Seminar ”‘Automotive Open Systems
Architecture”’

Modeling and Development of AUTOSAR Systems using
SystemDesk

Sebastian Watzoldt

Hasso-Plattner-Institut for IT Systems Engineering
at the University of Potsdam
Prof.-Dr-Helmert-Strafle 2-3

14482 Potsdam
Professorship Systemanalyse und Modellierung
Prof. Dr. Holger Giese

Tutor:
Stefan Neumann

Abstract. The development and modeling of automotive software sys-
tems is one of the most difficult challenges in the automobile industry.
The increasing costs of integration problems in soft- and hardware and
the interaction of different manufacturers and suppliers leads to a re-
quest of interoperability and standardization. At this time, 80 percent of
today’s innovations in the automotive area are realized with the help of
software. One approach to handle the enormous complexity of building
such systems is the upcoming AUTOSAR standard. This paper inves-
tigates the interaction of modeling and developing AUTOSAR conform
systems using the special software tool SystemDesk. A look inside the de-
velopment process of automotive software systems using the AUTOSAR
framework is given together with a walk through a real world example
in a concrete application domain.

Contents

Inhaltsverzeichnis 1
(Sebastian Witzoldt)

1 Introduction......... 7

1.1 The AUTOSAR framework, 7

1.2 SystemDesk a modeling tool for AUTOSAR 8

2 Modeling AUTOSAR using SystemDesk 9

2.1 Model and Development. 9

2.1.1 Direction Indicator Example 10

2.1.2 Software Architecture 12

2.1.3 Hardware Topology 15

2.1.4 Network Communication.............................. 16

2.1.5 System Configuration and Integration 17

2.1.6 Runtime Environment and COM Generation 19

2.2 Using more features of SystemDesk 23

2.3 Imteroperability 25

3 SUIMATY ottt et e 27

4 Lateratureo 28

List of Abbreviations

AUTOSAR AUTomotive Open System ARchitecture
CAN ... Controller Area Network

DBC Description file for CAN bus

ECU Electronic Control Unit

LDT ... LIN Description File

LIN ... Local Interconnect Network

RTE (AUTOSAR) Runtime Environment

SIL oo Software in the loop

SWC Software Component

VEB ... Virtual Functional Bus

Introduction 7

1 Introduction

The enormous increasing complexity in automotive software systems leads to
a new innovative standard called AUTOSAR. This paper introduces modeling
and developing techniques for this upcoming standard using the software tool
SystemDesk. After a short introduction of AUTOSAR and SystemDesk in the
next two sections, the modeling steps and development approaches are discussed
in 2. There, all necessary steps and important features of the tool are presented
and at the end some interoperability issues are pointed out. The paper closes
with a short summary in 3 identifying some discussion points and possible future
work motivations.

1.1 The AUTOSAR framework

The AUTomotive Open System ARchitecture (AUTOSAR) is an international
group of automobile manufacturer, supplier and software companies with the aim
to establish a new open standard for software architecture in the automobile.
This new standard should lead to the controllability of an enormous growing of
complexity in modern car architectures. The main concept of the AUTOSAR
framework is the replaceability of software components (SWC), which could be
used in different car platforms (technical overview see [7]). By the reason of
cooperation between manufacturer and many suppliers, the use of standardized
interfaces between components and a methodology for the development process
is highly recommended. At a conceptual view the AUTOSAR standard is a mid-
dleware divide into several layers (see figure 1). At the highest abstraction layer
there are the different software components. They encapsulate variable applica-
tion software running at the AUTOSAR infrastructure. Well-defined interfaces
enable the interaction and communication with the components. At this level of
abstraction all communication mechanism are processed over the virtual func-
tional bus (VFB). This concept offers a virtual integration into the whole system
in a very early modeling stage of the development (specification about the VFB
see [8]). The VFB will be implemented later by the AUTOSAR runtime envi-
ronment (RTE). For executing a software component, it must be allocated to
an electronic control unit (ECU). The lowest layer encapsulates the hardware
in a system. Therefore, it contains the different ECUs and busses. In the mid-
dle of that architecture there is the basic software including operating system
functionality, complex device driver and several interfaces of a microcontroller
abstraction, communication and services. More detailed information about con-
cepts and implementation of AUTOSAR are in [1] (Technical Foundations for
the Development of Automotive Embedded Systems) and at the AUTOSAR
website [6].

