
Technical Foundations for the Development
of Automotive Embedded Systems

Jörn Schlegel

Hasso-Plattner-Institut an der Universität Potsdam

joern.schlegel@hpi.uni-potsdam.de

ABSTRACT
Building an automobile today is a very complex process. Various
computer hardware and software components have to work
together to ensure a safe and comfortable drive. The customers
can choose from a wide range of customizing options and
automobile models to finally buy their automobile. How this
effects the number of features in an automobile is described in
Section 1, while how this increases the requirements for
production is described in Section 2 and Section 3 of this report.

For the manufacturers of automobiles this means, they have to
handle an already large and still growing number microcontrollers
and software components. While a growing number of features in
automobiles allow them to strengthen their brand and sell more
automobiles, a growing number of hardware components means
growing weight and production cost. Both means automobiles
become more expensive and less of them can be sold. Another
problem is to integrate new features successfully, regarding
hardware and software interoperability with already existing
systems. This is shown in more detail in Section 4 and Section 5
of this report.

To overcome these problems either the used computer hardware
has to be unified or the used software has to be standardized to
allow faster integration. Unifying hardware means using
generalized hardware which is at the moment to expensive to use
it for all systems in a car. Standardizing software currently is a
much more promising approach and therefore is pursued by the
Automotive Open System Architecture Consortium, with already
promising results. Section 6 of this report clarifies what the
Automotive Open System Architecture Consortium achieved so
far.

Keywords
Automobile, Software, AUTOSAR, Embedded Systems

1. INTRODUCTION
Automobiles are supposed to be lightweight, safe, and
comfortable. Being lightweight is important while fossil fuels
become more and more expensive. Because every 100kg an
automobile weighs less, mean a reduction of fuel consumption by
0.5 litres [1]. This reduction of fuel consumption would lead to

downsized motors and less CO2 emission. These factors lead to a
reduced total cost of ownership.

Making an automobile safer while reducing its body weight at the
same time makes it necessary to use different materials for the
bodywork and to use additional safety measures. These safety
measures maybe passive systems as advanced designs of parts like
the fascia and pedals to reduce the probability of injuries to driver
and passengers. Used measures in the design include a rounded
shape of the front of the glove compartment and predefined
breaking points, which cause the parts to give way when knees or
feet of the driver or the front passenger push against them in case
of a crash.

Active safety systems include measures, which become active
before or during a crash. Measures, which are active before a
crash occurs, are for example seatbelt reminders, speed limitation
devices, lane departure warning systems, and electronic stability
control (ESC) systems. These systems help to avoid crashes by
keeping the automobile controllable and preventing dangerous
automobile movements as skidding or leaving a lane unintended
or reminding drivers to avoid potentially dangerous situations as
driving too fast or without wearing a seatbelt.

Safety measures becoming active during a crash include airbags,
seatbelt load limiters and active seats and head restraints. These
systems are designed to reduce the risk of injury to automobile
occupants. Airbags provide a soft, elastic surface, which reduces
the impact force when an occupant hits hard parts of the
automobile or prevents that impact completely. Seatbelt load
limiters release a small amount of excess belt webbing in a serious
crash to prevent the seatbelt from injuring the restraint person by
applying too much force while reducing the person’s inertial
speed. Active seats and head restraints will, during a crash, move
into a position in which the seated person is in an optimal position
towards the airbags and the head restraint to minimize injuries by
whiplash.

All active safety systems require the installation of additional
hardware and often additional software as well. These additional
parts include the acting parts and components to communicate
with other systems of the automobile. Additional parts mean more
weight, which leads to a higher fuel consumption. However, most
customers and the German legislature demand safety and low fuel
consumption.

Another goal contradictory to reduced automobile weight and less
fuel consumption is the growing desire for more comfortable
automobiles. Comfort features in automobiles include power
windows, air conditioning, sound systems, video systems,

communication systems, and heated seats. All of these systems
need hardware, which means more weight, and consume energy.
The more complex systems need software as well.

The increased weight and energy needs lead to higher fuel
consumption and so is contradictive to the need for lighter less
consuming automobiles. Safety is another goal entertainment and
communication systems are contradictory to. These systems can
distract the driver and so make additional safety systems
necessary.

