a whole system.
This principle, that a system is divided into components which can be divided
into sub-components, sub-sub-components and so on where each component is
developed in a separate V-development life cycle, is called the nested multiple
V-Model [8].

In every stage of the multiple V-model (model, prototype, final product)
a simulation of the intermediate product is done. For that, special simulation
and test methods are used. These are the Model-in-the-Loop Simulation and
Rapid Prototyping in the model stage, the Software- and Hardware-in-the-Loop
Simulation in the prototyping stage and the final product is tested by a system
test in the last stage|[8].

2.1.1 Model-in-the-Loop Simulation and Rapid Prototyping

After the requirements for the system are specified, the functional specification
is done, which can be tested by a Model-in-the-Loop (MiL) simulation [12].
Therefore, the functional specification must result in an executable model - the
simulation model. The goals of simulating the model are to prove the concept
of the design, to optimize it and to develop and verify requirements for the
next development step (prototyping). Testing and simulation in the model stage
is usually done in the following steps: one-way simulation, feedback simulation
and rapid prototyping [8].

Simulation in the Development Process 5

Simulation Model

Signal Embedded
Generation System

(a) One-way simulation

Simulation Model

— odded

Plant
an _ System

(b) Feedback Simulation

Fig. 2: Simulation types

The one-way simulation means that input signals are generated manually or
by a tool and fed into the simulation model. The algorithms described by the
model are applied to the input and an output is generated which is recorded and
analyzed (see figure 2(a)). However, there is no dynamic interaction between the
plant and the simulation model.

The next step is the feedback simulation. This kind of simulation is more
complex than the one-way simulation because a second model is used - the plant
model. Instead of just generating signals and recording the output, the plant
model behaves more dynamically. It prepares the input signals for the model of
the embedded system creating an output which is fed back into the plant model
resulting in a new input for the embedded system (see figure 2(b)) [8]. Such a
plant model consist, among other things, of the motor, vehicle dynamics and the
environment [11]. An example for one-way simulation as well as the feedback
simulation will be shown in section 3. If the feedback simulation was successful
and the real environment is available, the plant model can be replaced with the
actual plant or a close equivalent [8]. A computer is connected to the sensor and
actuators of the car and the model of the embedded system is executed. The
computer transfers the output signals from the model to the actuators and the
signals from the sensors of the car to the model. This is called rapid prototyping
which offers a fast and early detection of errors in the specification and concept
[12].

2.1.2 Software-in-the-loop Simulation

The Software-in-the-loop Simulation (SiL) is quite similar to the the MiL Simu-
lation with the difference that not the model of the embedded system is executed,
but the code, which is generated from that model. To execute the code, the code
must be compiled first for a target processor. This can be the processor of the

6 Tools for Simulation of AUTOSAR

host PC or the processor of the embedded system. In the first case, the software
would run in an environment which is not restricted in resources and perfor-
mance (a PC is usually much faster than an embedded system). The goal of this
test is to verify the behavior and validate the simulation model from the model
stage [8]. In the other case that the code is compiled for the processor of the
embedded system, it can be executed on the host PC running in an emulator.
The goal of this test is the verification of the correct execution on the target
processor with restrictions on bit width and other processor specific limitations.

2.1.3 Hardware-in-the-Loop Simulation

The Hardware-in-the-Loop Simulation takes place in the prototyping stage.
The difference to the Sil. Simulation is that the test environment is not a PC
or an emulator but it is a hardware part where the software is loaded [8]. First,
the hardware part is just an experimental board, which contains the real target
processor and memory but has only simple signal generators and an oscilloscope
monitors the output of the embedded system. If the whole plant is still simulated
by the PC and just the code is executed on the real target processor then it is
also named a ”Processor-in-the-Loop Simulation” [11]. Later, the experimental
board is replaced by a prototype, which is nearly equivalent to the real system
and is connected to hardware components of the car. With that, the embedded
system can be simulated together with its surrounding hardware.