March 31, 2009 Page 7 of 28 Sebastian Wétzoldt

Introduction

Application
Software
Component

Actuator

Software
Component

AUTOSAR AUTOSAR
Interface Interface

Sensor
Software
Component

AUTOSAR
Interface

AUTOSAR
Software

Application
Software
Component

AUTOSAR
Interface

AUTOSAR Runtime Environment (RTE)
3 g g

r —_ m o =1
| Standardized Standardized | | standardized ! AUTOSAR AUTOSAR
! Interface hteiraca 1 Interface Interface Interface
. . C
Services Communication Abstraction
'''' Standardized ! Standardized ! Standardized !
Interface ' Interface i Interface !

System

Complex
Device

i
il
1 i
g8

Operating | ﬁ
i
i< Drivers
i 8

i~ Standardized |

Interface

Microcontroller
Abstraction

ECU-Hardware

Fig. 1. The layered architecture of the AUTOSAR framework.

1.2 SystemDesk a modeling tool for AUTOSAR

SystemDesk is a software architecture tool for modeling AUTOSAR systems. It
is developed by dSpace and should enable an early verification and visualizing
of automotive software architectures. With the help of the tool it is possible to
structure different parts of the whole system and get an impression of the com-
munication and interaction of all components in it. dSpace is a company which
develops different hardware and software solutions for mechatronic systems. It
has different project centers all over the world for example in Germany, France
or China. If you look at the whole methodology of AUTOSAR, SystemDesk pro-
vides one opportunity building up an AUTOSAR system. The different features
and steps which are necessary to develop such a system will be introduced in
the next chapter.

Sebastian Wétzoldt Page 8 of 28 March 31, 2009

Modeling AUTOSAR wusing SystemDesk 9

2 Modeling AUTOSAR using SystemDesk

The focus of this chapter is, to explain different modeling steps with SystemDesk
to get a whole AUTOSAR system. After presenting an overview and a concrete
example, different parts of the systems modeling process are introduced. At the
end some aspects of interoperability with other tools are discussed. All steps
and functionalities could be reproduced using the tool and for example a given
tutorial project in it.

2.1 Model and Development

To get a feeling to which category SystemDesk belongs, figure 2 shows all neces-
sary steps and dependencies between partial results by following the AUTOSAR
methodology (more information about the methodology in [4]). There are three
parts (seen as a process flow) of the methodology with the intention of modeling
a software architecture. The behavior modeling (shown at the top of the figure)
must be done to get the application software. The next main activity in the flow
would be used for building up the AUTOSAR conform System (middle layer)
and at the end of the process, the basic software can be configured and gener-
ated. The main focus of the tool is modeling a software architecture. Therefore,
no ECU or bus development is possible (more about that in section 2.1.3). Before
we start with working in SystemDesk some kind of behavior modeling should
be done to get the implementation (C code) for every SWC. Furthermore, it is
also possible to import an existing SWC specification via an AUTOSAR XML
file. After that the system can be build up (that is shown in the middle part
with system modeling). This part of the flow will be divided again into different
modeling steps provided by SystemDesk (see section 2.1.2, 2.1.3 and 2.1.4). At
the end, the configuration and generation of the basic software (including oper-
ating system functionality) must be done for each ECU. The figure shows that
SystemDesk has the main focus at the middle part but overlaps in the two other
layers by providing interoperability interfaces (that is discuss in section 2.3).

March 31, 2009 Page 9 of 28 Sebastian Wétzoldt

10 Modeling AUTOSAR wusing SystemDesk

Behavior Modeling Tool:

Behavior Function development e.g. Target Link Implz;nsevr\‘l?ﬁon
modeling Hand coded C Code (CFiles)

XML specification
of SWC

o Software Architecture

System ¢ Hardware topology
modeling Network communication
e System configuration / integration
T AUTOSAR System N
XML RTE
(C Code)
Basic Software ECU-centric Tools

ECU configuration
configuration/ generation | RTE generation

Fig. 2. Integration of SystemDesk in the AUTOSAR tool chain.

2.1.1 Direction Indicator Example In SystemDesk there is a tutorial
project, which is choosen to explain the main modeling concepts and possi-
bilities of that tool to model AUTOSAR conform systems. Figure 3 shows some
important units for that example scenario. There are two sensors, one sensor
indicates whether the driver wants to turn left or right (switch sensor) and the
other checks if the warn light blinker should be enabled or not. In addition, we
have two actuators one for the right and one for the left blinker. Different kinds
of electronic control units communicate with each other using a special network
infrastructure. Furthermore, there are a lot of software components, runnables,
ports and interfaces in the whole system. They will be introduced in detail in the
next sections. The main intention of this example is, that the central body ECU
detects, with the assistance of the sensors, the decisions of the driver and forward
special messages to the correct actuator ECU (left/ right blinker or both). As
communication hardware a controller area network (CAN-bus) is used.