A good indicator for more equipment in automobiles is the
increase in weight of an average family automobile between 1993
and 2005 by 30% [2]. This increase in weight took place despite a
decrease in weight of bodywork and engine. The weight gained is
not only to be attributed to a growing number of mechanical parts
but also to a growing number of electrical parts.

The average share of electronics in total vehicle value will rise
from 20% in 2004 to 35% in 2010. The software share in this
share of electronics will rise from 20% in 2004 to 38% in 2010.
This means the total share of software in vehicle value will rise to
13% in 2010. This means software plays a role of growing
importance in building an automobile.

As a result, the mastery of software development processes is
becoming crucial for automobile manufacturers. An important
step towards this goal is software reuse. It would mean reduced
development cost and time and better quality of software and thus
better failure avoidance. The use of standardized software
modules which either encapsulate basic or specialized
functionalities is a requirement to achieve this goal. Nevertheless,
the software mostly used today is very heterogeneous, because
different suppliers use different software specifications and
standards. Consequently, automobile manufacturers have to go to
great lengths to integrate software of various suppliers into their
automobiles successfully.

2. INCREASING NETWORKING
The increased amount of advanced electronic systems in latter-day
automobiles does not only lead to a larger number of electronic
control units but also to a higher total cable length used in each
single automobile.

This increase in cable length stems from a growing need for
communication between once separated components of the
electronic systems used in automobiles. For example, the velocity
of an automobile was only displayed on the speedometer in earlier
days. Today the velocity can be evaluated by the electronic
stabilization control system or the cruise control to keep the
automobile driving in the direction and with the velocity, the
driver intended. However, it can be also evaluated by the volume
control of the radio or the power windows to ensure more comfort
by closing the windows and adjusting the volume of the radio
when driving at higher speed. Figure 1 illustrates the increasing
number of networking electronic components during the last thirty
years.

The increased need for hardware as cables, electronic control
units and the software used to control them can lead to up to 1800
meters of cable with a total weight of 30 kilograms and one
gigabyte of software installed on over 70 electronic control units

in a single automobile of the BMW 3 Series built in 2005.

Adding even more complexity to the networking hardware in a
single automobile, different types of bus systems are deployed for
different purposes. The most often used bus types are the
Controller Area Network (CAN), the Local Interconnect Network
(LIN) and the Media Oriented System Transport (MOST).

The Controller Area Network is an asynchronous, serial fieldbus
system. Its error detection and confinement capabilities along with
a high data rate of up to one Megabit per second make a bus
system that can handle communication between safety critical real
time applications. A typical use is communication concerning the
engine or the transmission.

Where the flexibility and bandwidth of the Area Control Network
is not needed, the cheaper Local Interconnect Network (LIN) is

Figure 1. An automobile cockpit built in 1978 (left) contains much less electronic than one built in 2008 (right).

Most of the components marked in the right picture are connected to at least one other component.

Taken from [10]

used. The Local Interconnect Network is a serial fieldbus. It is
based upon a time triggered single master / several slaves concept.
A typical use is the networking in a single component like a door
or a seat.

The Media Oriented System Transport (MOST) bus covers
another area of application. It is based on an optical fibre bearer,
which allows far higher data transfer rates than other bus
technologies used in automobiles. The serial data transmission is
used to transport media data like audio or video data or to connect
multimedia devices.

An approach to reduce the quantity of computer hardware built
into an automobile is the unification of the functions currently
spread over several bus systems to allow the use of homogeneous
hardware components. One prominent approach is the FlexRay
System. It is developed to provide a higher data transfer rate,
better failure safety and real-time ability. These qualities become
necessary as more driver assistance systems are built into each
new generation of automobiles. Flexray is a deterministic serial
fault-tolerant fieldbus system, which is developed by FlexRay
Consortium.

