
AUTOSAR Software Architecture

Robert Warschofsky

Hasso-Plattner-Institute für Softwaresystemtechnik

Abstract. AUTOSAR supports the re-use of software and hardware
components of automotive electronic systems. Therefore, amongst other
things, AUTOSAR defines a software architecture that is used to de-
couple software components from hardware devices. This paper gives an
overview about the different layers of that architecture. In addition, the
upper most layer that concerns the application specific part of automo-
tive electronic systems is presented.

1 Introduction

Many goals have to be reached to create automotive systems on a competitive
base, in today’s automotive electronics. For example, the increasing number of
network components leads to a level of complexity that is difficult to handle using
traditional development processes. Additionally more and more resources have
to be spend on adapting already existing solutions to different environments.
But the main drivers in in automotive electronics are the reduction of hardware
costs and the implementation of new features [1].

One approach to cope with these problems is the standardization of the AU-
Tomotive Open Systems Architecture (AUTOSAR). AUTOSAR is a framework
to create electronic automotive control systems. With that framework comes a
layered software architecture that supports the software developer to deal with
different environments and complex network structures.

1.1 Focus and overview

This paper introduces some aspects of the AUTOSAR software architecture in
more detail than others. In Section 2 an overview over the architecture is given.
The layers which are not in the focus of this paper are shortly described in that
section, too.

Other papers describe these layers in more detail. For example, the Runtime
Environment layer is handled in [2]. The functionalities of the communication
stack are described in [3]. This communication stack uses different layers of the
AUTOSAR software architecture to provide communication as described later.

The Application layer which is in the focus of this paper, is described in
detail in Section 3. Additionally to the concepts of the Application layer , Section
3 also shortly describes how the software part of an AUTOSAR application is
implemented.



Apart from the software architecture, Section 4 introduces the transforma-
tion from a designed AUTOSAR application to a running system. For such a
transformation, the AUTOSAR framework provides a methodology that specifies
the order of the activities for the development process of an AUTOSAR system.
That methodology is described in detail in [4]. Finally, Section 5 summarizes the
information given in this paper.

In addition to the software architecture, the AUTOSAR framework provides
a methodology that specifies the order of the activities for the development
process of an AUTOSAR system. That methodology is described in detail in [4].

The AUTOSAR framework further provides a UML Profile [5]. That profile
restricts UML so that it can be used to model the AUTOSAR application during
design time.

1.2 Example

To explain some concepts of the AUTOSAR software architecture in a less ab-
stract way, a running example is used in this paper. That example comes from
the dSpace SystemDesk tutorial [6] and covers a simple car direction indicator
system. A schematic view of this system with the involved hardware components
is shown in Figure 1. The car direction indicator system consists of two front

Central

Body ECUFront left

indicator

ECU

Front right

indicator

ECU

CAN

Front left 

Indicator

Front right 

Indicator

Warning 

light 

switch

Indicator

switch

Fig. 1. Hardware components of the simple car direction indicator system ex-
ample.

light indicators with corresponding ECUs and a central body ECU. The central
body ECU has sensors for two switches, an indicator switch to activate either
the left or the right indicator and a warning light switch to activate both, left
and right, indicators at once. There also exists a CAN bus as one part of the
vehicle network system.



The next Section describes the AUTOSAR software architecture and uses
this car direction indicator system to explain the purpose of selected parts of
the software architecture.

2 Software architecture of the AUTOSAR framework

The AUTOSAR software architecture is a layered architecture that has the goal
to abstract from hardware components. Furthermore, these layers encapsulate
functionality that can be used by all AUTOSAR applications. The architecture
supports the realization of functional requirements, but it yet not fully supports
non-functional requirements. Therefore, also the moddeling of real-time aspects
of an application is not realized, yet. But there are projects which try to add
the realization of such non-functional requirements to AUTOSAR. One project
which deals with the timing issue is the TIMMO Project [7].

The software architecture shown in Figure 2 consists of four main layers. The
lower most layer is the Microcontroller layer which contains the ECU hardware.
The next two layers above are the Basic Software layer and the Runtime Envi-
ronment layer . The upper most layer is the Application layer which contains all
application specific software components (SWC).

Application Layer

AUTOSAR Runtime Environment (RTE)

Microcontroller

Service Layer

ECU Abstraction Layer

Microcontroller Abstraction Layer

Complex

Drivers

Fig. 2. Layers of the AUTOSAR software architecture

The layers have different responsibilities. The Basic Software layer and the
Runtime Environment layer are responsible for the abstraction between the
hardware and the application software. Therefore the Basic Software layer con-
tains ECU specific modules as well as general AUTOSAR modules. The Runtime
Environment layer enables the inter component communication as well as com-
munication from software components to basic software modules.