Sebastian Watzoldt Page 10 of 28 March 31, 2009

Modeling AUTOSAR wusing SystemDesk 11

Front left indicator Front right indicator

Front left Front right
indicator indicator
ECU ECU

Indicator switch Warning light switch

Central
body ECU

N 7

Fig. 3. Schematic representation of a simple direction indicator with different sensors
and actuators.

March 31, 2009 Page 11 of 28 Sebastian Watzoldt

12 Modeling AUTOSAR wusing SystemDesk

2.1.2 Software Architecture The software architecture in one of three con-
current steps in AUTOSAR system modeling (see figure 2). SystemDesk provides
a graphical environment for the software architecture. If you remember the lay-
ered AUTOSAR architecture, in this case the upper software layer is covered by
the tool. At this abstraction level software components interact with each other
via the virtual functional bus. By modeling the software architecture, the same
view is provided. In a first step you can build up the system, creating different
kinds of software components. To aggregate different systems parts together, you
can structure it with grouping different SWCs into one or more compositions.
Ports with interfaces are used to enable a communication between SWCs. There-
fore, connectors link ports under the abstraction of the VFB. It is possible to
model a specific interaction behavior of the system by defining a set of runnables
in each SWC (conceptual view see figure 4).

SWC1 SwWc2 SWC3

Runnable R2

Port P1 Port P2

Interface

Interface

Fig. 4. Conceptual interacting of SWCs, ports, interfaces and runnables.

To get an impression how this could look like in SystemDesk, please have
a view at figure 5. There are two important areas of that tool at this time. At
the left hand side, you can see the project manager. It contains a library with
all created components, ports and interfaces and different other parts which
belongs to a complete system. One of these parts is the software architecture,
but also other parts like the hardware topology and the network communication
(see 2.1.3 and 2.1.4) are shown. In the middle of that figure an overview about

Sebastian Watzoldt Page 12 of 28 March 31, 2009

Modeling AUTOSAR wusing SystemDesk 13

the whole software architecture of the system is given. It is possible to identify
four SWCs. Two of them at the left side encapsulate the turn switch sensor and
the warn light button. The two other SWCs are for the left and right blinker. In
the middle of this overview there is a composition (orange) which contains the
blinker logic of the example. Several ports are linked with connectors to enable
the communication and interaction of the SWCs.

Birtker (Blinker.sdp) - SystemDesk =& =
File Edit View Diagram Interpreter Tooks Window Help 5
= Hd.iGB2. e = = iAo K.

Project Manager LB " OverallView Property Inspector 4[]

5 3 son 44 : : =

-] Binker B General

(3-8 ProjectLibrary Author
T O Descr

. Overal View B B Name SWA_Indicator

- TumSwich - Indcator View out sigral

TurnSwitchSensor FroniLeftActuaor

HWT_ndicator 155 feft

© £ ECUs Ingicator
-5 CentralBodyEcy Gomposition
5 cB_CANPor : CAN_BODY b noht |
-5 FrotLeftindicatorEcy |
-3 FrontRightindicatorEeu B | &
= NWC_indicator out N ———[> signal

AN_BODY_DBC WarnLightsSensor FrontRightActuator
ALMESWG AOmESHG

Network Nodes
3 Network Messages
) Indicatorlls [t
= 7]
fes It

Documentation File

ks rie
148 SYS_indator
L3 sy

General

EC|
25 NWC_Indicais

&34 CAN_BODY_DBC

5% Toobox |l Project Hanager [[me (=

Interpreter 78
»

LL), Interpreter | 3 Message Browser

Fig. 5. SystemDesk software architecture overview.

To have a deeper look into the front left actuator see figure 6. For every SWC
a name and a description can be modeled. At the left side one sender/receiver
interface is shown with one data element in it. The element is derived from a
boolean base data type and indicates whether the actuator should blink (value
is 1) or not (value is 0). The port with the name ”‘signal”’ at the SWC uses this
interface as receiver (ingoing triangle notation).

The last step at this software architecture level is to specify the behavior.
This could be done by creating runnables (see figure 7). In a standard dialog
it is possible to set a name, description and the category of the runnable. Here
also specific other details could be specified like some triggers when the runnable
should be executed or the data access for it. For instance, in this special example
the runnable has read only access for the data value in the interface. It is enough,
because the actuator only reads whether he should blink or not.

March 31, 2009 Page 13 of 28 Sebastian Wétzoldt

14

Modeling AUTOSAR wusing SystemDesk

e

File Edit View Diagram Interpreter Tools Window Help

Ied. 6B~
e

& @ sort | sa

£ Mo K.