3 Tools for Simulation of AUTOSAR

In this section it is shown which tools are used in the above mentioned stages
of the development life cycle process in the context of AUTSOSAR and which
kind of simulations are supported by this tools. After introducing them, a brief
comparison of the features is given.

3.1 MATLAB / Simulink / TargetLink

MATLAB is a tool by MathWorks, which allows to solve technical computing
problems. It offers an add-on based environment to solve particular classes of
problems [16]. One of this add-ons is called Simulink, which provides an inter-
active graphical environment for a Model-Based-Design and simulation of em-
bedded systems. To model and simulate AUTOSAR based systems the add-on
TargetLink is needed which is a tool by dASPACE providing an AUTOSAR block-
set and a code generator. Modeling with TargetLink focuses on the application
layer of the AUTOSAR architecture (for more information see assignment from
[20]). It is possible to model AUTOSAR compliant SWCs and analyze their be-
havior on the host PC (MiL or SiLi Simulation) or on an evaluation board (PiL).
The code which is generated can be used for the target ECU [13].

The usage of TargetLink primarily takes place in a very early development
stage of the multiple V-development cycle. After the requirements were verified,
the developer can start with the functional specification of the embedded system.

Tools for Simulation of AUTOSAR 7

Client
FPort

Runnable Runnable
Inport Qutport

S SWiC
ReceivarPort SenderPort

Fig. 3: TargetLink AUTOSAR blockset

To create a model, the blocks of the AUTOSAR blockset (see figure 3) and some
certain blocks of Simulink can be used.

TmingBrert> T T T T T T -
RteEwent: Q-7 7 "7 7 -

Contreller » @

FrovidedSignal
SenderPort

SWC SenderPort

Controller_Runnable

Contraller . B <ref:

<if_ref B RequiredSignals
ReceiverPaf ~ oo ! 2 dpos?
SWC ReceiverFort

Fosition_Linearization_Runnable

Fig. 4: Example of the inner view of a SWC

3.1.1 Principles of Modeling with TargetLink

AUTOSAR compliant SWCs can be modeled as TargetLink subsystems. How-
ever, they are not the same as SWC. ”Modeling software components with Tar-
getLink basically means modeling a software component’s runnables and spec-
ifying each runnable’s communication.”[13]. This means that a subsystem in
TargetLink is not just a container for Runnables like a SWC, but rather how

8 Tools for Simulation of AUTOSAR

the Runnables are connected to each other. In anyway, the subsystems can be
structured in a way that every subsystem corresponds to a SWC. However, it
is not possible to nest subsystems into another one and so it is not possible to
model AUTOSAR composition components. For communication with Runnables
of other subsystems SWC In- and Outports of the AUTOSAR Blockset can be
used. An example of a modeled SWC in TargetLink is shown in figure 4. There
you can see how the Receiver Port of the SWC is connected to the Runnables
and how the Runnables communicate among each other. Moreover, you can see
that the subsystem gets two inputs, but has only one SWC input port. If a MiLL
simulation is done all ports would be used, but if code for the SWC is generated
only the SWC input port is considered, because only this port is an AUTOSAR
port.

Runnable

my_SerarPort =in my_SermerPort
ine_Operation ine_Operation
Runnabke Inport Runnable Cutport

Outl

Trigo no metric
Function

Fig. 5: Example for a Runnable which computes the sine of a value

To model an AUTOSAR compliant Runnable, the developer has to model a
subsystem which describes the functional behavior of that Runnable and contains
the Runnable-block (see figure 5).

The AUTOSAR standard specifies that Runnables are triggered by RTE-
Events (see assignment [23]). This property can be set for a Runnables in Tar-
getLink but is not regarded in the simulation. The execution of a Runnable is
only based on the data-flow or a function-call-trigger. So, it is possible to simulate
such RTE Events by modeling them manually as a stateflow [13]. An example is
shown in figure 6, where the controller subsystem gets the RTE Events from a
stateflow (left side) as an input which are redirected to the runnables (see figure
4).