The Basic Software layer can further be divided into three different layers,
namely the Service layer , the ECU Abstraction layer and the Microcontroller



Abstraction layer . It may also contain Complex Drivers, which are described
later.

The Microcontroller Abstraction layer uses drivers to abstract from specific
controllers on the ECU. There are several kinds of microcontrollers, for example
CAN-Bus microcontrollers. The drivers of the Microcontroller Abstraction layer
provide interfaces to the ECU Abstraction layer to enable generalized usage of
different microcontrollers of the same kind.

The ECU Abstraction layer abstracts from the location of the controller. For
layers above the ECU Abstraction layer it is not necessary to know whether the
controller is an on chip or on device controller.

The Service layer provide basic services for each AUTOSAR application.
An AUTOSAR application can access these services through standardized AU-
TOSAR interfaces.

The Basic Software layer can also be divided into different stacks correspond-
ing to the general functionality the basic software provides. These stacks that
are orthogonal to the Basic Software layers are shown in Figure 3.

Application Layer

AUTOSAR Runtime Environment (RTE)

Microcontroller

System 

Services

Complex

Drivers

I/O Hardware

Abstraction

Comm. Hardware

Abstraction

Memory Hardware

Abstraction

Onboard Device

Abstraction

Memory 

Services

Communication

Services

Microcontroller

Drivers

Memory

Drivers

Communication

Drivers
I/O Drivers

Fig. 3. Stacks of functionality in the Basic Software layer of the AUTOSAR
software architecture

The System stack, consisting of Microcontroller Drivers, Onboard Device Ab-
straction and System Services, provides standardized services and library func-
tion for example for timer operations or operating system functionality. It also
provides ECU specific services like ECU state management and watchdog man-
agement for hardware components.

The Memory Management stack, consisting of Memory Drivers, Memory
Hardware Abstraction and Memory Services, provides standardized access to
non volatile memory. Through this stack each software application component
can allocate memory to maintain its internal state. The memory can be ECU
internal or external, but because of the abstraction layers of the Memory Man-
agement stack the application component does not need to know whether it is



internal or external memory. The component only requests the memory through
the standardized interface.

In the example of Section 1.2 the AUTOSAR Software Component on the
central body ECU will use the Memory Management stack to save their opera-
tional state. A management component on that ECU may have to know which
indicators are activated by which switches. Otherwise an activation of an in-
dicator could be “forgotten”. If for example both switches are active and the
direction indicator switch is turned to none active, the corresponding direction
indicator must not be deactivated, since the warning light switch remains still
active.

The Communication stack, consisting of Communication Drivers, Communi-
cation Hardware Abstraction and Communication Services, provides standard-
ized access to the vehicle network system. Through this stack software com-
ponents can communicate with each other even if they are located on different
ECUs. The components do not use the communication stack directly, but use the
Runtime Environment . The Runtime Environment then manages the commu-
nication between the components corresponding to their location. Components
on the same ECU communicate directly while for the communication of com-
ponents on different ECUs the Communication stack is used. A more detailed
description of the Communication stack is given in [3].

In the direction indicator system from Section 1.2 the Communication stack
has to be used, if for example a software component on the central body ECU
communicates with a software component on one of the direction indicator ECUs.
The Communication stack encapsulates the messages between these two compo-
nents and uses the CAN-Bus to send the messages between the two corresponding
ECUs.

The I/O stack, consisting of I/O Drivers and I/O Hardware Abstraction,
provides standardized access to sensors, actuators and other ECU on board
peripherals. This stack does not have a service layer since there is no general
interface for all possible sensors and actuators. Therefore special software com-
ponents are required to access sensors and actuator, named Sensor/Actuator
Software Component. These components are described in more detail in Section
3.

In the direction indicator system from Section 1.2 there exist sensors for
the two switches on the central body ECU which have to be read by some
Sensor Software Components to get their state. On the indicator ECUs there
are actuators for the direction indicators to activate and deactivate them. These
actuators need also Actuator Software Component to control them.

The Complex Driver stack is not a real stack, but enables it to bypass the
Basic Software layer abstraction. This can be useful for application components
which need direct access to the hardware devices on the ECU for performance
reasons. Such applications are for example injection control or electronic valve
control applications. These complex drivers are not provided by AUTOSAR but
each manufacturer which needs those drivers has to implement them itself.



As already mentioned, this paper can not describe all BSW modules in detail,
since it is focused on the application layer of the AUTOSAR software architec-
ture. More information about the single modules in the Communication stack
are given in [3], the RTE is described in detail in [2] and [8] describes many BSW
modules in detail.