- Front_eftActuator

g Binker
3 Pojctlbray
£ SWA_indicator
6 Overal View
= TumSwitch - Indicator View
3] Indicator
A% TumSwitchSensor
A WamlightsSensor
o0 [EEREER
135 [B_FrontLeftActuator
1% IMPL_FrontLeftActuator
£ FaRunnabie
-3 sgal
E4g) bub
a2 value
& FortRightActuator
HWT_indicator
B NWC_indicator
& SYS_indicator

W
bulb - Receiver e P signal

FrontLeftActuator
AtomicSWC

[3% Toobox |{a] projectanager |

Message Bronser
€ Errors |\ Wamings | i/ Infos
| nterpreter | 5 Message Browser

21K | History @33 |

Batch Mo

Fig. 6. A SWC with port, interface and runnable specification.

i) -
£| Runnable: FlaRunnable
: General | Triggers I Data Access I Operations I Wait Points | Exclusive Areas | Advanced
Name: AaRunnable
Description: This is the oniy Runniable of the SWC. =
Symbol: FlaRunnable
Category: Catla
[7] €an be invoked concurrently
Help [oy |[Ok][Cancel |

Fig. 7. The standard dialog for a runnable in SystemDesk.

Sebastian Watzoldt

Page 14 of 28 March 31, 2009

AW N e

o

N o

©

Modeling AUTOSAR wusing SystemDesk 15

The implementation of the SWC can be imported from external C code files.
A possible implementation for a runnable in that file could look like this code
fragment:

// One possible implementation of the Runnable:

void FlaRunnable(void)

{
// Tead the data wvalue from interface
value = Rte_IRead_FlaRunnable_signal_value();
// do something with value

}

Line 3 defines a function with the same name of the runnable. The implemen-
tation could be very different, here a RTE function call is done (line 6) to read
the data value from the specified interface.

2.1.3 Hardware Topology Remember the AUTOSAR layered architecture,
at the lowest level there is the hardware. For constructing a hardware topology
in SystemDesk an appropriated set of ECUs must be choosen and different com-
munication mechanisms have to be selected. After that, it is possible to build
up the hardware structure via connecting busses and ECUs. At the end, specific
hardware settings can be configured. A valid combination of ECUs and busses
could look like figure 8.

The first part at hardware modeling is the communication infrastructure. Sys-
temDesk provides combinations of CAN and LIN busses. For each, it is possible
to specify in a standard dialog for example a name and a speed. For interacting
with ECUs each bus must provide communication ports. The second part of the
hardware are the ECUs. It is not possible to construct a new ECU from the
bottom, SystemDesk provides a list with a lot of controller types. Therefore,
a configuration of each ECU running at different special platforms can be set.
Connect the ECUs to the busses over the modeled communication ports in a
matrix finishes the hardware modeling.

March 31, 2009 Page 15 of 28 Sebastian Wétzoldt

16 Modeling AUTOSAR wusing SystemDesk

CAN Bus
100.000bits/s

Fig. 8. Harware topoloy example consists of a combination of three ECUs and a CAN
bus.

2.1.4 Network Communication A third view on the system completes the
modeling process. Conceptually, the communication matrix is independent of the
underlying physical bus. Therefore, SystemDesk handles it independently of the
hardware topology. The network architecture consists of a communication ma-
trix, network nodes and messages with signals. It is possible to describe different
kinds of messages with variable signals in it and map them to the network nodes.
Each node is an abstraction of the physical bus structure below and is intercon-
nected with one of them. There are different advantages for this abstraction.
At the one hand, network nodes are able to send and receive a set of messages.
So it is possible setting up special access rights for example to reject messages
and therefore process different communication scenarios. At the other hand Sys-
temDesk provides an import interface for DBC (standard for CAN bus) and
LDT (LIN description file) files to automate this step (more information about
DBC and LDT see for example [9]). If the communication matrices (such as DBC
files) are already available (for example, if the OEM did the network planning
and a supplier uses SystemDesk to develop the software for one ECU) they can
be imported. In this case only additions like missing messages or signals must
be modeled.

Sebastian Wétzoldt Page 16 of 28 March 31, 2009

Modeling AUTOSAR wusing SystemDesk 17

2.1.5 System Configuration and Integration After modeling the software
architecture, specifying the hardware topology and creating a network communi-
cation infrastructure, you can join these three parts together to a whole system.
The first step combining the parts is building a system configuration element
in SystemDesk and map all needed SWCs to the ECUs where they should run
(see figure 9 for conceptual view). Choosing the correct implementation files for
each SWC, a communication matrix and a mapping of messages (including the
signals) to ports and interfaces are steps which are required for a correct system
behavior.

SWC1 SWC2 SwWc3
[Runnable R1] | Runnable S1 | | Runnable K1]
[Runnable R2]
CAN Bus
100.000bits/s

Fig. 9. Mapping SWCs to ECUs to have a unambiguous allocation for the runnables.