The communication between Runnables can be modeled with the In- and
Outport blocks of the AUTOSAR blockset. They can be used to transfer data
elements, operation arguments and interrunnable variables.

Runnables can provide operations, which are triggered by an OPERATION _-
INVOKED_EVENT RTE event. For that, they have to act as a server. A server
Runnable, for example, consist of an inport block, the operation block and an
outport block (see figure 5). To call this server, the client must uses the Client
Port block which transfers the arguments to the Runnable and get the results
from it.

Tools for Simulation of AUTOSAR 9

3.2 Simulation with Simulink / TargetLink

Tmlng Evert [—
RteEuents
DataRecel\red Evert [— TargetLink

Chart in-htﬂhoec-lleol-op SenderPort o= force welocity -

mode
» Sink

ReceiverPart
I if_refjg

pulse

ref

reference

signal plant model

Bus
Creatar controller

e [Te

nonlinearity

Fig. 6: MiLL Simulation

TargetLink supports three modes of simulation: MiL, SiL. and PiL.. The MAT-
LAB/Simulink engine is used to simulate TargetLink models. Because of this,
TargetLink blocks are just enhanced Simulink blocks with code production prop-
erties.

A typical MiL scenario with a Feedback Simulation is shown in figure 6. On
the left side we have a reference signal which generates an input for the model
of the embedded system. The calculated results are fed into the plant resulting
in a new input for the model of the embedded system. To observe the behavior
of the system, a so-called ”‘sink”’ (right side) is appended to the system which
generates a graphical output of certain values during the simulation. Such an
output is shown in figure 7.

After the behavior of the system in the MiL simulation is verified, the sim-
ulation type can be changed to a SiL simulation, which takes place in the pro-
totyping stage. To be able to execute a Sil, simulation, code must be generated
first from the model. The code which is generated is an AUTOSAR compliant
C code, one the one hand the code of the SWCs is generated and on the other
hand the code of the RTE. Because you cannot define any deployment of SWC
to ECUs, the behavior of the RTE is just as it is executed on one ECU. However,
the code of the SWC can be used for example in SystemDesk which can generate
ECU-specific RTE code which is illustrated in the next section. For any other
non-AUTOSAR elements in the model like the signal generator in figure 6 or
the sink, no production code is generated. If the SiL is in progress, also non-
AUTOSAR elements are executed from the simulation engine as it was done in
the MiL: simulation. For more information how the data is transfered between
non-AUTOSAR blocks, generated code and the simulation engine see [14].

Because the SiL, Simulation takes fixed-point effects into account (in opposite
to the MiLL simulation) the simulation results can differ from the MiL results. In

10 Tools for Simulation of AUTOSAR

el Sink
‘- - -)
30 10
20 a iell
10
o =
o v/—
10 &
.20 2
Ay i}
1} 0.05 o1 015 0.2 0.25 0.3 o 0.05 0.1 0.15 0.2 0.25 03
ref upi
A
o - GQFE— - - - 7 "
20 40 Jul
1041—\—" 20
10 20
20 -40
ri}D__________ &0
L L L : L L L L
o 0.0a o1 0.14a 0.2 0.25 0.3 o 0.05 0.1 0.15 02 0.25 (1}

Fig. 7: Output from a MiLL Simulation

Fig. 8: Calculation of a sine curve in MiLL and SiLL with wrong dimensioned data
types in the code

Tools for Simulation of AUTOSAR 11

figure 8 a sine curve is computed in the MiLL and SiL mode. Because the data
type in the model had no restrictions (32 bit floating point) but was just an 8
bit integer (restrictions of embedded system) in the generated code, such big
differences can occur.

To check wheather the generated code also works on the real hardware, the
simulation mode can be changed to Pil. mode. In this mode, the target processor
specific compiler must be chosen. After the code is generated and compiled, it
must be downloaded to the evaluation board. Now, the system can be simulated
with hardware specific effects like limited stack size, bit width and performance
restrictions.