3 Application layer

The AUTOSAR software architecture enables the software developer to de-
sign an AUTOSAR application almost independent from the involved hardware.
There is no knowledge about the network required, since the AUTOSAR software
architecture and especially the RTE hide the network from the application. There
is also nearly no knowledge about the used ECUs required, since the software
architecture abstracts from the specific ECU and the controller on it. But there
is of cause knowledge required about the sensors and actuators of an ECU which
are used in the specific AUTOSAR application, so the software development can
not be completely independent from the existent hardware components.

This section describes the important parts of the application layer of the AU-
TOSAR software architecture. These parts are AUTOSAR software components,
the AUTOSAR ports of these components and the implementation of such com-
ponents. The components and ports are modeled using the AUTOSAR UML
Profil [5].

3.1 AUTOSAR Software Components

An application in AUTOSAR consists of interconnected AUTOSAR Software
Components. An AUTOSAR Software Component is an atomic piece of software
that has to be deployed on one ECU. Such a component implements a part of an
AUTOSAR application. To connect software components, each component has
well defined ports through which the component can communicate with other
components or with Basic Software modules.

There exists special kinds of AUTOSAR Software Components. One kind
is the Sensor/Actuator Software Component. A Sensor Software Component is
responsible for reading a sensor and provide its data to other components. The
reading of the sensor data is done through the I/O stack of the software archi-
tecture. An Actuator Software Component is responsible for setting the state of
an actuator on an ECU. Therefore it can also provide an interface to other com-
ponents, so that these components can initiate the state setting of the actuator.

Since both, the Sensor Software Component and the Actuator Software Com-
ponent, have to use special sensors/actuators on an ECU, these components nat-
urally have to be deployed on an ECU with a corresponding sensor/actuator.
Therefore the software designer at least need to know which hardware sensors
and actuators are used in the software application to design the AUTOSAR
application.



Another kind of special AUTOSAR Software Component is the Composite
AUTOSAR Software Component. A composite component is a logical intercon-
nection of other component, either atomic or again composite. These components
are called prototypes. The prototypes of a composite component do not need to
be deployed on the same ECU but can be distributed over several ECUs.

An composite component can also have ports. These ports are mapped to
ports of the prototypes of the composite component, since the component itself
does not provide any additional application logic. The application itself is also
represented as a special composite component that contains all software com-
ponents of that application. There are no ports on the application component,
since its prototypes are only interconnected, but not connected to components
outside the application.

3.2 AUTOSAR Ports

A Port belongs to exactly one AUTOSAR Software Component and represents
a point of interaction of that component. The kind of interaction that a specific
port provides, is defined by the AUTOSAR Interface that is provided or required
by that port. A Port can either provide the service of an AUTOSAR Interface,
making it a PPort, or require the service of an AUTOSAR Interface, making it
an RPort.

If the interface that is encapsulated by a port is provided by a module of the
AUTOSAR Service layer (see Figure 2), it has to be a Standardized AUTOSAR
Interface. Such an interface can be used by each AUTOSAR Software Component
of any AUTOSAR application. If the interface is provided by an AUTOSAR
Software Component or a module of the I/O Hardware Abstraction (see Figure
3), it is an AUTOSAR Interface. AUTOSAR Software Components can only
request AUTOSAR Interfaces or Standardized AUTOSAR Interfaces, since only
these can be addressed through the Runtime Environment and that is the only
way, components can communicate, as it is explained later.

An AUTOSAR Interfaces as well as an Standardized AUTOSAR Interfaces
can be one of three kinds. First, it can be a Client-Server interface. A call
to a method of such an interface can be either blocking, which denotes the
communication of client and server is synchronous, or non-blocking, which means
asynchronous communication. In either case the client awaits a response from
the server.

The second kind of interface is a Sender-Receiver interface. Using such an
interface, all calls are non-blocking calls and the client will never get a response.

The third kind of interface is the Configuration interface. This interface en-
ables a AUTOSAR Software Component to receive values for configuration pa-
rameters.

During the application and component design, the later distribution of the
components over the ECUs is not relevant. Important is only that Sensor/Actu-
ator Software Components require one or several ECUs with the corresponding
sensors/actuators. Since the communication between the components already



has to be defined during the design phase, in that phase the components com-
municate through the Virtual Function Bus (VFB). More details about the VFB
are given in [2] and [9].

3.3 Design of a Direction Indicator System

Using several AUTOSAR components with AUTOSAR ports to interconnect
them, the car direction indicator system from Section 1.2 can be created like the
one shown in Figure 4.