The major part for executing the functionality of SWC is still missing at this
time. Therefore, the definition of tasks is needed. Figure 10 shows how runnables
from the mapped SWCs could be uses to construct different tasks. Each OS task
has among other things a category (basic or extended), a priority, a period and
scheduling information for the OS.

After specifying the tasks and global system constraints like network issues
it is possible to configure the OS in some ways. For example global resources like
events or counters, memory, alarm clocks or messages can be specified. All the
information are captured from SystemDesk using standard dialogs (see figure 11
for the OS configuration).

March 31, 2009 Page 17 of 28 Sebastian Wétzoldt

18

Modeling AUTOSAR wusing SystemDesk

SWC1 SWC 2
- Runnable R1 | Runnable S1
[Runnable R2 I

priority: 5

Task T1

Task T2

priority : 4

Fig. 10. Building up OS tasks with runnables from the allocated SWC.

Efrg 05 Configuration: O5Configuration
enem!_éiﬂpplicmion Iﬂpplicmion Modes | Tashks I Events ! Counters IAIarrns | W Resources |Advanc:edi
MName: 0SConfiguration
Description: -
Sl?_\la_bi“t" [Mo 'J
55!
Status [Extended 'J
[Stack monitering [] Use parameter access
|| Use get service ID |¥] Use resource scheduler
Hooks
[F] Error hook [Startup hook
[7] Pre task hook [F]] Shutdown hook
[Post task hook || Protection hook
b | (]]

Fig. 11. The dialog of SystemDesk to capture information about OS settings.

Sebastian Watzoldt

Page 18 of 28

March 31, 2009

Modeling AUTOSAR wusing SystemDesk 19

2.1.6 Runtime Environment and COM Generation A great benefit of
modeling a whole system architecture doing all the steps described above is the
possibility of executing the complete system afterwards. Therefore, it is necessary
to come down from the view of the VEB to a more concrete / real view of
interaction and communication with the help of the runtime environment (RTE).
At this point SystemDesk provides several automatic code and configuration
generation possibilities. For more information about steps in the methodology
of generation the RTE please read [4] and [2].

At the generation of the COM configuration (see figure 12), each signal which
is send over a port gets a unique id. That is important to match that signal (and
the sent value in the signal) exactly via a COM function call (explained more in
detail see figure 15). In SystemDesk it is also possible to aggregate signals from
different sources like network nodes and messages and refer them to different
groups for the PDU router to perform for example different communication
scenarios crossing the COM stack (see [3]).

SWC1
[Runnable R1 | :
[Runnable R2 | :
Signal
id: 10
name: sigl

N ECU2

Fig. 12. Mapping unique IDs to each signal crossing a port.

Figure 13 shows the implementation of the behavior of different SWCs. The
programmer (or another code generation tool) can implement the runnables us-
ing high level function calls (VFB view). In this concrete example a runnable R1
writes a value, a second runnable S1 could read afterwards. Both function calls

March 31, 2009 Page 19 of 28 Sebastian Wétzoldt

20 Modeling AUTOSAR wusing SystemDesk

do not care about the underling hardware infrastructure. The RTE generator
now implements these high level functions but considers the hardware situation.

SWC1 Swc2

Runnable R1 Runnable S1
Runnable R2

Port P1 Port P2

Interface Interface

void R1() { void S1() {
//. //.
RTE_IWrite_R1_myvalue (value); value = RTE_IRead_Sl1_myvalue();
//. //.

} }

Fig. 13. User code for programming at the VFB view.

There are two major possibilities, first it could be that both SWCs are lying
at one ECU and an intra communication could happen. The implementation of
this scenario would look like it is shown in figure 14. In this case a global value
can be written and read, because both SWC uses the same memory resources
at the ECU. This implementation should avoid unnecessary overhead traversing
the communication stack.

A second scenario could look like figure 15. Each SWC runs on different
ECUs and a communication is only possible by sending messages over the bus.
In this alternative the RTE function is implemented calling a function of the
communication stack. Here the id (number 10 in the picture) takes an important
role. Only knowing the id of each signal (the mapping was done at the COM
configuration) allows a correct sending and receiving behavior listing at the right
port for the id. So, in this second case a full using of the communication stack
is necessary to communicate between different ECUs (inter communication).

All these decisions and steps of generating the correct code of the RTE is
done full automatically in SystemDesk. The system engineer can now take this
code and investigate the modeled AUTOSAR architecture by executing it.

Sebastian Wétzoldt Page 20 of 28 March 31, 2009

Modeling AUTOSAR wusing SystemDesk 21

SWC1 SWC2

Runnable R1 Runnable S1
Runnable R2

!