3.3 SystemDesk

SystemDesk by dSPACE is ”a tool supporting the development of distributed au-
tomotive electrics/electronics systems according to the AUTOSAR approach.” [17].
In the multiple V-development cycle it can be attached to the modeling stage
as well as the prototyping stage. One the one hand, you can use SystemDesk
to model the software architecture with AUTOSAR Software Components in-
cluding Runnables and Ports but also to model the hardware topology with the
ECUs and the network communication with busses. These modeling activities
taking place in the modeling stage. On the other hand, you can also use Sys-
temDesk to generate C code and based on that, execute a Sil., simulation which
is done in the prototyping stage. For more information about how to model in
SystemDesk, see assignment [18]. This section just focuses on simulation possi-
bilities in SystemDesk and how models can be interchanged with TargetLink.

3.3.1 Simulation in SystemDesk

SystemDesk provides a feature for a non-real time Sil. simulation. The simu-
lation is based on the C code of the SWCs and the RTE. The C code for the
SWCs can be token from the production code generation of TargetLink. The
code for the RTE is generated by SystemDesk depending on the deployment
of SWCs to ECUs and the ECU configuration. SystemDesk uses a C compiler
which generates Windows DLLs for the simulation engine[17].

SystemDesk supports one-way simulations as well as feedback simulations.
For the one-way simulation you can use stimulus generators or replay recorded
data from a previous simulation. The feedback simulation requires a model of
the plant, which can be importeted from a Simulink model.

The documentation[17] of SystemDesk gives some important properties for
the simulation process. The simulation is executed in ”virtual simulation time”,
which means that the time passes faster or slower on the host pc compared to
the time on the target processor. However, it is possible to slow down/speed up
the simulation clock to approximate the real time.

The scheduling, which is based on the configuration of the operating system
is considered, which means that the correct order of tasks and runnable calls are
simulated.

12 Tools for Simulation of AUTOSAR

SystemDesk makes a ”Zero time assumption”, which means that tasks are
executed instantly in virtual simulation time. From this, it follows that it is not
possible to detect time critical effects, for example if a deadline is met or not.

SystemDesk provides a simulation at different verification stages which are
described in [17]. These are the logical level verification, system level verification
and the implementation verification.

On the logical level the Virtual Functional Bus Concept(VFB)[21] defined by
AUTOSAR is used. The VFB concept states that SWC are implemented inde-
pendently from the underlying hardware (at this stage, the hardware topology
in SystemDesk is not specified). The VFB is a communication mechanism where
the SWC can exchange data, not knowing weather the data transfer happens on
the same ECU or to another one over a bus[21]. More information about the VFB
concept can be read in assignment [23]. SystemDesk provides a simulation of the
VFB, which requires the architecture of the SWC, the internal functional behav-
ior and the connection between the SWC. All SWCs are automatically mapped
to one ECU which is called the Virtual Processor Unit (VPU). Runnables are
usually activated by Tasks, however, because there is no OS configuration avail-
able in the logical level verification stage, a default scheduling is computed by
SystemDesk. This looks like the following: Cyclic Runnables are mapped to a
cyclic task and another task takes care of acyclic Runnables which are triggered
by RTE Events[17].

If the development proceeds and the information about ECUs as well as the
buses are available and configured in SystemDesk, further effects can be simu-
lated in the so-called system level verification stage. The properties of this stage
are that the SWCs have been mapped to ECUs and more details of SWC are
defined. SystemDesk provides a feature to simulate the effects of the busses. For
a CAN Bus the simulation can take into account the arbitration and the bus ca-
pacities. So it is possible to simulate the bus usage as well as the communication
delays.

If the production code and the production ECUs are known, a more de-
tailed simulation can be executed in the so-called implementation verification
stage. The timing of the application is determined by the underlying operating
system, which considers scheduling effects. To simulate this scheduling effects,
SystemDesk uses an AUTOSAR compliant operating system, which simulates
the correct execution order of task and Runnable calls. However, the execution
time is usually faster on the host pc than on the target hardware. To get bet-
ter results which are more realistic, it is possible to slow down the SystemDesk
clock.