DIFrontLeft:

DirectionIndicator

IO
Indication

DirectionIndicatorManager

LeftIndicator

WarningLightSwitch

DirectionIndicatorSwitch

IO Position

WarningLightSwitch

IO Status

DIFrontRight:

DirectionIndicator

IO
Indication

RightIndicator

DirectionIndicatorSwitch

nv

Fig. 4. Design of a car direction indicator system consisting a main manag-
ing component and four Sensor/Actuator Software Components interconnected
through their ports.

This system contains two Actuator Software Components for the two direc-
tion indicators. These two components use their IO labeled port to set the state
of their direction indicator and offer a service to set this state through their
Indication labeled port.

The system also contains two Sensor Software Components to read the state
of the two switches. The reading of the switch state is done through the IO labeled
ports. The Direction Indicator Switch component send the state of the switch
to a service, while the Warning Light Switch component uses a Sender-Receiver
communication to send the state of the switch to another component.

The last component of Figure 4 is the managing component. That compo-
nent provides a service to get the information about the switch of the Direction
Indicator Switch component. It also has a receiver for the information from the
Warning Light Switch component. The information from both sources have to
be evaluated and the corresponding direction indicators have to be activated or
deactivated. For the latter purpose, the component uses the services provided
by the two Actuator Software Components.

All the so far mentioned ports encapsulate AUTOSAR Interfaces, since these
interfaces are provided by AUTOSAR Software Components. The managing
component additionally has another port, labeled nv. This port encapsulates
a Standardized AUTOSAR Interface. That the service part of that interface is



provided an AUTOSAR module of the communication service (see Figure 3)
which is used to allocate memory for the component to maintain its internal
state.

The design of that system can be done without detailed knowledge about the
later used ECUs. The only requirement is, that there have to be sensors on an
ECU for the two switches and actuator for the two direction indicators. Again,
the communication between the components is designed only virtual by using
the VFB.

To create a real application from this design two steps are necessary. In the
first place, the components need a behavior, an executable part. This step is
described in the next section. After that the components have to be deployed
on ECUs where the communication will no longer go through the VFB. This
transformation is described in Section 4.

3.4 Internal Behavior of AUTOSAR Software Components

The executable part of an AUTOSAR Software Component is provided by the
implementation of Runnables. Runnables are for example functions in a pro-
gramming language like C, or compiled MATLAB/Simulink models.

Since the unit of execution in AUTOSAR is an Operating System task (OS
task), all Runnables must be mapped to such an OS task to be executed. This
mapping is done during the configuration of an ECU which is described in more
detail in the AUTOSAR methodology [10] and in [4].

An OS task may contain only one Runnable or a sequence of Runnables. The
execution of a Runnable inside a task can furthermore depend on a special event
or some timing constrains. The concept of Runnables and Operating System tasks
is described in more detail [2].

WarningLightSwitch

IO Status

OS Task 1

OS Task 2

Fig. 5. Exemplary mapping of Runnables to Operating System tasks.

There is no need to map all Runnables of one component to the same OS task.
It may on the contrary be useful to distribute the Runnables of one component
to different OS tasks, since the Runnables have to be executed concurrently. An
exemplary mapping of Runnables to OS tasks is shown in Figure 5.



4 Transformation to a running system

As already mentioned, during design time of an AUTOSAR application the
VFB is used to model the communication between software components. For
the single software components it is not important, where the other components
are located, since all components are connected through this VFB.

During runtime this concept of abstraction for the locality should be re-
tained. Therefore a runtime representation of the VFB is needed. Additionally
to communication management between software components, this runtime rep-
resentation must handle the use of several ECUs. That means, it must know,
which software components are on which ECU and which components commu-
nicate with each other.

To satisfy all these requirements the runtime representation, the Runtime
Environment , is generated uniquely for each ECU. After the generation step, the
Runtime Environment of an ECU knows exactly which components are on this
ECU and which are not. If there has to be a communication between components
on different ECUs, the Runtime Environment takes the corresponding messages
and uses the Communication stack (see Figure 3) to send these messages to the
corresponding ECU. It also takes messages from the Communication stack and
sends them to the receiver component on its ECU.

ECU1

RTE

ECU1

RTE

DirectionIndicatorManager

L
e
ft
In
d
ic
a
to
r

W
a
rn
in
g
L
ig
h
tS
w
it
c
h

DirectionIndicatorSwitch

IO Position

DIFrontRight:

DirectionIndicator

IOIndicationR
ig
h
tI
n
d
ic
a
to
r

D
ir
e
c
ti
o
n
In
d
ic
a
to
rS
w
it
c
h

n
v

ECU1

Basic Software Basic Software

Fig. 6. Communication between AUTOSAR Software Component on the same
and on different ECUs, supported by the corresponding Runtime Environment
of each ECU.