RTE_IWrite_R1_myvalue (value) { int RTE_IRead_Sl1_myvalue() {
globalValue = value; return globalValue;

Fig. 14. Implementation of the RTE function if both SWC have an intra communica-
tion. Reading and writing of a global value.

March 31, 2009 Page 21 of 28 Sebastian Wétzoldt

22 Modeling AUTOSAR wusing SystemDesk

SWC1 SWC2

Runnable R1 Runnable S1
Runnable R2

T |

RTE_IWrite_R1l_myvalue (value) {]|int RTE_IRead_S1_myvalue() {
Com_SendSignal (10, value); return Com _ReceiveSignal (10);

Fig. 15. Implementation of the RTE function if both SWC have an inter communica-
tion. Reading and writing of using the communication stack.

Sebastian Wétzoldt Page 22 of 28 March 31, 2009

(S C R R

13
14
15
16
17

19

Modeling AUTOSAR wusing SystemDesk 23

2.2 Using more features of SystemDesk

This section will numerate some more features of the modeling tool SystemDesk.
All steps, how they are described above, can be automated using a COM (com-
mon object model) port provided by the tool. The integrated python interpreter
can read and execute external scripts so that parts or a whole system (also RTE
generation) can be automated. To get an impression how a script could look
like, see the code snipe 1.1. There are three functions for the indication of the
expressiveness using the SystemDesk library. The first one (line 1 - 47) creates
the software architecture of the systems, the second (line 49 - 69) defines some
interfaces at the ports and the last one (line 71- 84) generates the RTE for one
specific ECU. After creating the software architecture (line 8, 9) different SWC
are specified. For example the " TurnSwitchSensors” component with one port
(line 11 - 15) or the indicator component with 4 ports (see line 23 -29). After
creating all single components the top level diagram from figure 5 is set up (SWC
elements with port connections 1. 33 - 46).

The second function collects at first all SWCs and compositions from the
tool (1. 58 - 60), for adding different kinds of interfaces from the library to them
(1. 63 - 68).

The last function shows how a RTE generation for one ECU is possible. After
getting the specific ECU from the project (1l. 79 - 81) a simple function call (1.
84) should do all the work (the precondition to do that is, that all necessary
modeling steps are done before, otherwise the tool would throw an error).

source code 1.1. Python code snipe of three little functions creating a software
architecture, interfaces and generating the RTE.

HHURARBARARARARHRARRARRRHRARRARRAHRABRARRAHH
Create the software architecture
HARBUBUBARARBRBRBURRRRRRRRARBRERBRRRRRRR R
def CreateSoftwareArchitecture():

wun

Creates the software architecture of the indicator system.
" n

TutorialProject.SoftwareArchitectureName = "SWA_Indicator"
softwareArchitecture = TutorialProject.SoftwareArchitecture

Create SWC "TurnSwitchSensors".

turnSwitchSensorSwc = softwareArchitecture.AtomicSoftwareComponents.Add ("
TurnSwitchSensor")

turnSwitchSensorSwc.Ports.Add ("out")

if TutorialProject.Options.WithIo:
turnSwitchSensorSwc.Ports.Add("io_tss")

Create SWC "WarnLightSensors".

warnLightsSensorSwc = softwareArchitecture.AtomicSoftwareComponents.Add("
WarnLightsSensor")

warnLightsSensorSwc.Ports.Add("out")

if TutorialProject.Options.WithIo:
warnLightsSensorSwc.Ports.Add("io_wls")

Create a composition for the "Indicator".

indicatorComposition = softwareArchitecture.Compositions.Add("Indicator")
indicatorViewTssInPort = indicatorComposition.Ports.Add("tss")
indicatorViewWlsInPort = indicatorComposition.Ports.Add("wls")
indicatorViewLeftOutPort = indicatorComposition.Ports.Add("left")

if TutorialProject.Options.WithRight:

March 31, 2009 Page 23 of 28 Sebastian Wétzoldt

RS IRCI S< B e S]
[IS NS, B S R OIS R

©

o
S

61
62
63
64

24

Modeling AUTOSAR wusing SystemDesk

indicatorViewRightOutPort = indicatorComposition.Ports.Add("right")

Create the top-level diagram.