Another approach is being researched by BMW. This approach
uses the Internet Protocol to handle all communication tasks
generated in an automobile. The integration of WLAN and
Ethernet for in and out of vehicle communication would be easy
with this approach and is one incentive for the research. The
number of bus lines and control units each could be reduced to
five with this approach. There would be one control unit and one
bus for each the powertrain, chassis, driver assistance,
infotainment and comfort. [3]

This homogeneity of hardware comes at a price. The reduction of
cables, control units, and thus weight requires the use of very
advanced and flexible high-tech systems. These systems have a
higher per unit cost than specialised components, which are used
today. Deploying those flexible systems for simple systems like
air conditioning has no advantages justifying the higher costs
necessary. This is the mean reason why the construction of
automobiles containing only unified computer hardware is not
feasible without skyrocketing costs.

3. INCREASING VARIETY
Another reason for an increasing number of different computer
hardware built by automobile manufacturers and suppliers is the
increasing variety of automobile models offered by manufacturers.
1978 Audi offered three models thirty years later they offered 34
models.

 Each of these models can be customized with several options.
These options include diverse comfort and yes/no options like
having a navigation system or a radio, an air conditioning or
maybe a moonroof. However, they also include varieties for lots
of the components built into an automobile. For example, the
customer can choose the size of the rims and the engine, he can
choose between different suspensions and transmissions. The type
of radio and seats, the colour of the exterior and interior of the
automobile, several assistance systems and safety equipment can
be selected.

The basis to which these choices are added is formed by core
components like the chassis and the body. This method is called
customized mass production. All components are mass-produced
and in the process of building and assembling the components,
only small, standardized alterations have to be made. This keeps
the production of the product cheap and allows the customer to
customize the product he buys to a certain degree.

The introduction of highly customized mass production to today’s
automobile industry has led to the production of only a few
identical automobiles per year.

Customized mass production of automobiles generates the need
for similarly produced software. This is important in order to safe
costs in software development. Each mandatory or optional
hardware component controlled by software has to have an
equalling software module in order to ensure problem-free
integration and operation of the necessary software. A possible
means to achieve this goal are Software Product Lines (SPL). A
Software Product Line is a set of different software products all
originating from the same basic software. Each product is a little
different, customized to different requirements. Software products
to be installed on similar hardware components, in terms of
function and requirements towards the structure of software
should be of the same product line. This ensures that software can
be developed and deployed fitting the needs of each customized
automobile model.

4. INCREASING COMPLEXITY
The complexity of building an automobile does not only rise
because more different models and varieties are offered, but also
because more computer hardware is built into each automobile.
More computer hardware components do not only mean more
communication effort and thus more cables, but also more parts
which have to be developed, tested, built into an automobile and
then can be damaged. Computer hardware parts being damaged
are expensive to repair and often cannot be repaired at all but have
to be replaced.

It is common practice that suppliers deliver their software on
controller hardware. This means every function added to an
automobile means an electronic control unit is added to that
automobile. Even though more electronic control units mean more
functions and more functions in each automobile equal to more
sold automobiles, more hardware components mean less profit for
automobile manufacturers. This is because each component built
into an automobile has a constant unit cost added to the cost of
development. This unit cost is the main reason why automobile
manufacturers try to reduce the number of electronic control units
and cables and the total cable length while they also try to
increase the number of functions.

More functionalities can be added by software, given that the
necessary sensors and actuators, as well as the required
communication hardware is already present in the automobile.
This means that two automobiles identical in hardware can have
different features and characteristics. For example, two identical
engines can provide different power output and consume different
amounts of fuel if they are controlled by different software.

These new functionalities help to strengthen the brand image and
therefore are heavily used in advertisements. If a new
functionality can be implemented by software only without
deploying new hardware components, the implementation of this
feature would have no unit cost, but development cost only. This
would be a huge advantage concerning not only the costs, but also
the reduction of weight and the flexibility of customizability.

Features only requiring new software and using already existing
hardware also have the advantage, that they can be developed and
exchanged or updated faster than features hardcoded onto
specialized hardware components. Today this is partly used in
chip tuning. Here software controlled parameters for the engine
performance are altered to achieve faster acceleration or a higher
top speed. In the future error prone software parts could be
exchanged, revised software components could be deployed as an
update, or completely new features could be deployed without
exchanging hardware components, just like updating a personal
computer or a cellular phone today.

To effectively find and exchange faulty software two requirements
exist. Firstly, the software has to be organized in functional
modules. Each module should encapsulate one functionality,
which can be replaced without altering other modules. Secondly,
these modules have to be developed in a model driven approach.
This would then enable model based fault tracing. The actual data
of a vehicle could be compared to the expected standard data
generated by the model, this would allow to find hardware and
software errors faster.