An example of a simulation result is shown in figure 9(a) and 9(b). Both
figures show a measurements of two different variables. The rectangular signal
is created by the Plant SWC and the other signal shows the calculated variable
of a Controller SWC. In figure 9(a) both SWCs are deployed to one ECU. Tt
can be seen that the controller responds immediately if the edge of the plant
is rising. In opposite to figure 9(b) where the SWCs are deployed to another

Tools for Simulation of AUTOSAR 13

J~ ExperimentPanel | x|
:
2
5
£
5
£o
L
5 o oz o P us o o o5 % g
. | bl | o
(a) Simulation with one ECU
J= ExperimentPanel £
:
g,
H
&
L
£o
,
||
«| T | I

(b) Simulation with two ECUs

Fig.9: Simulation results in SystemDesk

ECU (which are connected over a bus). Such a reconfiguration can be done very
easily in SystemDesk. It can be seen that the controller responds delayed because
the signal of the plant needs some time to be transferred over the bus. So, it
is possible to try different configurations of the system in SystemDesk and to
check what are the effects. This possibility is a very important advantage of
AUTOSAR based system.

3.3.2 Relationship between SystemDesk and TargetLink
Both tools can be used in an early development stage as well as in the prototyp-
ing stage where code is generated and afterwards simulated. The order, in which
the tools are used in the development process, can be different. On the one hand,
it would be possible to model the software architecture first in SystemDesk and
then the functional behavior in TargetLink, which generates code that is used
for the implementation of the SWC in SystemDesk. On the other hand, it is
also possible to define the functional behavior first in TargetLink and then the
software architecture in SystemDesk. Finally, both tools can be used in parallel
to design an automotive system.
TargetLink has a feature which is called Data Dictionary (DD). The DD is
”a container that holds all relevant information about an ECU application”[24].
This includes tasks, variables but also AUTOSAR SWCs. Figure 10 shows a
diagram where you can see which tools are connected to the DD and which

14 Tools for Simulation of AUTOSAR

Targetlink

[0

Em
Import ——

Data Dictionary Data

Manager Dictionary Export — -
EUTOSAR

MATLAB AP I
OIL

Import fexport|
formats

Fig. 10: Data Dictionary

formats are supoorted to export and import the data. If for example a subsystem
in TargetLink is modeled, a SWC can be created in the DD to reference that
this subsystems is mapped to a SWC. This can also be done with the Runnables,
and their ports. The advantage of that DD is that the data is kept consistent
for example between the TargetLink model and the AUTOSAR model. If one
is changed, the other one is changed too. Moreover, it is possible to export
the AUTOSAR model as an XML file and to load this XML into SystemDesk.
A use case is, for example, that you first create your software architecture in
SystemDesk, export this to XML and importing it into the DD. Afterwards,
the DD objects are mapped to TargetLink objects for example a SWC to a
subsystem and so on. And the development of the functional behavior of the
SWC can start at this point and doesn’t need to modeled again.

SystemDesk also offers a possibility to integrate Simulink models as atomic
software components [17].

3.4 Bachelorproject 2007/2008

In the bachelorproject 2007/2008, a concept was developed how a simulation
of an AUTOSAR modeled system can be done. For this purpose, the exisiting
simulation tool chronSim[4] was used, which was based on a task model and a
model for describing the hardware architecture (with busses), the deployment
and real time requirements. The goal was to define a transformation from an
AUTOSAR system to the traditional system with that a simulation can be
executed. In addition, real-time requirements were defined in the AUTOSAR
model which are considered in the evaluation of the simulation results.

Summary of the Differences in the Simulation of traditional and AUTOSAR
based Systems 15

For the simulation, the code of the tasks is compiled by chronSim and exe-
cuted on the simulated target hardware. It can be characterized as a SiL simu-
lation with similarities to a HiL simulation, because of the strong consideration
of hardware aspects during the simulation.