overallView = softwareArchitecture.CompositionDiagrams.Add("Overall View"
)
grTurnSwitchSensorSwc = overallView.AtomicSoftwareComponents.AddElement (

turnSwitchSensorSwc)
Utilities.SetFillColor (grTurnSwitchSensorSwc, ’lightblue’)
Utilities.SetPositionAndSize (grTurnSwitchSensorSwc, 80, 60, 180, 100)

overallView.PortConnections.Add (grTurnSwitchSensorOutPort,
grindicatorTssInPort)

overallView.PortConnections.Add(grWarnLightsSensorOutPort,
grindicatorWlsInPort)

overallView.PortConnections.Add(ngndicatorLeftInPort,
grFrontLeftActuatorSignalInPort)

title = overallView.Texts.Add ("Overall View")

HUARBBBARARBRBRRARBRARAARBRARRRRRBRRRRRRRRARH
Create the interfaces at the ports.####
RARBARARARARBRBRBRBRBRBRABARARRRARARARARARRY
def CreatelInterfaces():

nwun

Create the interfaces.

wun

libFolder = TutorialProject.Project.Library

Compositions and SWCs.

indicatorComposition = TutorialProject.SoftwareArchitecture.Compositions.
Item("Indicator")
indicatorAtomicSwc = indicatorComposition.AtomicSoftwareComponents.Item("

IndicatorAtomic")

Add interfaces to the delegation ports of the Indicator composition.

GetInterface("if _tss", indicatorComposition.Ports.Item("tss").
ReceiverInterfaces, libFolder)
GetInterface("if_wls", indicatorComposition.Ports.Item("wls").

ReceiverInterfaces, libFolder)
GetInterface("if _bulb", indicatorComposition.Ports.Item("left").
SenderInterfaces, libFolder)
if TutorialProject.Options.WithRight:
GetInterface ("if _bulb", indicatorComposition.Ports.Item("right").
SenderInterfaces, libFolder)

HARBUBRBARAARABRBURRRRRRRRBRBRBRRRRRRRRHRH R
Create the RTE for one ECU #HHRHRH
HARAARARRRARARRAARRRARRRRRARRAREARRARRARRAHY
def GenerateCentralBodyEcuRte():

woun

Generates the RTE for the CentralBodyEcu.

wun

system = TutorialProject.System
ecuConfiguration = system.EcuConfigurations.Item("CentralBodyEcuConfig")
print "Generating RTE for J%s") ecuConfiguration.Name

Start the RTE generation now.
ecuConfiguration.StartRteGeneration ()

Sebastian Wétzoldt Page 24 of 28 March 31, 2009

16

18
19
20
21
22
23
24
25
26
27

28

Modeling AUTOSAR wusing SystemDesk 25

The use of python scripts could reduce modeling work, if there are for example
standard components which are needed in other systems, too. Utilize a script
is only one possibility. Furthermore, SystemDesk provides an internal exchange
format for saving and reusing system parts (see next section).

Another feature in the newest version of the tool is, doing software in the
loop (SIL) simulations to investigate the interaction and behavior of the system.
For more information about simulation in context of AUTOSAR you can read
[5].

2.3 Interoperability

At the end of the discussion about SystemDesk and AUTOSAR systems some
possibilities about interoperability are pointed out. The use of python scripts
like it was explained above gives only a reduced interaction between different
suppliers. To overcome these limitations SystemDesk provides the export of the
software architecture, single components and compositions and the whole system
configuration to a standardized AUTOSAR XML format ([12]). The exported
parts of the system could look like the XML listing 1.2. In this part of a XML
specification of a system you can see the definition of the SWC ”FrontLeft Actu-
ator” (ll. 9 -20), a runnable named ”FlaRunnable” (Il. 25 -30) and an interface
of the SWC (1l. 33-44).

This XML file can be understand from each other tool which is able to read
the standardized AUTOSAR XML format. So you can exchange parts of a system
and import and working with them in SystemDesk.

source code 1.2. Part of an exported standardized XML file from SystemDesk.

<?xml version="1.0" encoding="UTF-8"7>
<AUTOSAR xmlns="http://autosar.org/2.1.4"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://autosar.org/2.1.4 autosar.xsd">
<TOP-LEVEL -PACKAGES>
<AR-PACKAGE>
<SHORT -NAME>Blinker</SHORT -NAME>
<ELEMENTS>
<ATOMIC-SOFTWARE -COMPONENT -TYPE>
<SHORT-NAME>FrontLeftActuator</SHORT -NAME>
<PORTS>
<R-PORT-PROTOTYPE>
<SHORT-NAME>signal</SHORT -NAME>
<REQUIRED -COM-SPECS>

</REQUIRED -COM-SPECS>
<REQUIRED - INTERFACE -TREF DEST="SENDER-RECEIVER-INTERFACE">/
Binker/if _bulb</REQUIRED - INTERFACE - TREF >
</R-PORT-PROTOTYPE>
</PORTS>
</ATOMIC-SOFTWARE -COMPONENT -TYPE>
</ELEMENTS>