5. HETEROGENEOUS SOFTWARE
The software used in today’s automobiles is highly
heterogeneous. This is the results of various suppliers developing
software for the same automobile. Different developers use
different software standards for diverging requirements.

They develop software for real-time systems, like airbags, which
have to open ten to forty milliseconds after the detection of a
crash, or the calculation of the fuel/air mixture, which has to be
calculated twice per engine stroke. These systems have to
guarantee very short response times and need to employ failure
safety mechanisms.

On the other hand, suppliers develop non-real-time systems like
control units for the fuel gauge or the CD changer. These systems
are not safety critical and therefore do not have to meet as strict
requirements regarding time and failure safety.

Furthermore, different suppliers develop different software
components for different hardware. This includes different types
of electronic control units as well as different types of buses.

This is a huge problem for the automobile manufacturers because
they have to integrate all the software, which the suppliers usually
deliver already installed on hardware, e.g. on electronic control
units, into a single working system. Considering the amount of
functionalities this is no trivial task and requires a lot of time and
money for testing. A solution to the problem would be the
unification of the computer hardware used. FlexRay offers one
attempt at a solution by unifying the functionalities of different
bus systems currently used.

Taking this thought a step further would mean to unify the
hardware of electronic control units as well. This would lead to
more flexible personal computer like hardware. The advantages
would be the simplification of dynamic resource allocation and
thus an improved hardware redundancy to ensure failure safety. If
there were only identical electronic control units, software
currently not in use could be swapped with software likely to be
used out of their memory. Furthermore, if one electronic control
unit running safety critical functionalities malfunctioned, the
software could be loaded into another electronic control unit,
ensuring a safe drive until the malfunctioning hardware can be
replaced.

This solution to the problem of heterogeneous computer hardware
and thus software is very unlikely in the near future. The main
reason for this is that a few of the flexible systems needed to
implement this solution cost far more than a lot of less flexible
systems used today. Therefore, another solution is necessary.
Because software has no unit cost, the idea to reduce complexity
by using standardized software suggests itself. A prominent
standardized automotive software architecture is the Automotive
Open System Architecture (AUTOSAR).

6. AUTOSAR
The Automotive Open System Architecture provides common
basic system functions, a modular design, standardized interfaces,
and a good scalability within and across different product lines.
To standardize common basic system functions is important to
automobile manufacturers, because these functions do not contain
innovations and so do not sell automobiles. Furthermore
AUTOSAR eases the exchange and reuse of software
functionalities by standardizing them. This greatly reduces time
and costs for testing, development, and integrating those
components. Figure 2 shows an overview example.

Figure 2. AUTOSAR manages complexity by exchangeability and
reuse of software components.

Taken from [12]

Modular design means that clearly separated functional units are
encapsulated. One advantage of this is, that functionalities can be
swapped, if a better suited implementation was available. Another
advantage is that functionality can be developed hardware
independent up to a certain point and then the same functionality
can be implemented for different sets of hardware.

Standardized interfaces make sure that components developed by
different parties can communicate with each other, because the
appropriate interface specifications are available to everyone. This
has the advantage that single components can be replaced without
rising the need to replace or modify other components.

Scalability within and across different product lines means for
automobile manufacturers that they can use the same procedures
to generate software no matter how many diverse implementations
are needed. They can then use these software components for
different models and just apply the steps and modules necessary to
customize a specific product.

The Automotive Open System Architecture applies a software
architecture to each electronic control unit, which is outlined in
this section. It consists of AUTOSAR Software, the AUTOSAR
Runtime Environment (RTE), and Basic Software. [8] An
overview of the AUTOSAR ECU software architecture is depicted
in Figure 3.

AUTOSAR Software contains all Software Components mapped
to the electronic control unit. Each Software Component is atomic
and encapsulates one software functionality. This means that each
component can be exchanged without having to alter any other
component. Software Components are connected to each other by
ports. These come in two variants each consisting of a providing
and a requiring port.