For the example from Section 1.2 the generated Runtime Environment for
the central body ECU will know, that the two Sensor Software Components
and the managing component are deployed on this ECU. The communication
between these components can be realized as direct function call. The Runtime
Environment will further know, that the managing component has to commu-



nicate with the two Actuator Software Components on the two indicator ECUs.
This communication will be automatically directed through the Communication
stack. The different communication paths are shown in Figure 6.

A more detailed description of the generation of a Runtime Environment is
also given in [2].

5 Summary

With the AUTOSAR software architecture the software part of an AUTOSAR
application can be developed as independent as possible from the hardware parts.
The software architecture enables this with two main abstraction layers, namely
the Runtime Environment layer and the Basic Software layer .

The Basic Software layer additionally provides services that can be used by
each AUTOSAR application. Through that, frequently used functionality is also
encapsulated and provided by the AUTOSAR software architecture.

On the Application layer the AUTOSAR Software Components are using
Ports that encapsulate interfaces to guarantee type safety during the communi-
cation between these components. The communication itself is handled by the
Virtual Function Bus (VFB).

The VFB as specification is represented during runtime by the Runtime En-
vironment , which is generated uniquely for each ECU in the AUTOSAR system.
This concept also supports the creation of nearly hardware independent software
in the automotive industry and therefor reduces the complexity of the resulting
systems.

References

[1] Fennel, H., Bunzel, S., Heinecke, H., Bielefeld, J., Fürst, S., Schnelle, K.P., Grote,
W., Maldener, N., Weber, T., Wohlgemuth, F., Ruh, J., Lundh, L., Sandén,
T., Heitkämper, P., Rimkus, R., Leflour, J., Gilberg, A., Virnich, U., Voget, S.,
Nishikawa, K., Kajio, K., Lange, K., Scharnhorst, T., Kunkel, B.: Achievements
and exploitation of the AUTOSAR development partnership. CTEA (2006)

[2] Naumann, N.: AUTOSAR Runtime Environment and Virtual Function Bus. Tech-
nical report, Hasso-Plattner-Institut für Softwaresystemtechnik (2009)

[3] Gosda, J.: AUTOSAR Communication Stack. Technical report, Hasso-Plattner-
Institut für Softwaresystemtechnik (2009)

[4] Hebig, R.: Methodology and Templates in AUTOSAR. Technical report, Hasso-
Plattner-Institut für Softwaresystemtechnik (2009)

[5] AUTOSAR GbR: UML Profile for AUTOSAR V1.0.1. Online (2006), www.

autosar.org/download/AUTOSAR_UML_Profile.pdf

[6] dSPACE: System Desk Tutorial. (2008), http://www.dspace.com/ww/en/pub/

home/products/sw/system_architecture_software/systemdesk.cfm

[7] Timmo: Timing model. Online, https://www.timmo.org/
[8] AUTOSAR GbR: AUTOSAR Layered Software Architecture. Online (Au-

gust, 15th 2008), http://www.autosar.org/download/specs_aktuell/AUTOSAR_
LayeredSoftwareArchitecture.pdf

www.autosar.org/download/AUTOSAR_UML_Profile.pdf
www.autosar.org/download/AUTOSAR_UML_Profile.pdf
http://www.dspace.com/ww/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm
http://www.dspace.com/ww/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm
https://www.timmo.org/
http://www.autosar.org/download/specs_aktuell/AUTOSAR_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_LayeredSoftwareArchitecture.pdf


[9] AUTOSAR GbR: Specification of the Virtual Functional Bus. Online (2008),
http://www.autosar.org/download/specs_aktuell/AUTOSAR_SWS_VFB.pdf

[10] AUTOSAR GbR: Specification of ECU Configuration V2.0.2 (2008), http://

www.autosar.org/download/specs_aktuell/AUTOSAR_ECU_Configuration.pdf

http://www.autosar.org/download/specs_aktuell/AUTOSAR_SWS_VFB.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_ECU_Configuration.pdf
http://www.autosar.org/download/specs_aktuell/AUTOSAR_ECU_Configuration.pdf

	AUTOSAR Software Architecture
	Introduction
	Focus and overview
	Example

	Software architecture of the AUTOSAR framework
	Application layer
	AUTOSAR Software Components
	AUTOSAR Ports
	Design of a Direction Indicator System
	Internal Behavior of AUTOSAR Software Components

	Transformation to a running system
	Summary