<INTERNAL -BEHAVIOR>
<RUNNABLES >
<RUNNABLE -ENTITY>
<SHORT-NAME>FlaRunnable</SHORT -NAME>
<CAN-BE-INVOKED-CONCURRENTLY>false</CAN-BE-INVOKED-CONCURRENTLY
>

March 31, 2009 Page 25 of 28 Sebastian Wétzoldt

30
31
32
33

35

26 Modeling AUTOSAR wusing SystemDesk

<SYMBOL>FlaRunnable</SYMBOL>
</RUNNABLE-ENTITY>
</RUNNABLES>

<SENDER -RECEIVER -INTERFACE>
<SHORT-NAME>if_bulb</SHORT -NAME>

<IS-SERVICE>false</IS-SERVICE>
<DATA-ELEMENTS>
<DATA-ELEMENT -PROTOTYPE>
<SHORT -NAME>value</SHORT -NAME>
<TYPE-TREF DEST="BOOLEAN-TYPE">/Binker/dt_bulb</TYPE-TREF>
<IS-QUEUED>false</IS-QUEUED>
</DATA-ELEMENT -PROTOTYPE>
</DATA-ELEMENTS>
</SENDER-RECEIVER -INTERFACE>
</AR-PACKAGE>
</TOP-LEVEL -PACKAGES>
</AUTOSAR>

Remember the flow process as a part of the methodology in figure 2. Sys-
temDesk is able to load in SWCs and system descriptions given in an AUTOSAR
XML. Furthermore, DBC and LDT files can be imported for the network archi-
tecture. Finally external code files are used and integrated into the generated
RTE to run the AUTOSAR system.

Sebastian Wétzoldt Page 26 of 28 March 31, 2009

Summary 27

3 Summary

Looking back to all steps in modeling and developing an AUTOSAR, conform
system shows the complexity and the effort a developer must deal with. The
benefits of simulating the system in an early development phase to identify errors
and requirements violations or to test different systems alternatives increase the
productivity and the quality of the end product. SystemDesk tries to help the
developer at each step of the modeling process. Providing at the one side different
integrated functionalities like automatic RTE generation and a standardized
exchange concept using the AUTOSAR XML format at the other side, it helps
a lot of avoiding interoperability problems and coding errors.

All in all you can say the main focus of SystemDesk is to provide a tool
building up a software architecture of an AUTOSAR conform system. Of course
you can also model hardware and network issues, but there you can only use
existing types of ECUs and busses. Therefore, looking at the AUTOSAR layered
framework in picture 1, SystemDesk concentrates its efforts to the software layer.
It would be very easy developing applications with other tools and integrate
this code in a whole AUTOSAR systems to find weaknesses and problems in a
simulation for example. If the focus of the developer is to create new kinds of
ECUs or communication mechanism like busses then SystemDesk should not be
the tool to choose.

Looking at the whole methodology of AUTOSAR with all the steps and tools
you need to get a proper architecture and a correct system, SystemDesk man-
ages it to get a seamless integration into this process. Some future work could be
building up a complex real world example with different software architectures,
hardware topologies and network alternatives, generate different system combi-
nations out of them and investigate the interaction and behavior of the resulting
real time system. It would be very interesting to investigate the benefits of using
such modeling techniques provided by SystemDesk instead of complicated and
incomprehensible solutions of today’s development processes.

March 31, 2009 Page 27 of 28 Sebastian Wétzoldt

28 Literature

4 Literature

References

1. Schlegel: Technical Foundations for the Development of Automotive Embedded Sys-
tems. University Potsdam, HPI, 2009.

2. N. Naumann: Runtime Environment & Virtual Function Bus. University Potsdam,
HPI, 2009.

3. J. Gosda: AUTOSAR Communication Stack. University Potsdam, HPI, 2009.

4. R. Hebig: AUTOSAR - Methodology and Template Based System Design. Univer-
sity Potsdam, HPI, 2009.

5. A. Krasnogolowy: Simulation of Automotive Systems in the Context of AUTOSAR.
University Potsdam, HPI, 2009.

6. The official AUTOSAR website: http://www.autosar.org/

7. AUTOSAR Development Partnership: AUTOSAR technical Overview 2.2.2, 2008.

8. AUTOSAR Development Partnership: Specification of the Virtual Functional Bus
1.0.2, 2008.

9. Vector: Steuergerite optimal kalibrieren. www.vector-worldwide.com

10. SystemDesk Guide Release 6.2. July 2008.

11. dSpace website: http://www.dspace.de

12. AUTOSAR XML schema (autosar.xsd)

Sebastian Wétzoldt Page 28 of 28 March 31, 2009