The first variant defines a set of operations that can be invoked. It
works similar to a client/server interface. The providing port
defines the operation available and triggers it without showing
any implementation details to the outside. The requiring port on
the other hand defines which operation he needs to be executed
and triggers a request.

The second variant allows data-oriented communication. It works
like a sender/receiver interface. The providing port sends data to
the requiring port.

Specialized kinds of a Software Component are sensors and
actuators. Those need to run on an electronic control unit,
physically connected to the sensor or actuator hardware and are
highly dependent on the function of the sensor or actuator.

In general, the implementation of Software Components is
independent from the type electronic control unit it is mapped to.
This allows a hardware independent programming of software
functionalities and so contributes to the reuse of software. This is
important to allow a wide range of automobile models all using
the same software for identical functionalities.

The implementation is also independent from the location of other
Software Components this Software Component has to interact
with and the type of networking technology used to connect
interacting Software Components, if they are on different
hardware components. On advantage of these facts is that
interacting functionalities can be stored on the same or on
different electronic control units. This maybe important, if these
functionalities were used in two different automobile models
using a different hardware layout. In one model, two interacting
functionalities could be stored on the same electronic control unit,
whereas in the other model the same two functionalities are stored
on different electronic control units.

The description of a Software Component contains operations and
data element provided or required by the implemented
functionality and information regarding the specific
implementation, as for example which version is implemented. It
also contains requirements on the infrastructure and resources
needed by the Software Component. This contains for example,
information about minimum data transfer rates and reaction times
of connected hardware.

The AUTOSAR Runtime Environment handles the
communication between Software Components, regardless if they
are on the same or on different electronic control units. It is
different for every electronic control unit due to different
communication needs of different hard- and software. The
configuration takes care of the actual communication paths, and
has to be done for each different system. This is important to
ensure that Software Components can be placed on different
electronic control units, to satisfy the requirements of different
hardware layouts. [9]

The Virtual Functional Bus (VFB) is the concept behind the
Runtime Environment. It is a hardware and mapping independent
means of virtual system integration. The software integration in
much earlier design phases than is usual in today’s development
processes is one of its major advantages. Thus it allows earlier
testing which safes a lot of money.

AUTOSAR Basic Software handles services, communication, the
operating system, microcontroller abstraction, and electronic
controller unit specific components. All those components include
standardized interfaces to ensure interoperability. The services
include diagnostic protocols and memory management.
Communication contains input/output and communication
management and frameworks like CAN and LIN, whereas
AUTOSAR does not support MOST. The operating system is

Figure 3. AUTOSAR ECU Software Architecture.

Taken from [11]

based on the OSEK OS. The access to hardware is routed through
the Microcontroller Abstraction Layer (MCAL). This avoids
direct access to microcontroller registers from higher-level
software. Thus, hardware independence for higher-level software
is ensured. Electronic controller unit specific components consist
of abstraction components, decoupling the software from the
underlying hardware, and complex device drivers. Complex
device drivers allow to access hardware directly, particularly for
resource critical applications.

Using the information provided by the used Software
Components, the Basic Software, Operating System, and Runtime
Environment are configured. This means that only the
components necessary to fulfil the requirements of the
functionalities implemented in the Software Components are
added to the system. By this means, the size of the whole system
is kept to a minimum. For example, the SystemDesk RTE-
Generator can be used to generate the code needed to integrate
Software Components. [4], [7]

First, it will check the consistency of the used software
architecture. If the architecture is consistent, the Basic Software,
Operating System, communication stack [5], and RTE will be
configured according to the information specified in the Software
Components. After that, the actual Runtime Environment will be
generated, determining the exact communication paths between
the Software Components. [6]

7. SUMMARY AND CONCLUSION
The development of the automobile industry has led to more
functionality available in today’s automobiles. This functionality
includes safety, driver assistance, and comfort systems. Most of
these systems require additional computer hardware and software,
which suppliers often deliver as computer hardware components
including software for a very specific function within an
automobile.

More electrical components delivered by different suppliers pose
a growing difficulty for automobile manufacturers. This problem
results from various requirements the components have, making
the integration of all components into a working system difficult
and time consuming. Another aspect of this problem is the weight
and cost of an automobile growing with each micro controller and
cable build into it. More weight leads to more fuel consumption,
and higher production costs mean automobiles that are more
expensive. Both effects lead to less sold automobiles.