4 Summary of the Differences in the Simulation of
traditional and AUTOSAR based Systems

In section 2 of this assignment, the process of the development of automotive soft-
ware systems in general including the simulation of such systems was illustrated.
In section 3 it was shown, which tools are available to simulate AUTOSAR based
systems. This section should give a small summary about the benefit of using
AUTOSAR to simulate systems and what are the differences to the traditional
methods.

Today, many innovations in a car are realized through softwre. The increasing
complexity as well as the growing size of the systems leads to an outsourcing of
the functionality to automotive suppliers. The suppliers develope their compo-
nents in their own life cycle and use their own tools. In the past, the result was
that every supplier had their own description of their produced components and
the automobile manufacturer had to integrate the components of the different
suppliers. However, they usually had of adapt their own code to make it working
with the third-party components. With AUTOSAR, a standardized definition of
the interfaces is available and for this reasons also a standardized testability of
the components can be managed. The code doesn’t need to be adapted if a new
component is simulated from a different supplier which saves times and money.
Moreover, the configuration of the whole system like a change in the deployment
of SWC to ECUs can be done very easily and the new configuration can be
simulated instantly.

With AUTOSAR, the application is independent of the hardware architec-
ture. This new approach leads to an easier testability of components. In the past,
the software was strongly coupled with the underlying hardware and therefore,
the possibilities of a pure Sil. simulation were limited. AUTOSAR considering
this problem and introduced a VFB. As it was shown in section 3.3.1, a VFB
simulation is possible which has the main advantage that it can be done in an
early development stage and reduced the risk of finding errors in the software
architecture very late which can lead to a big redesign and high expenditures.

Finally, the AUTOSAR consortium consists of many different automobile
manufacturers, automotive suppliers and tool developers and it is still growing.
Therefore, it can be expected that more and more tool support for simulating
AUTOSAR architectures will be available in the future.

16 REFERENCES

References

[1] Simulation Article, Roger D. Smith, 1998

[2] http://www.advanced-planning.de/advancedplanning-128.htm

[3] Computer Simulation: The Art and Science of Digital World Construction, Paul A.
Fishwick

[4] http://www.inchron.de

[5] Using simulation tools for embedded systems software development, Jakob Eng-
blom, Virtutech, 2007

[6] Software Engineering for Embedded Systems, Verification & Validation, Holger
Giese, 2008/2009

[7] http://www.dspace.com

[8] Testing Embedded Software, Bart Broekman and Edwin Notenboom, 2003

[9] V-Modell 1997: Entwicklungsstandard fiir I'T-Systeme des Bundes, ” ‘http://www.v-
modell.iabg.de/vm97.htm”™’

[10] Softwareentwicklung eingebetteter Systeme, Peter Scholz, Axel Springer Verlang,
ISSN 1439-5428

[11] Automatisierter Closed-Loop-Softwaretest eingebetteter Motorsteuerfunktionen,
Sven Rebeschie;, Thomas Liebezeit, Uzmee Bazarsuren,

[12] Testautomatisierung in der Hardware-in-the-Loop Simulation, Dr.-Ing. Clemens
Githmann, Dipl.-Ing. Jens Riese, TAV GmbH Berlin

[13] AUTOSAR Modeling Guide, TargetLink 3.0, July 2008, dSPACE

] Production Code Generation Guide, TargetLink 3.0, July 2008, dSPACE

| Paper zum 3. Workshop Automotive Software Engineering, Informatik 2005

] http://www.mathworks.com

] SystemDesk Guide For SystemDesk 2.0, Release 6.3, November 2008, dSPACE

] Modeling of AUTOSAR using SystemDesk, Sebastian Watzoldt

[19] AUTOSAR Methodology & Templates, Regina Hebig

| Software Architectue, Warschofsky
| Specification of the Virtual Functional Bus, http://www.autosar.org
] Technical Overview, http://www.autosar.org
] Runtime Environment & Virtual Function Bus, Nico Naumann
] Data Dictionary Basic Concepts Guide, TargetLink 3.0, July 2008, dSPACE