The manufacturers cannot reduce the number of functionalities
offered to the customers, because functionalities sell automobiles.
Some functions are even declared mandatory by the lawmaker.
Besides the growing number of features per automobile, today’s
customers demand individuality for the products they buy. This
led to customized mass production further complicating the
process of building automobiles. Furthermore, not only building a
single automobile has become more complicated, but today a wide
range of different automobile models are offered to the customers
to satisfy their need for automobiles tailored to their liking.

One idea to reduce this complexity is to unify the hardware used,
so that hardware components could be plugged together without
having to consider lacking interoperability. This idea is not

feasible today, because flexible hardware, as for example
FlexRay, costs a lot more than specialized components. This is
true even though the number of required specialized computer
hardware components is larger, than the number of more general
components required providing the same functions would be.

Another idea to reduce the cost of integrating components into a
complex system is standardizing the used software. The
Automotive Open System Architecture (AUTOSAR) provides a
standard how software functionality should be specified. The
main advantage is saving time and cost in system integration,
because the basic software and communication structure is
configured and added based on the requirements of the software
implementing automobile functionality. This frees the automobile
manufacturers from working on the basic software and leaves
them with more money and time to invest in developing selling
features. Figure 4 shows more concepts the AUTOSAR provides.

AUTOSAR provides the chance to create a mass market for
automotive basic software. This mass market would exist, if a
large number of companies used AUTOSAR, and would result in
a significant in prices for automotive software and thus in the
manufacturing costs for automobiles.

Figure 4. Technical scope of the AUTOSAR standard.

Taken from [13]

REFERENCES
[1] R. Kötz, Ph. Dietrich, M. Hahn, F. Büchi. Paul Scherrer

Institute, Villingen, Schweiz. „Supercaps – Eigenschaften
und Fahrzeuganwendungen“. VDI-Berichte Nr. 1874, 2005,
S. 175 – 188.

[2] Oliver S. Kaiser, Dr. Heinz Eickenbusch, Dr. Vera Grimm,
Dr. Dr. Axel Zweck. Zukünftige Technologien Consulting,
VDI Technologiezentrum GmbH, Düsseldorf. „Zukunft des
Autos“. Zukünftige Technologien Nr. 75, Januar 2008, ISSN
1436-5928.

[3] Wolfgang Pester. “Kabelbäume im Auto vor dem Abholzen”.
In: VDI-Nachrichten 16.11.2007

[4] Dr. rer.-nat. Stichling. „Autosar Run-Time-Environment
effizient generieren”. In: AUTOMOBIL-ELEKTRONIK,
Oktober 2007.

[5] Gosda, Johannes. AUTOSAR Communication Stack. 2009.

[6] Hebig, Regina. AUTOSAR Methodology & Templates.2009.

[7] Wätzold, Sebastian. Modeling and Development of
AUTOSAR using SystemDesk. 2009.

[8] Warschofsky, Robert. AUTOSAR Software Architecture.
2009.

[9] Naumann, Nico. AUTOSAR Runtime Environment and
Virtual Function Bus. 2009.

[10] Stephan Reichelt. I/AEV-2, FlexRay und AUTOSAR. 14.
November 2007.

[11] Moessinger, Juergen. AUTOSAR – The Standard for Global
Cooperation in Automotive SW Development. May, 2008.

[12] Moessinger, Juergen. AUTOSAR – The Standard for Global
Cooperation in Automotive SW Development. July, 2008.

[13] Harald Heinecke, Jürgen Bielefeld, Klaus-Peter Schnelle,
Nico Maldener, Helmut Fennel, Oliver Weis, Thomas
Weber, Jens Ruh, Lennart Lundh, Tomas Sandén, Peter
Heitkämper, Robert Rimkus, Jean Leflour, Alain Gilberg,
Ulrich Virnich, Stefan Voget, Kenji Nishikawa, Kazuhiro
Kajio, Thomas Scharnhorst, Bernd Kunkel. AUTOSAR –
Current results and preparations for exploitation. 7th
EUROFORUM conference ‘Software in the vehicle’ 3-4
May 2006, Stuttgart, Germany.

